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The goal of this work is to analyse and study an ultra-rapid data assimilation (URDA)

method for adapting a given ensemble forecast for some particular variable of a

dynamical system to given observation data which become available after the standard

data assimilation and forecasting steps. Initial ideas have been suggested and tested by

Etherthon 2006 and Madaus and Hakim 2015 in the framework of numerical weather

prediction. The methods are, however, much more universally applicable to general

non-linear dynamical systems as they arise in neuroscience, biology and medicine as

well as numerical weather prediction. Here we provide a full analysis in the linear case,

we formulate and analyse an ultra-rapid ensemble smoother and test the ideas on the

Lorentz 63 dynamical system. In particular, we study the assimilation and preemptive

forecasting step of an ultra-rapid data assimilation in comparison to a full ensemble data

assimilation step as calculated by an ensemble Kalman square root filter. We show that

for linear systems and observation operators, the ultra-rapid assimilation and forecasting

is equivalent to a full ensemble Kalman filter step. For non-linear systems this is no

longer the case. However, we show that we obtain good results even when rather

strong nonlinearities are part of the time interval [t0, tn] under consideration. Then, an

ultra-rapid ensemble Kalman smoother is formulated and numerically tested. We show

that when the numerical model under consideration is different from the true model,

used to generate the nature run and observations, errors in the correlations will also

lead to errors in the smoother analysis. The numerical study is based on the popular

Lorenz 1963 model system used in geophysics and life sciences. We investigate both

the situation where the full system forecast is calculated and the situation important to

practical applications where we study reduced data, when only one or two variables are

known to the URDA scheme.

Keywords: data assimilation (DA), ensemble filter, preemtive forecast, Lorenz 1963 system, rapid update

1. INTRODUCTION

Data assimilation is concerned with the use of observation data to control or determine the state of
some dynamical system [1–3]. Data assimilationmethods are indispensable ingredients to calculate
forecasts of some system, with universal applicability ranging from neuroscience [4, 5] to weather
forecasting [6–8], from systems engineering like traffic flow [9–11] to geophysical applications
[12, 13].

Over time several generations of data assimilation methods have been developed, for example
optimal interpolation in the 70th, variational methods in the 80 and 90th and ensemble data
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assimilation since about 1995, with very intense research
activities since about 2000 (e.g., [1–3, 14]). Today, ensemble
data assimilation methods for example for numerical weather
prediction are run daily on modern supercomputers by
operational centers such as Deutscher Wetterdienst (DWD,
Germany), European Center for Medium Range Weather
Forecast (ECMWF, Reading, UK), or the MetOffice in
the UK.

Usually, data assimilation takes observations y and combines
themwith first guessmodel states x(b) (also called the background)
to estimate a best possible analysis x(a). Usually, the estimation
of the analysis state is performed in turns with short-range
forecasting, i.e., within a given temporal framework assimilations
are carried out at times tk for k = 1, 2, 3, .... Short range

forecasts calculate the state x
(b)
k

= M(x
(a)
k−1

) by applying the

model dynamics M to the initial state given by the analysis x
(a)
k−1

at time tk−1. Then, the core analysis step is carried out at time
tk, based on observations which are available either at tk or in
the interval [tk−1, tk]. Alternating short-range forecasts and core
analysis steps leads to the classical data assimilation cycle. Often,
forecasts are then calculated based on selected analysis states and
analysis times.

Today, many forecasting systems have moved away from pure
deterministic forecasting and employ ensemble prediction systems
(EPS), where several forecasts with different initial conditions
(and sometimes different physical or stochastical parameters) are
calculated. Based on an ensemble of states, the uncertainty of
the forecast can be estimated. Further, the ensemble allows to
determine dynamical spatial and temporal correlations, which
help to improve the analysis itself and can serve as input for
probabilistic diagnostics.

Often, for large-scale realistic systems, the model forecast as
well as the analysis step needs huge computational resources.
They limit the temporal resolution of the data assimilation
cycle. Further restrictions are given by the availability of
observations, which need to be measured and distributed to
reach operational centers. For example, to run an assimilation
cycle of 1 h for convection permitting high-resolution numerical
weather models, top-500 supercomputers are needed to achieve
a sufficient resolution and spatial extension of the model fields
under consideration [8].

The core task addressed in this work is the problem of ultra-
rapid data assimilation (URDA), in the case where standard data
assimilation cycles have clear limits with respect to speed and
flexibility. We assume that a classical data assimilation cycle is
available, such that we can calculate an ensemble of forecasts
for some time interval [t0, tN]. The next classical analysis is
calculated for time tN , such that a similar ensemble forecast
will be available for a subsequent interval [tN , tN+1]. Here,
we limit our interest in the ultra-rapid data assimilation for
observations yk which are available at points in time tk with
t0 < t1 < t2 < ... ≤ tN . The task is to provide an update
of the ensemble forecast with high speed without using the
full numerical model or a full-grown data assimilation system.
In particular when we are interested only in the forecast of
some layer or part of the state space, this is of high practical
interest.

Usually, the classical forecast cycle in operational centers is
based on a data assimilation cycle with frequency tN of several
hours. The term rapid update cycle (RUC) is used when cycling
and forecasting is carried out hourly or subhourly. The term
ultra-rapid update cycle is used when we go to a cycling interval
which is much smaller, e.g., 5 min. Further, to achieve this speed
we cannot initialize the full model in each step. The approach of
ultra-rapid data assimilation—though embedded into a RUC or
classical cycle—does not use the classical setup of cycling model
and assimilation step any more for its updates. Further, it works
with a subset of model variables only. The speed-up is achieved
by the conceptional changes within the full cycle, not alone within
the data assimilation step itself.

We will base ultra-rapid data assimilation on the ensemble
transformation matrix given by the ensemble Kalman filter
(EnKF) or ensemble Kalman square root filter (SRF), compare
[15–19]. The basic idea of ultra-rapid data assimilation is to
employ a reduced version of the state variables which are
made available to the system. Measurements of some of these
variables can be employed to calculate an ensemble Kalman
transformation matrix1. This Matrix is used to update both the
analysis ensemble as well as the forecast ensemble. For linear
model systems and linear observation operators, we will see that
the forecasts based on the analysis ensemble and the transformed
forecast ensemble are identical. This is true both for the full
analysis and forecasting as well as for the case where we base our
analysis and forecasting transformation on a reduced set ofmodel
variables or diagnostic ensemble output.

To study the quality of ultra-rapid data assimilation we apply
the basic ideas to the Lorenz 1963 model [[20], see also for
example [21–24] and [3] Chapter 6]. Here, we generate some
truth by running the model with a particular setup. Observations
are simulated and drawn with random perturbations. Then,
a model with a different setup is used to assimilate the
observations either with the ultra-rapid assimilation scheme and
for comparison by running a full ensemble Kalman filter for each
of the time-steps tk, k = 1, ...,N. We study the case of reduced
variables and provide diagnostic results for the ensemble Kalman
smoother over the full time interval [t0, tN].

The approach discussed here was first suggested in the work
of Etherton [25], where the term preemptive forecast was coined
and the method was tested for a barotropic model. The ideas have
been picked up by Madaus and Hakim [26], where the authors
applied the approach to ensemble forecasts of numerical weather
models, obtaining a so-called ensemble forecast adjustment. In
the latter work the advantage of the method, that rapid updates
of (subspaces of) model predictions without rerunning a full
dynamical model again, are highlighted. They focused on global
scales and corresponding time scales and observables for a
particular application. Here, we provide additional contributions
to the mathematical analysis for linear systems. Further, we
formulate and investigate the ultra-rapid ensemble smoother
and extensively study the non-linear Lorentz 63 system, which

1Note that the calculation of this transform matrix takes place in ensemble space

and is only a very small part of the total cost of the assimilation cycle and

forecasting.
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serves as a very popular reference system for geophysics and life
sciences.

In section 2 we introduce our notation and basic results
from ensemble data assimilation. In particular, we introduce the
ensemble Kalman filter in the notation of Hunt et al. [16] and
Nakamura and Potthast [3]. We also discuss the role of reduced
variables for the ensemble Kalman square root filter. Section 3
serves to introduce and investigate details of the ultra-rapid data
assimilation, with the data assimilation analysis and forecasting
in section 3.1 and the ultra-rapid ensemble smoother in section
3.2. Numerical examples are shown in section 4, with generic
results on the assimilation and forecasting in section 4.1 and the
study of reduced variables in section 4.2. Conclusions are given
in section 5.

2. ENSEMBLE DATA ASSIMILATION

This section serves to collect notation and basic results on the
ensemble Kalman square root filter (SRF) following the notation
of Hunt et al. [16] and Nakamura and Potthast [3]. The SRF is
our reference for full-scale forecasting and it provides the core
ingredients of our ultra-rapid data assimilation algorithms as
described in section 3.

We consider a state space Rn, an observation space Rm with
n,m ∈ N, states x ∈ R

n and observations y ∈ R
m. The basic idea

of the ensemble Kalman filter type methods such as the SRF is to
approximate the covariance matrix B ∈ R

n×n of the system based
on some ensemble xb,(ℓ), ℓ = 1, ..., L of L ∈ N states in the form

Bb = Qb
(

Qb
)T

, (1)

where

Qb =
1

√
L− 1

(

xb,(1) − x̄b, . . . , xb,(L) − x̄b
)

, (2)

is the matrix Qb ∈ R
n×L of centered differences (sometimes

its columns are called the centered ensemble) with the ensemble
mean

x̄b =
1

L

L
∑

ℓ=1

xb,(ℓ) . (3)

Note, by construction the space spanned by the member of the
centered ensemble has dimension L − 1 and one can define the
full ensemble matrix

Qb
full =

(

xb,(1), . . . , xb,(L)
)

, (4)

= x̄b +
√
L− 1 Qb .

In order to assimilate observation data the model equivalents
yb,(ℓ) of the ensemble member are required, which are obtained
by applying the observation operator H :R

n → R
m to the

corresponding ensemble member

yb,(ℓ) = H
(

xb,(ℓ)
)

, ȳb =
1

L

L
∑

ℓ=1

yb,(ℓ) . (5)

With these quantities the matrix Tb ∈ R
m×L can be defined

analogously to Qb

Tb
:=

1
√
L− 1

(

yb,(1) − ȳb, ..., yb,(L) − ȳb
)

, (6)

which one also denotes as Tb = HQb assuming a linear
operator H.

In the following, + between a vector and a matrix indicates a
column-wise summation a + A = (a + a1, ..., a + aL) with the
columns aℓ, ℓ = 1, ..., L of the matrix A, such that we can add
column vectors and matrices in one joint notation. The generic
update equation for an ensemble type data assimilation can be
written in different forms, in particular

Qa
full = x̄a +

√
L− 1 Qa , (7)

= x̄a +
√
L− 1 QbS , (8)

= x̄b + Qb s̄+
√
L− 1 QbS , (9)

= x̄b + Qb(s̄+
√
L− 1S) , (10)

= x̄b + QbW , (11)

= Qb
fullWfull , (12)

with the transformation matrices S,Wfull,W ∈ R
L×L computed

in ensemble space and s̄ ∈ R
L, depending on the vectors

and matrices x̄b,Qb, ȳb,Tb and the observation error correlation
matrix R ∈ R

m×m. We quickly review the different versions
as follows. An analysis update of the centered ensemble (see
Equation 4) given by

Qa = QbS , (13)

leading to Equation(8). In Equation (9) we have used an update
of the ensemble mean

x̄a − x̄b = Qb s̄ , (14)

with s̄ ∈ R
L, which is naturally defined by the Ensemble Kalman

Filter – details will be given below. Equation (10) just collects the
increment in terms of Qb. The definition of the transformation
matrix

W = s̄+
√
L− 1 S , (15)

leads to the update Equation (11). For the full transform matrix
Wfull we obtain

Wfull =
s̄

√
L− 1

+ S , (16)

based on

(1, ..., 1)
︸ ︷︷ ︸

L times

(
s̄

√
L− 1

+ S) = 1 , (17)
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and by

Qb
fullWfull = (xb +

√
L− 1Qb)(

s̄
√
L− 1

+ S) ,

= (xb, ..., xb)
︸ ︷︷ ︸

L times

(
s̄

√
L− 1

+ S)+ Qb s̄+ QbS ,

= xb + Qb s̄+ QbS. (18)

Different notations have been used over time, depending on
whether you want to keep your equations close to the classical
Kalman filter equations or for a more practical focus. The
quantities defined in Equations (2, 6) differ from the definitions
of Xb and Yb of Hunt et al., c.f. Equations (12, 18), by the
normalization factors. The relations are

Xb =
√
L− 1 Qb , (19)

Yb =
√
L− 1 Tb .

The full ensemble matrix has different letters Qb
full

= Xb
full

, we

also note the identity Wa = S between Hunt et al. [16] and
Nakamura and Potthast [3]. Some equations are modified. For
example Equation (4) changes to

Xb
full =

(

xb,(1), . . . , xb,(L)
)

, (20)

= x̄b + Xb ,

the update of the mean Equation (14) rewrites as

x̄a − x̄b = Xbwm , (21)

with wm = s̄/
√
L− 1 and Equations (8, 10) are written as

Xa = XbWa , (22)

⇔ Xa
full

= x̄a + XbWa , (23)

= x̄b + Xb
(

wm +Wa
)

, (24)

= x̄b + XbWX . (25)

The transformation matrix in the sense of Equation (25), giving
us the increment in ensemble space, is now given by

WX = wm +Wa. (26)

2.1. Ensemble Kalman Square Root Filter
The ensemble Kalman filter combines the above introduced
notion of an ensemble of model states to describe spatial and
temporal correlations with the well-known Kalman Filter [27].
The pending task of generating an analysis ensemble obeying
an obtained analysis correlation matrix can be completed by a
square root filter (SRF), originating from the Kalman filter update
for the correlation matrix applied to the ensemble representation

Ba = (I − KH)Bb , (27)

Qa
(

Qa
)T = (I − KH)Qb

(

Qb
)T

,

= QbU
(

Qb
)T

,

= QbS
(

QbS
)T

,

with the Kalman gain matrix

K = Qb
(

HQb
)T

(

R+HQ
(

HQb
)T

)−1

, (28)

and the transformation matrix S given by

S (S)T = U . (29)

Taking the square root of the symmetric matrix U results in

S =
√

I −
(

HQb
)T

(

R+HQb
(

HQb
)T

)−1
HQb , (30)

which is the transformation matrix of the update for the centered
ensemble in Equation (8). Note, the notation in Equations (2, 6) is
the one used by Nakamura and Potthast [3] and differs from the
one introduced by Hunt et al. [16] (see Equation 19). However,
by multiplying S in Equation (30) with the inverse ofWa defined
by Hunt et al, the identityWa = S can be easily shown.

The update of the mean is obtained along the lines of the
classical Kalman filter by

x̄a − x̄b = K(y0 − ȳb) , (31)

with K given in Equation (28). Comparing Equation (14, 31) leads
to

s̄ =
(

HQb
)T

(

R+HQb
(

HQb
)T

)−1

(y0 − ȳb) , (32)

in case of the SRF. The update for the full ensemble using the
ensemble Kalman square root filter is therefore given by applying
Equations (30, 31) to Equation (11, 15).

Here, we can now confirm the validity of Equation (17). From
the definition ofQb we know that the sum of the rows ofQ is zero,
such that the sum of the column of s̄ = (Qb)TA with any matrix
A ∈ R

n×L is zero, and the sum of the columns of I − (Qb)TA
is one. If I − (Qb)TA is symmetric, this means that the vector
equal to 1 in each component is an eigenvector of I − (Qb)TA
with eigenvalue 1. But then it will also be an eigenvector with
eigenvalue 1 for each power of I − (Qb)TA, such that (17) is
satisfied.

2.2. Ensemble Data Assimilation With
Reduced Data
Before we investigate ultra-rapid data assimilation based on
reduced data, we need to recall how a standard ensemble Kalman
square root filter will react when we base our analysis on a
reduced set of model variables. Let us study the calculation of the
ensemble analysis for the ensemble Kalman filter with reduced
data. The basic formula for the ensemble Kalman filter can be
expressed asW = S+ s̄ with S and s̄ given in Equations (30, 32)

Now, assume we observe y ∈ R
m which depends on some

subset x1, ..., xñ of the full set of variables x1, ..., xn only. Given
these reduced spaces the operator H will be of the form

H =






H1,1 . . . H1,ñ 0 . . . 0
...

...
...

...
Hm,1 . . . Hm,ñ 0 . . . 0




 . (33)
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In this case, the terms HQb ∈ R
m×L and

(

HQb
)T

∈ R
L×m will

be a linear combination of the variables 1, ..., ñ of the ensemble
members. If we are given the variables x1, ..., xñ of the ensemble
members only, the matrix W will not change. Also, y − Hxb will
depend only on the variables xb1, ..., x

b
ñ of x

b. The solution z ∈ R
m

of
(

R+HQb
(

HQb
)T

)

z = y−Hxb , (34)

is calculated based on the variables x1, ..., xñ of Qb and xb1, ..., x
b
ñ

of xb only. We summarize the result of these arguments in the
following lemma.

LEMMA 2.1. If we have observations y dependent only on the
variables x1, ..., xñ for ñ ∈ {1, ..., n} of the full state x ∈ R

n of the
state space of our dynamical system, the transformation matrix W
of the ensemble Kalman square root filter update xa − xb depends
on these variables of the centered ensemble Q and the mean first
guess x̄b only.

A consequence of the above Lemma 2.1 is that, if we have
reduced observations, the ensemble Kalman square root filter will
give us an update matrixW which depends only on the variables
under consideration.

But we need to pay attention to the update and propagation
step. The update Equation (11) clearly updates all variables,
since W ∈ R

L×L, and thus all variables of x are updated
by the ensemble Kalman filter. If the model M is based on
all variables, in general we expect model propagation to be
dependent on all variables as well. In general, an update based
on the transformation matrix W will change all variables of
the initial state. This means that the first guess of the next
assimilation step highly depends on the application of the matrix
W to all variables, not only to the variables x1, ..., xñ.

Clearly, in general we cannot run the full ensemble Kalman
filter on a reduced set of variables, just because you need all
prognostic variables to run the numerical model. We will see
later, that this limitation does no longer apply when we are in
the framework of ultra-rapid data assimilation.

3. THE ULTRA-RAPID DATA ASSIMILATION
AND FORECASTING STEP

This section serves to develop the main ideas of ultra-rapid
analysis, forecasting and smoothing. We will first describe the idea
of ultra-rapid analysis when observations yk are given at point of
time tk, k = 1, ...,N throughout a time interval [t0, tN] for which
we are not able to employ a full data assimilation functionality.
We assume that we have been able to perform some ensemble
data assimilation scheme prior to the time t1 at time t0 and that a
forecast ensemble has been calculated, such that

x
f ,(ℓ)
0,ξ , ξ = 0, ...,N, ℓ = 1, ..., L , (35)

is available at the points in time tξ , ξ = 0, ...,N and for the

ensemble index ℓ ∈ {1, ..., L}. Note that x
f ,(ℓ)
0,0 corresponds to

the analysis of the full ensemble data assimilation. We are now
successively at times t1, t2, ... receive observations y1, y2, ... The
goal is to provide ultra-rapid updates for estimation of our state
at times t1, t2, ... When we are at time tk, we would like to update
the forecasts at the times tξ for ξ = k, ...,N and obtain the best
possible estimate in an ultra-rapid forecasting step.

Note, the assimilation of observations at some point in
time exhibits information about the past as well. This is called
smoothing. We will describe an ultra-rapid ensemble smoother in
a second step. We focus on the analysis and forecasting in section
3.1 and discuss smoothing in section 3.2.

3.1. Ultra-Rapid Analysis and Forecasting
Assume that we are given some ensemble x

a,(1)
k

, . . . , x
a,(L)
k

of L
states of our dynamical system at time tk ∈ R, which could be
an analysis or a first guess from somewhere. Further, we assume
that we have applied our modelM to calculate forecasts based on

x
a,(ℓ)
k

at times tk+1, ..., tN for N > k. The corresponding forecasts

are denoted by x
f ,(ℓ)

k,ξ
for ξ = k+ 1, . . . ,N, analogous to (35).

We employ the following matrix notation. The matrix F is the
matrix of the full forecast ensemble members in its columns, i.e.,

Fk,ξ =
(

x
f ,(1)

k,ξ
, . . . , x

f ,(L)

k,ξ

)

, (36)

of forecasts x
f ,(ℓ)

k,ξ
from tk to tξ . The matrix W(k) is the matrix

of linear ensemble transform coefficients calculated based on the
observations yk at time tk and the first guess ensemble at time tk,
i.e.,

W(k) =
(

Wk
j,ℓ

)

j,ℓ=1,...,L
. (37)

When the analysis ensemble at time tk is given by a generic
ensemble data assimilation approach, we know that

x
a,(ℓ)
k

=
L

∑

j=1

x
b,(j)

k
W

(k)
j,ℓ , ℓ = 1, ..., L , (38)

with the matrix W
(k)
j,ℓ , j, ℓ = 1, ..., L given by Equation (16) with

the two quantities s̄ and S being dictated by the specific ensemble
data assimilation system (e.g., Equations 30, 32), where the time
index k refers to the analysis time tk for whichWj,ℓ is calculated.

Also, we note that the background x
b,(ℓ)
k

is given by

x
b,(ℓ)
k

= Mk−1,k

(

x
a,(ℓ)
k−1

)

, ℓ = 1, ..., L . (39)

LEMMA 3.1. Here, we assume that the model M is a linear model

M. In this case, the forecast ensemble x
f ,(ℓ)

k,ξ
at time tξ when

observations at time k are assimilated by a linear data assimilation
method as in Equation (12), the forecast ensemble can be calculated
by

x
f ,(ℓ)

k,ξ
=

L
∑

j=1

x
f ,(j)

k−1,ξ
W

(k)
j,ℓ (40)
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Proof. In this case we have

x
f ,(ℓ)

k,ξ
= Mk,ξx

a,(ℓ)
k

,

= Mk,ξ

L
∑

j=1

x
b,(j)

k
W

(k)
j,ℓ ,

=
L

∑

j=1

(

Mk,ξx
b,(j)

k

)

W
(k)
j,ℓ ,

=
L

∑

j=1

(

Mk,ξMk−1,kx
a,(j)

k−1

)

W
(k)
j,ℓ ,

=
L

∑

j=1

x
f ,(j)

k−1,ξ
W

(k)
j,ℓ , (41)

for ℓ = 1, ..., L and ξ ∈ {1, ...,N}, where we used Mk−1,ξ =
Mk,ξMk−1,k. 2

Before we continue with our introduction of ultra-rapid data
assimilation, we would like to study the reduced variable case in
the above Lemma 3.1. Clearly, to apply Mk,ξ to a state x(a) or

x(b), we need to know the full state. If only a part of the state x
is available, starting the model is no longer possible. However,
the Equation (40) is still valid for each of its components, i.e., if

W is known, the variable x
f ,(ℓ)

k,ξ ,i
of x

f ,(ℓ)

k,ξ
can be calculated from

the knowledge of x
f ,(ℓ)

k−1,ξ ,i
for all ℓ = 1, ..., L, representing the i-th

variable of the state vector of the l-th ensemble member obtained
by a forecast from time tk−1 to time tξ .

COROLLARY 3.2 (REDUCED SET OF MODEL VARIABLES). If the
observation operator H depends on the variables x1, ..., xñ of
the state x only, then the transformation matrix W(k) for the
assimilation of yk can be calculated from a) the first guess ensemble

data x
(b)
1 , ..., x

(b)
ñ and b) the observation yk. For a linear model M,

for the variables with index i we have

x
f ,(ℓ)

k,ξ ,i
=

L
∑

j=1

x
f ,(j)

k−1,ξ ,i
W

(k)
j,ℓ , (42)

for i = 1, ..., ñ, i.e., the formula (40) is valid and the ensemble
forecast based on the analysis with observation yk can be calculated
from the knowledge of the reduced set of variables only.

The consequence of Equation (41) is that for linear models we
can calculate the forecast based on the analysis at time tk by a
superposition of the forecast from time tk−1. The weight matrix

W
(k)
ℓ,j is calculated from the ensemble analysis at time tk given by

the linear ensemble data assimilation scheme. We can also use
Equation (41) recursively, which is formulated in the following
Theorem.

THEOREM 3.3. We assume we are given observations yj, j =
1, ..., k at times t1, . . . , tk. The goal is to calculate the forecasts

x
f ,(ℓ)

k,ξ
at time tξ based on the observations from t1 to tk and the

initial ensemble x
a,(ℓ)
0 at time t0 with an ensemble data assimilation

method as in Equation (11). If the model M is linear, we obtain

Fk,ξ = F0,ξW
(1) · · ·W(k) , (43)

for ξ = k+ 1, ...,N.

Proof. For a linear model, the generic step is given by Equation

(41). Then, the same equation is applied to x
f ,(j)

k−1,ξ
, which leads to

x
f ,(ℓ)

k,ξ
=

L
∑

j1=1

x
f ,(j1)

k−1,ξ
W

(k)
j1 ,ℓ

,

=
L

∑

j1=1





L
∑

j2=1

x
f ,(j2)

k−2,ξ
W

(k−1)
j2,j1



W
(k)
j1 ,ℓ

, (44)

and by the same step η times to

x
f ,(ℓ)

k,ξ
=

L
∑

j1 ,...,jη=1

x
f ,(jη)

k−η,ξ
W

(k−(η−1))
jη ,jη−1

· · · · ·W(k)
j1,ℓ

, (45)

for η ≤ k assimilation steps. In matrix notation and for η = k
this is Equation (43). 2

Note that the recursive application of Equation (41) implies
that any transformation matrix W(i) is obtained using the
observation yi and the full ensemble Fi−1,ξ .

The results for reduced data are also valid for the core formula
(43). We collect the relevant statements into the following
corollary. The matrix Fk,ξ contains the different state variables
in its rows and the columns represent the ensemble under
consideration. We employ the notation (Fk,ξ )i=1,...,ñ for the rows
with the variable indices i = 1, ..., ñ.

COROLLARY 3.4 (REDUCED SET OF MODEL VARIABLES). If the
observation operator H depends on the variables x1, ..., xñ of
the state x only, then the transformation matrix W(k) for the
assimilation of yk can be calculated from a) the first guess ensemble
data (F0,k)i=1,...,ñ , b) the observation yk and c) the previous
transformation matrices W(1) · · ·W(k−1) which depend on the
corresponding observations y1 · · · yk−1. For a linear model M, for
the variables with index i we have

(Fk,ξ )i=1,...,ñ = (F0,ξ )i=1,...,ñW
(1) · · ·W(k), ξ = k+ 1, ...,N, (46)

i.e., the formula (43) is valid and the ensemble forecast based on the
analysis with observation yk can be calculated from the knowledge
of the reduced set of variables only.

3.2. Ultra-Rapid Smoother Functionality
Smoothers are schemes which employ information from the
future to improve the estimate about some present state.
Alternatively, you could say that they use information now to
update past states.

When we consider the scenario of ultra-rapid data
assimilation, for the interval [t0, tN] we are given an ensemble of
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original states (35) over the full interval. When an observation is
arriving at time tk (ignoring delay usually needed for observation
processing and transfer), we can employ the same techniques
which are used for updating the analysis and forecast to the past
interval [t0, tk].

DEFINITION 3.5 (ULTRA-RAPID ENSEMBLE SMOOTHER).
Given the original first guess ensemble F0,ξ for ξ = 0, ...,N on

the time interval [t0, tN] we define the ensemble analysis given
the data y1, ..., yk by

F
(a)
k,ξ

:= F0,ξW
(1) · · ·W(k), ξ = 0, ...,N. (47)

This analysis ensemble is defined for the full time interval.

FIGURE 1 | We show the simulation of some trajectory by the Lorenz model in black, the first 8 cycles in (A), then 40 cycles in (B). The observations, which are

calculated by adding some Gaussian random error to the true observations, are shown as black dots. Here, we assume that we observe all three variables of the

model. The first guess trajectory as a blue curve. The first guess states for the observation time steps are shown as blue dots.

FIGURE 2 | We show the results of the ultra rapid data assimilation in comparison with the ensemble Kalman square root filter for the Lorenz 1963 model for N = 8

assimilation steps. In (A), the black curve is the original, black dots are the observations. The mean of the analysis ensemble of the ultra rapid data assimilation URDA

after k = 8 assimilation steps is shown in pink, where we need to note that here the information of the data is used to update the full curve at all points (i.e., the

estimate of the past is updated as well. The red curve shows the analysis ensemble mean of the sequential ensemble Kalman square root filter. (B–D) show the

sequential error curves of the analysis error, pink for URDA, red for the ensemble Kalman square root filter.
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In general, a convergence analysis of an ensemble Kalman
smoother and its comparison to a four-dimensional variational
data assimilation (4D-VAR) scheme over the time window [t0, tn]
can be found in Theorem 5.4.7 of Nakamura and Potthast [3].
For linear models and observation operators, the full Kalman
smoother and 4D-VAR are equivalent.

Clearly, if we replace the full model M by the ensemble, this
equivalence is no longer true. Also, if the numerical model M
used to calculate the ensemble is different from the true model
Mtrue, the temporal correlations, which are implicitly used when
we employ the analysis matrix W(k) to update the ensemble in
the past or in the future, may not be correct with respect to the
true ensemble correlations. In this case, the information yk in the
future of t0 may not improve the state estimate at time t0, but lead
to additional errors in this state estimate. We will demonstrate
this phenomenon in our numerical examples in section 4.

4. NUMERICAL EXAMPLES

The goal of this section is to study the ultra rapid data
assimilation for simple generic examples. We want to show that
the assimilation step can be carried out in a stable way and
that the ultra-rapid forecasts indeed show an advantage over
the ensemble forecasts without this step. Also, we would like
to understand the range of skill which we can achieve when

we compare it with the full standard data assimilation and
forecasting approaches.

4.1. Studying URDA for the Lorenz 63
Model System
Here, we start our study with the Lorenz 63 model Lorenz [20]. It
is a very well-known chaotic ODE system with three unknowns,
compare for example Nakamura and Potthast [3].

The Lorenz 1963 model is a system of three non-linear
ordinary differential equations

�

x = σ (y− x) , (48)

�

y = x(ρ − z)− y , (49)

�

z = xy− βz , (50)

with constants σ , ρ,β known as Prandtl number, the Rayleigh
number and a non-dimensional wave number. Here, for the
constants we take the classical values σ = 10, β = 8/3 and
ρ = 28. The implementation of the system is usually carried out
by a higher-order integration scheme such as 4th-order Runge-
Kutta, which we have employed for our numerical testing. The
setup for our case study is shown in Figure 1A with 8 cycles for
better visibility and Figure 1B with 40 cycles for studying the
error evolution.

FIGURE 3 | Studying the results of the ultra-rapid ensemble smoother over N = 32 assimilation steps. (A) shows the original data and the first guess of the Kalman

filter analysis cycle. The corresponding first guess error is compared in (B). (C,D) show the error of the full ultra-rapid ensemble analysis for the full time-scale between

t0 and tN for N = 32 time steps. In (D) we display the error for the curves t1, t4, t7, ..., t31, starting with a thin blue curve and ending with a thick red curve.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 October 2018 | Volume 4 | Article 45

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Potthast and Welzbacher Ultra Rapid Data Assimilation

Here, we want to test the feasibility of ultra rapid data
assimilation. The original curve is shown in black in Figure 1.
The measurements are calculated by adding a random Gaussian
error to this curve at the measurement times t1, t2, ..., tk with
1t = ti+1 − ti = 0.1 (without units). For the original, we have
used the above ODE systemwith σ = 10 to generate the truth. To
test data assimilation we have employed a modified system where
σ = 12 was chosen. The mean of the original first guess ensemble
for the full time period under consideration is shown in Figure 1

as a blue curve, with blue dots as the original first guess.
We have now followed two tracks. First, we have implemented

an ensemble Kalman square root filter. We start with a first
guess ensemble, which is generated at time t0 by adding random
Gaussian errors to the starting point of the original curve.
Then we assimilate the observations (the black dots) using the
Ensemble Kalman square root filter.

Second, the ultra-rapid data assimilation and forecasting cycle
has been implemented. The ultra rapid data assimilation has
been set up by first calculating the full first guess ensemble for
the whole time interval under consideration. Then, a modified
ensemble is calculated step by step following (43). We study N
time steps (showing results for N = 8 and N = 40). In more
detail, we have calculated the transformation matrix W(k) based
on the observations yk at time tk, k = 1, ...,N and the transformed

first guess ensemble x
b,(ℓ)
k−1,ξ

. Here, ξ is the time index of the

ensemble, i.e., ξ = 1, ...,N. We carry out the assimilation for all
time steps, changing the ensemble in the past as well as in the full
future over the time interval under consideration.

The result of N time steps is shown in Figure 2. First, the
example with N = 8 time steps is shown in Figure 2A,B, the
first guess errors for N = 25 and N = 40 time steps in
Figure 2C,D. Here, initially the ultra-rapid update is quite good,
approximating well the full ensemble Kalman square root filter
over 10 or 15 assimilation steps. Then, when the first guess
ensemble and the true trajectory diverge further, the assimilation
looses track and we obtain very large errors over time, as can be
seen by the peak of the pink curve in Figure 2D at about tk with
k = 34.

Here, we also investigate the ultra rapid data assimilation tool

as a smoother. We calculate the analysis ensemble F
(a)
k

defined in
(47) based on the original first guess ensemble F0.

In Figure 3 we study the filter and smoother results for a case
with N = 32. For the latter we update both the future and the
past. Errors of this with respect to the true curve are displayed in
Figure 3C,D . Here, we need to note that we simulate a realistic
setup in the sense that the true model Mtrue is different from
the model M used to calculate the first guess ensemble. That
has severe consequences for the convergence of the smoother.
With the errors in the model, we obtain errors in the first guess
ensemble and with this errors in the correlations and covariances

FIGURE 4 | We show the results of the mean-error of the ultra rapid data assimilation in comparison with the original first guess (no data assimilated) and the

ensemble Kalman square root filter for the Lorenz 1963 model. We used Nstat = 250 different initializations of the random number generator to obtain different

distributions for the observations and the initial ensemble. After assimilation of all data the mean error at each time step on the trajectory from the truth is counted. In

(A,B) we used L = 5 and N = 25 to obtain histograms showing in (A) the ratio of the mean-error of URDA divided by the mean-error of the model forecast without

data assimilation. For L = 5 in (B) the mean-error of the SRF divided by the one of URDA is displayed for N = 25 while the same is shown for N = 8 in (C). The ratio of

the mean-error of URDA divided by the initial forecast for N = 25 and L = 25 in (D).
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which are exploited by the ultra-rapid Kalman filter forecast and
the update of the past in the ensemble Kalman smoother.

Studying Figure 3C we see that the error is smallest on the
diagonal, i.e., for the analysis and short-term forecast based on
the ultra-rapid ensemble Kalman analysis. The errors for the
analysis or forecast increase with distance to the current point
in time. We expect that the errors are large for larger lead times.
But in general we do not expect that the errors in the past, i.e., at
the beginning of the interval [t0, tN] increase when we assimilate
more and more data. When the ensemble reflects the correct
correlations between the future and the past, the error should
decrease. However, with a numerical model which is different
from the true model, we also inherit errors into the temporal
correlations. As a consequence we observe that the error at t1
increases when we assimilate further data yk for k in the second
part of the interval [t0, tN].

In Figure 4 we evaluate the performance of URDA in a
statistical manner by using different initialisations for the applied
random number generator, which affects the observations drawn
from a Gaussian distribution as well as the construction of the
ensemble, and use different values of the starting point x0 =
x(t0), which is used to obtain the truth as well as the ensemble.
We evaluate differences of the corresponding mean from the
truth and take appropriate ratios. In Figure 4A the mean-error
of URDA is divided by the mean error of the free forecast (no
data assimilation, also abbreviated by no-DA) for L = 5 ensemble
member andN = 25 time steps on the trajectory. A clear positive
impact is visible with only very few cases where the free forecast

is better than URDA. Figure 4B shows the mean-error of the SRF
divided by the one of URDA. As expected, the evaluation shows
that in many cases the full SRF performs better compared to
URDA. However, comparing with the results shown in Figure 3C
this is what we expect due to the deviations after about N = 8
time steps. To test this, we show the result for the first 8 time steps
of the runwithN = 8 in Figure 4C and observe, that for a smaller
N these compete indeed much better with the SRF. Figure 4D
shows the result of the mean-error of URDA divided by the initial
forecast with no data assimilation for L = 25 ensemble member
and N = 25 time steps. We observe, that the improvement of
URDA with L = 25 compared to L = 5 is not significant. This
is no surprise since we deal with three prognostic variables where
an ensemble of L = 5 is already sufficient to describe the relevant
spread.

At the end of this section we highlight the impact of the time
step in the model, which translates to the time the forecast from
one point on the trajectory is performed. Note, this does not
affect the performance of the Runge-Kutta-Scheme where the
time step of the integration is kept fixed. We evaluate the ratio
of the deviations from the mean error from the SRF to URDA.
In Figure 5 we show results for different sizes of the time step
dt. Again we used Nstat = 250 and the total number of time
steps N = 25 with the number of ensemble members L = 5.
We observe, that for 1/4 of the standard time step size dt = 0.100
the SRF andURDA perform almost equally.With increasing time
step size we find more cases where the SRF outperforms URDA,
which is still moderate for the standard time step size. For three

FIGURE 5 | We show the ratio of the mean-error of the SRF divided by the one of URDA for different step sizes in time. Specifically, in (A) we used dt = 0.025, in (B)

dt = 0.050, in (C) the standard value dt = 0.100 and in (D) dt = 0.300.
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times this step size we see a clear benefit for the SRF. Note, since
we keep N = 25 fixed, the total length of the trajectory differs for
the different time step sizes dt.

4.2. URDA for Reduced Model Dynamics
In the second part of our numerical study we would like to
understand how ultra-rapid ensemble data assimilation can be
applied to the case where only a reduced set of variables is passed
down from the standard ensemble data assimilation framework.

In the framework of the Lorenz model, we have carried out a
study the use of the observation operators

H3 =





1 0 0
0 1 0
0 0 1



 , H2 =
(

1 0 0
0 1 0

)

, H1 =
(

1 0 0
)

, (51)

and study assimilation of observations of either the full state x,
the first two variables of the state or the first variable of the state
only.

We note that HQ will employ the corresponding selection
of variables depending on the cases H1, H2 or H3, i.e., H1Q
can be calculated from the knowledge of the first variable x1 of
x = (x1, x2, x3)

T only. Similarly, H2Q can be calculated based on
the knowledge of (x1, x2) of x = (x1, x2, x3)

T .
Here, we focus on the results for the use of H2 in

Figure 6. The effects are similar to the three-dimensional

version. Figure 6A displays the first 8 steps, and we see that
the SRF analysis and the URDA analysis are very close to
each other. The error is shown in Figure 6B, here only for
the two variables under consideration. Figure 6C,D display 30
assimilation setups. After 20 and 25 steps we observe first cases
where URDA is worse than no-DA. In all other cases it is
a big increase from the no-DA case and its quality becomes
close to the quality of the full square-root filter with subsequent
forecast.

5. CONCLUSIONS

We analyse and investigate a ultra-rapid data assimilation scheme
based on an ensemble square-root Kalman filter. Here, we have
studied the analysis cycle, a preemptive forecasting step and also
an ultra-rapid ensemble smoother.

For linear systems we have shown that the ultra-rapid data
assimilation is equivalent to the full ensemble square-root filter.
For non-linear systems, the Lorentz 63 system serves as a
standard test case which is widely used within geophysics or the
life sciences. We have carried out numerical tests of the URDA
scheme, which shows highly encouraging results. For a significant
number of assimilation and forecasting steps the URDA scheme
shows a similar forecasting skill as the square-root filter with full
model forecasts.

FIGURE 6 | We show the results of the ultra rapid data assimilation in comparison with the ensemble Kalman square root filter for the Lorenz 1963 model for N = 8

assimilation steps and the reduced data case with observation operator H2. In (A,C), the black curve is the original, black dots are the observations. The mean of the

analysis ensemble of the ultra rapid data assimilation URDA after k = 8 assimilation steps is shown in pink, where we need to note that here the information of the

data is used to update the full curve at all points (i.e., the estimate of the past is updated as well. The red curve shows the analysis ensemble mean of the sequential

ensemble Kalman square root filter. (B,D) show the sequential error curves of the analysis error for the two observed variables only, pink for URDA, red for the

ensemble Kalman square root filter.
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In particular, we have analyzed and tested the assimilation
of observations which are influenced by a selection of state
variables only, where the URDA scheme provides the possibility
to touch only the variables of interest for the assimilation and
preemptive forecasting or smoothing steps. This has very-high
potential for many applications, where high-frequency analysis
and/or forecasts need to be calculated, e.g., in the area of
brain surgery in neuroscience or in nowcasting in geophysical
applications.

This work aims to provide the basic theoretical inside and
study a standard non-linear system of wide interest, the Lorenz
63 system. Initial tests on a real-world system in geophysics have
been carried out in Etherton [25] and Madaus and Hakim[26].
Further work on error estimates for non-linear systems and the
application of the method in neuroscience, biological systems or
weather forecasting is still pending and will be our goal for the
near future.
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