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Automatic algorithms for disease diagnosis are being thoroughly researched for use in

clinical settings. They usually rely on pre-identified biomarkers to highlight the existence of

certain problems. However, finding such biomarkers for neurodevelopmental disorders

such as Autism Spectrum Disorder (ASD) has challenged researchers for many years.

With enough data and computational power, machine learning (ML) algorithms can be

used to interpret the data and extract the best biomarkers from thousands of candidates.

In this study, we used the fMRI data of 816 individuals enrolled in the AutismBrain Imaging

Data Exchange (ABIDE) to introduce a new biomarker extraction pipeline for ASD that

relies on the use of graph theoretical metrics of fMRI-based functional connectivity to

inform a support vector machine (SVM). Furthermore, we split the dataset into 5 age

groups to account for the effect of aging on functional connectivity. Our methodology

achieved better results than most state-of-the-art investigations on this dataset with the

best model for the >30 years age group achieving an accuracy, sensitivity, and specificity

of 95, 97, and 95%, respectively. Our results suggest that measures of centrality provide

the highest contribution to the classification power of the models.

Keywords: graph theoiy, SVM–support vector machine, machine learing, fMRI, ABIDE, brain connectitvity

INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental disease which manifests in early
childhood and persists into adulthood. Recent studies show that 1 in 45 children is diagnosed
with autism (Zablotsky et al., 2015). While there is no cure for ASD (Brentani et al., 2013), early
diagnosis of autistic individuals is proven to improve quality of life (Fernell et al., 2013). To better
detect ASD, biomarkers characterizing the disorder need to be identified. It has been shown that
by using topological biomarkers extracted from the brain functional network, machine learning
(ML) algorithms can be trained to aid in ASD diagnosis (Plitt et al., 2015). However, there are
many variables, such as different methods to construct the functional network and carry out the
topological measurements that can affect the extraction of these biomarkers. One goal of this study
was to find the best combination of these variables to tackle the task of ASD classification. For
this goal, we used 5 different network extraction pipelines with 12 graph theoretical topological
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measurements and preformed a statistical analysis to compare
the classification results between the pipeline. The second goal
was to identify the top topological measures in each pipeline and
investigate their relation to ASD in order to attempt and further
understand the disorder.

Our brains can be viewed as a network of functionally
interconnected regions. To measure the strength of these
connections, the temporal dynamics of brain activity is
needed. Modalities such as Electroencephalography (EEG)
and magnetoencephalography (MEG) provide this information,
however, they suffer from poor spatial resolution when compared
to Functional Magnetic Resonance Imaging (fMRI). In fMRI,
brain activity is usually monitored by the changes in blood
oxygenation which changes the magnetic properties of blood.
The resulting signal is called the Blood-oxygen-level dependent
(BOLD) signal. At the turn of the century, researchers provided
evidence that fMRI can be used to identify functional connections
of the brain while the subject was in a “resting-state” and not
doing any specific task (Lowe et al., 2000). Later studies found
many different functional networks can be identified using the
resting-state connectivity derived from fMRI (van den Heuvel
and Hulshoff Pol, 2010). Information from these networks can be
extracted and used as an input to ML algorithms to automatically
identify the best biomarkers distinguishing between healthy and
diseased networks (Nielsen et al., 2013; Plitt et al., 2015; Hazlett
et al., 2017; Heinsfeld et al., 2018).

ML has proven to be a powerful tool for automatic
disease diagnosis in neurodegenerative disorders such as
Alzheimer’s Disease (AD) (Chen et al., 2011) and Parkinson’s
Disease (Kazeminejad et al., 2017; Talai et al., 2017). In
recent years, researchers began investigating how the same
principles can be used for automatic ASD diagnosis. Promising
results with accuracies over 90% were observed using invasive
methods and blood analysis (Howsmon et al., 2017). However,
the classification studies conducted using non-invasive data
acquisition such as brain imaging, while above chance levels,
generally report lower accuracies. By using fMRI data acquired
in the Autism Brain Imaging Data Exchange (ABIDE) (Nielsen
et al., 2013) extracted the pairwise functional connectivity of
7,266 Regions of interest (ROI) using Pearson correlation and
used a leave-one-out general linear model classifier to achieve
a ASD vs. Healthy Controls (HC) classification accuracy of
60%. More recently, by applying and comparing different ML
algorithms to the same dataset, the accuracy has reached 70%.
Heinsfeld et al. used the Pearson correlation of fMRI activity of
region pairs in CC200 atlas (Craddock et al., 2012) as the inputs
to a multi-layer perceptron to achieve this result (Heinsfeld
et al., 2018). Other research groups using their own datasets have
reported higher accuracies. One study using cortical thickness,
total brain volume, and surface area of different brain regions was
able to achieve an accuracy of 81% using a neural network as their
classifier (Hazlett et al., 2017).

Another emerging methodology in understanding different
neurological disorders is graph theory, a mathematical tool used
to explain network characteristics that can also be applied to
the human brain network (Iturria-Medina et al., 2008; Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Sotero, 2016;

Sanchez-Rodriguez et al., 2018). Graph theory can be used to
measure the brain network segregation (clustering coefficient
and transitivity), integration (characteristic path length and
efficiency), and centrality (betweenness centrality, eigenvector
centrality, participation coefficient and within module z-score).
Recent brain imaging studies have found topological differences
between ASD and normal brains which can be quantified using
graph theory, such as global alterations of characteristic path
length and efficiency in ASD (Rudie et al., 2013; Itahashi et al.,
2014; Zeng et al., 2017; Qin et al., 2018) as well as alterations to
segregation measures (Barttfeld et al., 2011; Rudie et al., 2013;
Leung et al., 2014; Keown et al., 2017; Zeng et al., 2017) and
centrality measures(Di Martino et al., 2013; Leung et al., 2014;
Balardin et al., 2015).

Previous studies in AD patients have used topological
properties of brain networks as features for a ML algorithm,
achieving classification accuracies of 85% (Dyrba et al., 2015).
However, this methodology hasn’t been tested in ASD. With the
emergence of the ABIDE dataset, large amounts of imaging and
clinical data has become available to researchers (Di Martino
et al., 2014). More than 1,000 datasets are available for individuals
with ASD and HC each. This data is collected from multiple
sites with slightly varying machinery and imaging parameters.
Therefore, a well-developed preprocessing pipeline is essential to
minimize the effects of site and imaging parameter changes, but
further datamanipulationsmay be needed to standardize the data
from different sites.

One explanation for the lower accuracies of studies using
the ABIDE dataset is that it covers a large age range (5–65).
Age has been proposed as a factor attributing to the different
results reported on resting-state fMRI analysis of ASD (Hull
et al., 2016). Another study focusing on using multi-scale image
textures to study neuroanatomical texture features in autism has
found correlations between age and texture features (Chaddad
et al., 2017). Therefore, any study that uses all this data will
have to take aging effects into consideration. If these issues
are correctly addressed, the ABIDE initiative will provide a
suitable database for ML centered research on ASD. Another
limitation that can be associated with the previously mentioned
studies is that they use a simple connectivity matrix such as
one computed by Pearson correlation as their features for the
classification algorithms. The connectivity matrix is interpreted
as the strengths of the connection between ROIs and the changes
in these connection strengths are used to classify between ASD
and HCs. We hypothesize that by applying graph theoretical
measurement of network segregation (clustering coefficient
and transitivity), integration (characteristic path length and
efficiency), and centrality (betweenness centrality, eigenvector
centrality, participation coefficient and within module z-score)
for extracting features from the connectivity matrix, the
performance of ML algorithm on this dataset will be improved.

In this study, we use fMRI BOLD signals to estimate
functional connectivity matrices using different network
extraction methods. Using these matrices, we construct a brain
network modeling the functional connectivity of a subject’s
brain. Topological properties such as integration, segregation,
and centrality of the obtained networks are then used as features
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(for a total of 817 features for each network extraction method)
fed to a gaussian kernel Support Vector Machine (SVM) to
classify whether a subject is suffering from ASD or not. We then
use a sequential feature selection technique to choose the top 10
features that contribute to this classification. To control for the
effects of aging, we separated our data into 5 age groups. Our best
model, for the >30 age range achieved a classification accuracy,
sensitivity, and specificity of∼95, 97, and 95%, respectively. Most
regions that the features were extracted from had been previously
shown to undergo structural and/or functional changes in ASD.

MATERIALS AND METHODS

Dataset and Preprocessing
In order to ensure replicability, we used the preprocessed version
of ABIDE I (DiMartino et al., 2014) data publicly available via the
Preprocessed Connectome Project (Cameron et al., 2013b). The
preprocessing pipeline we used for this study is the Configurable
Pipeline for the Analysis of Connectomes (CPAC) (Cameron
et al., 2013a). Regions of interests (ROIs) were defined as the
116 regions in the automatic anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002).

The preprocessing included the following steps. AFNI was
used for removing the skull from the images. The brain was
segmented into three tissues using FSL. The images were then
normalized to the MNI 152 stereotactic space using ANTs.
Functional preprocessing included motion and slice-timing
correction as well as the normalization of voxel intensity.
Nuisance signal regression included 24 parameters for head
motion, CompCor with 5 principal components for tissue signal
in CSF, and white matter, linear and quadratic trends for Low-
frequency drifts and a global bandpass filter (0.01–0.1Hz). These
images where then co-registered to their anatomical counterpart
by FSL. They were then normalized to the MNI 152 space
using ANTs. The average voxel activity in each ROI was then
extracted as the time-series for that region. Any subject that had
a consistently 0 time-series was omitted from the dataset. To
minimize the effects of age on the results, the dataset was split
into 5 age ranges with 5-year increments for the first three step
and a 10 year and unlimited increment for the final two. This was
done in order to ensure that no age range will have a very small
number of subjects. The distribution of the subjects in each age
range can be seen in Table 1. Further breakdown of the subject’s
demographics is shown in Supplementary Table A.

Creating the Functional Connectivity
Network
To extract the whole-brain functional connectivity network of
each subject, each ROI is seen as a network node and a measure
of connectivity is used to connect these nodes (Bullmore
and Sporns, 2009). This connectivity measure

(

wij

)

must be
able to quantify the relationship between the time-series of
ROI i and j. Correlation and mutual information metrics
have been extensively used for this purpose (Rubinov and
Sporns, 2010). We have used spearman’s rank correlation
coefficient, the percentage-bend correlation (Wilcox, 1994;
Pernet et al., 2012) and partial correlation (Marrelec et al.,

TABLE 1 | Distribution of the data.

Site (# Samples in

fMRI time series)

5–10 10–15 15–20 20–30 30–65 All

years years years years years

CALTECH (146) 0 0 3 13 5 20

CMUA (236) 0 0 0 1 0 1

KKI (152) 20 18 0 0 0 38

LEUVEN1 (246) 0 0 8 21 1 29

LEUVEN2 (246) 0 24 7 0 0 31

MAXMUNA (116) 0 0 1 3 7 11

MAXMUNB (116) 0 0 0 2 5 6

MAXMUNC (116) 0 0 0 13 3 14

MAXMUND (196) 2 5 1 0 2 9

NYU (176) 35 66 26 34 5 166

OHSU (78) 7 15 1 0 0 23

OLIN (206) 0 9 14 7 0 25

PITT (196) 0 16 4 7 5 32

SBL (196) 0 0 0 3 6 8

SDSU (176) 1 17 9 0 0 27

STANFORD (176–236) 21 15 0 0 0 36

TRINITY (146) 0 14 20 9 0 43

UCLA1 (116) 3 38 14 0 0 55

UCLA2 (116) 1 18 1 0 0 20

UM1 (296) 9 42 32 0 0 82

UM2 (296) 0 13 16 2 0 31

USM (236) 0 6 21 22 12 61

YALE (196) 10 26 12 0 0 48

All Sites 109 342 190 137 51 816

Number of participants from each site for each age group as well as the overall number
of participants in a site that were used for this study. Last row shows the total number of
subjects in each age-range. The number of MRI samples per fMRI time-series is annotated
in brackets in the first column. The Stanford time-series did not have a consistent number
of samples thus the number is presented as a range.

2006) as our correlation based measures of connectivity. We
also used Sparse Inverse Covariance Estimation (SICE) (Huang
et al., 2010) and mutual information as alternative measures
of connectivity. More details on each method can be found
in the Supplementary Material. The implementations used
in the open source GraphVar Matlab toolbox (Kruschwitz
et al., 2015) was used to compute these connectivity
measures.

Graph Extraction
Once the whole-brain network is available, numerous methods
can be used to express it in terms of a graph. The easiest way
is to treat each ROI as a node and the connectivity matrix as
connection weights. Another approach is to define a threshold
T and disregard any edges with values wij < T by changing them
to 0. One can then either keep the edge weights for wij > T
or change them to 1 to construct a binary graph. It has been
shown that binary graphs are easier to characterize using graph
theoretical metrics and usually have better defined null models
for statistical analysis (Rubinov and Sporns, 2010). As there is no
proved way to calculate the value of T for a specific application,
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a proportional approach is usually used in its place. In this paper,
the highest 20% of the weights were changed to 1 and the rest
were disregarded as 0.

Graph Metrics
Graph theoretical analysis was performed on the extracted
brain graph for each subject. The calculated graph properties
consisted of measures of segregation (Clustering Coefficient,
Transitivity), integration (Characteristic Path Length, Efficiency),
and centrality (Betweenness centrality, within module degree Z-
score, Participation coefficient) of the brain network. Formulas
for each metric are presented in Table A1 (Rubinov and Sporns,
2010). This resulted in a feature space of 817 variables for
each subject. More information on this step is available in the
Supplementary Material.

All steps from Graph extraction to this point were done using
the openly available MATLAB toolbox GraphVar (Kruschwitz
et al., 2015).

Classification, Validation, and Comparison
In this study, we used the python Scikit-learn implementation
of the gaussian SVM as our classifier. Features were selected
using a sequential forward floating algorithm (Pudil et al., 1994).
This was done over 10 successive iterations. In the first iteration,
all features in the feature space were individually used for
classification and the best performing feature was added to a
feature subset while being removed from the feature space. In
each consecutive iteration, individual components of the feature
space are added to feature subset and the best performing feature
in combination with previous results is kept for future use.
This resulted in 10 features being chosen as the best graph
characteristics that distinguish between ASD and HC.

All classification metrics were acquired using a
10-fold stratified cross validation test with the data
folds being the same for all algorithms. To further
validate our results, the confusion matrix of each
model was evaluated to determine model sensitivity and
specificity.

FIGURE 1 | Graphical framework of the experiment. (A) Raw fMRI images of subjects; (B) After preprocessing the brain is divided into 116 regions of interest (ROI);

(C) By averaging the BOLD activity in each ROI, a time-series is extracted representing brain activity in that region; (D) Using different measures of connectivity, a

connectivity matrix is generated from the ROI time-series quantifying the connectivity level between individual ROIs; (E) By treating the ROIs as graph nodes and the

connectivity matrix as graph weights the brain network is expressed in graph form; (F) A threshold is applied to keep only the strongest connections; (G) Graph

theoretical analysis is applied to the resulting graph from part F to obtain a feature vector for each subject; (H) A wrapper method called sequential feature selection is

applied to choose a handful of features that contribute to the highest classification accuracy; (I,J) The resulting feature subset is passed to a linear SVM which trains a

model to distinguish between ASD and HC.
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FIGURE 2 | Comparison of Model Performance; Left Column: Accuracy of the models trained using features extracted from the pipeline specified on the X axis for the

age range specified on the far left (in years). Y axis labels specify the chance level for the classification task. Top preforming model is highlighted in dark blue; Middle

Column: p-values of the Welch’s t-test preformed on the models trained on different pipelines. Statistical significance (p < 0.05) is highlighted in dark blue; Right

Panel: FDR corrected p-values based on the Benjamini, Hochberg method (Benjamini and Hochberg, 1995). The corrected p-values were capped at 1 therefore any

value over that threshold was set to 1.
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We minimized the risk of overfitting by using three limiting
approaches. First, the simplest kernel (linear) was used for the
SVM. Second, only 10 features were used to learn to classify
between 104 subjects. Finally, using 10-fold cross validation
ensured the model is only evaluated on data points that it has
not experienced before.

As cross validation is inevitably dependent on how the data
was randomly separated, we used a 10 × 10 Welch’s t-tests to
compare our models. The null hypothesis for these tests was that
the two models have equal accuracies. To address the issue of
multiple comparisons, we also reported the false discovery rate
(FDR) corrected p-values for these tests.

Figure 1 presents a graphical depiction of the methodology
proposed here.

RESULTS

Performance of the Classifiers
Our models were able to consistently perform better than the
chance level calculated for their respective age ranges. Chance
level was evaluated by assuming the model always chooses the
most populous group. The left panel of Figure 2 compares the
performance of the different pipelines in each age range. The best
preforming model for each age-range is highlighted.

The top preforming pipeline model was generally shown to
have a statistically higher (p < 0.05) mean than most of the other
pipelines. The only exception occurs in the case of the 10–15
age range in which the concatenation pipeline’s accuracy fails
to achieve a statistically significance difference with three other
pipelines: mutual information, covariance, and bend correlation.
The details of this statistical analysis are illustrated on the middle
and right panels of Figure 2.

To further analyze the performance of the best models, we
calculated their respective sensitivity and specificity (Table 2). All
models exhibited a specificity of > = 80%. The 10–15 age range
showed relatively low sensitivity. Specificity shows the percentage
of times that a Negative prediction (in this case HC is correct
while sensitivity shows the percentage of times that a Positive
prediction (ASD) is correct.

Analysis of Selected Features
To further understand the results, we plotted the regions from
which the selected features were derived (Figure 3). The results
for the top-preforming pipeline for each age range will be
presented in the main body of this article. More details about
the performance of all other pipelines for a given age range
is given in the Supplementary Material. The size of the nodes
in Figure 3 correspond to the rank at which that feature was
selected. The abbreviations of the node labels can be found in the
Supplementary Table B. Supplementary Table B also tabulates
the exact features for each age range as well as the p-value
corresponding to the between group difference of that feature.
The top group of measures as well as the top measure based
on repetition is as follows: Measures of segregation, specifically
clustering coefficient for the 5–10 years range. Measures of
centrality for all other age ranges, with the most repeated
measure being betweenness centrality for the 10–15 years range,

TABLE 2 | Classification performance of the best models.

Age range

(years)

Best

pipeline

Accuracy% Specificity% Sensitivity%

5–10 Concatenation 86 91 79

10–15 Concatenation 69 80 55

15–20 Spearman 78 80 76

20–30 Mutual

information

80 87 69

>30 Covariance 95 91 97

eigenvector centrality for the 15–20 years range, within module
degree z-score for the 20–30 years range and betweenness
centrality for the >30 years range.

DISCUSSION

Comparison With Previous Literature
In this study, we examined several different pipelines for ASD
classification. These included 6 different network extraction
techniques over 5 age ranges. Furthermore, we used 10-fold cross
validation to examine the accuracy of the algorithm for each
pipeline which is shown to be better than the leave-one-out cross
validation used in previous studies (Kohavi, 1995). In addition,
10-fold cross validation may be used as a substitute for having a
separate testing set because the model is evaluated on datapoints
it has not seen before. Because of not having the exact models
trained in previous studies, we compare our findings with them
only by using the reported accuracy, specificity, and sensitivity.
All models trained in this study were statistically compared with
each other using a 10 by 10 cross validation t-test.

Previous studies were not able to report high prediction
accuracies for the ABIDE dataset relative to similar studies
on other neurological diseases such as AD. This can be
related to the fact that this dataset consists of recordings
conducted over multiple sites, some with slightly different image
acquisition parameters. Moreover, the whole dataset covers a
wide age range (5–64 years). To minimize the effects of age,
we separated the dataset into 5 age ranges and trained separate
models on each range. To allow for easier reproducibility
and thus more meaningful comparisons, we chose to use a
publicly available preprocessed version of the data through
the Preprocessed Connectomes Project (http://preprocessed-
connectomes-project.org/).

Table 3 shows a detailed comparison with previously reported
ASD classification models. It is necessary to state all of the
mentioned papers other than Chen et al. (2015) used the
complete dataset to train their model while in this study separate
models where trained for different age ranges. The cross-
validation results in this study provide an estimate of how the
models would perform if data from their respective age ranges
were fed to them. Therefore, it can be hypothesized that the
performance over the entire dataset would not be worse than
the worst preforming age-range if, based on the subject’s age, the
correct model is used for a previously unseen dataset. Additional
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FIGURE 3 | Visualization of the top 10 selected features for each Age range. Two age-ranges show only 9 features. This is because in the 5–10 range PreCG.L was

selected two times. In the >30 group the last selected feature was the global Characteristic path length. The full region names along with the abbreviations can be

found in Supplementary Table B.
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TABLE 3 | Previous model performance on the ABIDE dataset.

Accuracy

%

Sensitivity

%

Specificity

%

Algorithm References

69 72 67 Linear SVM Plitt et al.,

2015

66 60 72 Gaussian SVM Chen et al.,

2015

90.8 89 93 Random forest Chen et al.,

2015

67 NA NA SVC Abraham

et al., 2017

70 74 63 Deep neural network Heinsfeld

et al., 2018

data is needed to confirm this hypothesis. Our worst preforming
model, the model for the 10–15 age range, outperformed almost
all the previous models in specificity while having an accuracy
comparable to that of the other SVMmodels. All other age ranges
showed higher accuracy than all previousmodels except the Chen
et al. random forest. This could be attributed to the fact that the
performance metrics for the random forest model were assessed
using a different scheme called out of bag prediction errors as
opposed to the cross validation used in our models and all other
previously reported studies mentioned here.

Comparison Between Pipelines
While in all age ranges except the 10–15 range, the top model
showed a statistical significance in performance than most of the
other models, our results do not reach a consensus about what
network creation pipeline preforms best in all cases. However, the
bend correlation pipeline’s model was the second best model over
all age range but the >30 range. Furthermore, it did not show
any statistically significant difference in model performance from
the top preforming model for the 10–15, 15–20, and 20–30 age
ranges. Based on this, we would suggest bend correlation to be the
first network construction pipeline for graph theoretical analysis
of the ABIDE dataset if computational time is limited.

A possible explanation for the relatively lower performance of
the 10–15 range compared to other age ranges is that the larger
number of subjects in this group translated into higher between
site variability in the data. Therefore, even though our model
achieved higher specificity than most previous studies, further
steps are needed to address the inherent heterogeneity of the
ABIDE dataset.

Analysis of the Selected Features
Centrality measures were shown to be most operative in
providing features for the classification tasks in the top 10
selected features. This also held true when selecting the top
5 features. Centrality measures have been shown to undergo
changes in ASD. A previous study on the structural network
of the brain found that autism is accompanied by centrality
alterations in regions relevant for social and sensorimotor
processing (Balardin et al., 2015). Another study found changes
in hubness of ASD brain networks using resting-state fMRI

(Itahashi et al., 2014). Our results suggest that the changes in
centrality measures play a key role in being able to differentiate
between ASD and HC. The only exception was observed for the
5–10 years age range where clustering coefficient, a measure of
segregation, was chosen more times than the rest. This also held
true when only looking at the top 5 features. This suggests that
at a young age, there may not be many changes to the hubs
of the brain network but the organization of the network into
sub-networks is altered.

LIMITATIONS

There are several limitations in the current study. First, ABIDE
I data was used in different age ranges to investigate the
prediction accuracy of our pipelines while minimizing the effects
of aging on the resting-state networks. Furthermore, although
to the best of our knowledge ABIDE is the most comprehensive
database for ASD functional imaging, further analyses are needed
to confirm its representability of the whole ASD population.
Second, we relied on a single preprocessing pipeline for the sake
of easier comparison between our work and previous studies. It
is entirely possible that another preprocessing pipeline is better
suited to this graph theoretical approach. Future studies will
need to investigate this limitation. Additionally, the comparison
between our models and previous studies only used three metrics
(accuracy, sensitivity, and specificity). A statistical test may
be needed to further analyze the significance of our findings.
However, this is not possible without access to the exact cross
validation folds or out of bag sample errors of those studies.
Nevertheless, due to the observed improvement, we suspect that
our algorithm has reached a statistically significant improvement
over previous results.

Another shortcoming that is not limited to this study is related
to how the classification task is formulated. To the best of our
knowledge, all research in this field including the present study
have focused on distinguishing HCs from ASDs. However, as the
name suggests, ASD is a spectrum and individual cases can vary
greatly in how the disorder affects them. To address this issue,
databases such as ABIDE will play a vital role. Extensive detailed
clinical analysis data will be needed to correctly approximate the
position of an individual on the spectrum.

Finally, variability present in the ABIDE dataset, such as
different imaging parameters and devices, due to it being a multi-
site initiative may lead to uncontrolled variations in the data
or model being biased toward better represented sites. While
the normalization steps in the preprocessing help reduce the
variations, further investigations will be needed to confirm if
they have been eliminated to a sufficient degree. Our results
show better overall performance over previous investigations
which suggests these limitations may have been addressed in a
satisfactory manner.

CONCLUSION

In this study we utilized graph theory and ML to propose a
novel pipeline for automatic diagnosis of ASDwhich significantly
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improved performance over previously proposed models. The
relative strength of our method suggests graph theoretical
analysis paired with the right preprocessing pipeline can nullify
the effects of multi-site and multi-device image acquisition to
a good degree and is more robust than previous methods.
Our pipeline automatically selected 10 biomarkers for each
age range being investigated. Measures of centrality were
shown to be most operative in distinguishing between ASD
and HC.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

We used the data collected as part of the ABIDE database and
complied with everything that they have asked to be included
in any manuscript using that data. The original ethics statement
form the (Di Martino et al., 2014) paper is as follows: All
contributions were based on studies approved by local IRBs,
and data were fully anonymized (removing all 18 HIPAA
protected health information identifiers, and face information
from structural images). All data distributed were visually
inspected prior to release.

AUTHOR CONTRIBUTIONS

The work presented here was carried out in collaboration
between all authors. The research was designed by both authors.
AK acquired and analyzed the data and carried out the
experiment with RS providing supervision and guidance. The
manuscript was written by AK and revised by RS. All authors
have read and approved the submission of the manuscript.

ACKNOWLEDGMENTS

This work was partially supported by the Biomedical engineering
research scholarship of the University of Calgary. The database
used in this study was part of the openly available ABIDE
I. The funding source for that project is as follows. Primary
support for the work by Adriana Di Martino was provided by the
NIMH (K23MH087770) and the Leon Levy Foundation. Primary
support for the work by Michael P. Milham and the INDI team
was provided by gifts from Joseph P. Healy and the Stavros
Niarchos Foundation to the Child Mind Institute, as well as by
a NIMH award to MPM (R03MH096321).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.01018/full#supplementary-material

REFERENCES

Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras, D.,

Thirion, B., et al. (2017). Deriving reproducible biomarkers from multi-

site resting-state data: an autism-based example. NeuroImage 147, 736–745.

doi: 10.1016/j.neuroimage.2016.10.045

Balardin, J. B., Comfort, W. E., Daly, E., Murphy, C., Andrews, D., Murphy,

D. G., et al. (2015). Decreased centrality of cortical volume covariance

networks in autism spectrum disorders. J. Psychiatr. Res. 69, 142–149.

doi: 10.1016/j.jpsychires.2015.08.003

Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., and Sigman, M. (2011).

A big-world network in ASD: dynamical connectivity analysis reflects a

deficit in long-range connections and an excess of short-range connections.

Neuropsychologia 49, 254–63. doi: 10.1016/j.neuropsychologia.2010.11.024

Benjamini, Y., and Hochberg, H. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Seri B 57,

289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Brentani, H., Paula, C. S., Bordini, D., Rolim, D., Sato, F., Portolese,

J., et al. (2013). Autism spectrum disorders: an overview on diagnosis

and treatment. Revista Brasileira de Psiquiatria 35 (Suppl. 1), S62–72.

doi: 10.1590/1516-4446-2013-S104

Bullmore, E., and Sporns, O. (2009). Erratum: complex brain networks: graph

theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10,

312–312. doi: 10.1038/nrn2618

Cameron, C., Sharad, S., Brian, C., Ranjeet, K., Satrajit, G., Chaogan, Y.,

et al. (2013a). Towards automated analysis of connectomes: the configurable

pipeline for the analysis of connectomes (C-PAC). Front. Neuroinform. 7:4.

doi: 10.3389/conf.fninf.2013.09.00042

Cameron, C., Yassine, B., Carlton, C., Francois, C., Alan, E., András, J.,

et al. (2013b). The neuro bureau preprocessing initiative: open sharing of

preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7:41.

doi: 10.3389/conf.fninf.2013.09.00041

Chaddad, A., Desrosiers, C., and Toews, M. (2017). Multi-scale radiomic analysis

of sub-cortical regions in mri related to autism, gender and age. Sci. Rep.

7:45639. doi: 10.1038/srep45639

Chen, C. P., Keown, C. L., Jahedi, A., Nair, A., Pflieger, M. E., Bailey, B. A., et al.

(2015). Diagnostic classification of intrinsic functional connectivity highlights

somatosensory, default mode, and visual regions in autism. NeuroImage 8,

238–45. doi: 10.1016/j.nicl.2015.04.002

Chen, G., Ward, B. D., Xie, C., Li, W., Wu, Z., Jones, J. L., et al. (2011).

Classification of alzheimer disease, mild cognitive impairment, and normal

cognitive status with large-scale network analysis based on resting-state

functional MR imaging. Radiology 259, 213–221. doi: 10.1148/radiol.101

00734

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg, H. S.

(2012). A whole brain fMRI atlas generated via spatially constrained spectral

clustering. Hum. Brain Mapp. 33, 1914–28. doi: 10.1002/hbm.21333

Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,

et al. (2014). The autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in autism. Molecul. Psychiatr. 19,

659–667. doi: 10.1038/mp.2013.78

Di Martino, A., Zuo, X. N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz,

A., et al. (2013). Shared and distinct intrinsic functional network centrality in

autism and attention-deficit/hyperactivity disorder. Biol. Psychiatr. 74, 623–32.

doi: 10.1016/j.biopsych.2013.02.011

Dyrba, M., Grothe, M., Kirste, T., and Teipel, S. J. (2015). Multimodal analysis of

functional and structural disconnection in alzheimer’s disease using multiple

kernel SVM. Hum. Brain Mapp. 36, 2118–2131. doi: 10.1002/hbm.22759

Fernell, E., Eriksson, M. A., and Gillberg, C. (2013). Early diagnosis of autism

and impact on prognosis: a narrative review. Clin. Epidemiol. 5, 33–43.

doi: 10.2147/CLEP.S41714

Hazlett, H. C., Gu, H.,Munsell, B. C., Kim, S. H., Styner,M.,Wolff, J. J., et al. (2017).

Early brain development in infants at high risk for autism spectrum disorder.

Nature 542, 348–351. doi: 10.1038/nature21369

Frontiers in Neuroscience | www.frontiersin.org 9 January 2019 | Volume 12 | Article 1018

https://www.frontiersin.org/articles/10.3389/fnins.2018.01018/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.1016/j.jpsychires.2015.08.003
https://doi.org/10.1016/j.neuropsychologia.2010.11.024
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1590/1516-4446-2013-S104
https://doi.org/10.1038/nrn2618
https://doi.org/10.3389/conf.fninf.2013.09.00042
https://doi.org/10.3389/conf.fninf.2013.09.00041
https://doi.org/10.1038/srep45639
https://doi.org/10.1016/j.nicl.2015.04.002
https://doi.org/10.1148/radiol.10100734
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.biopsych.2013.02.011
https://doi.org/10.1002/hbm.22759
https://doi.org/10.2147/CLEP.S41714
https://doi.org/10.1038/nature21369
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kazeminejad and Sotero Topological Properties for Autism Classification

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F.

(2018). Identification of autism spectrum disorder using deep learning and the

ABIDE dataset. NeuroImage 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Howsmon, D. P., Kruger, U., Melnyk, S., James, S. J., and Hahn, J. (2017).

Classification and adaptive behavior prediction of children with autism

spectrum disorder based upon multivariate data analysis of markers of

oxidative stress and DNA methylation. PLOS Comput. Biol. 13:e1005385.

doi: 10.1371/journal.pcbi.1005385

Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., et al. (2010). Learning brain

connectivity of alzheimer’s disease by sparse inverse covariance estimation.

NeuroImage 50, 935–949. doi: 10.1016/j.neuroimage.2009.12.120

Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., and Darrell

Van Horn, J. (2016). Resting-state functional connectivity in autism spectrum

disorders: a review. Front. Psychiatry 7:205.

Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda,

S., et al. (2014). Altered network topologies and hub organization in

adults with autism: a resting-state fMRI study. PLoS ONE 9:e94115.

doi: 10.1371/journal.pone.0094115

Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y.,

and Melie-García, L. (2008). Studying the human brain anatomical network

via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064–1076.

doi: 10.1016/j.neuroimage.2007.10.060

Kazeminejad, A., Golbabaei, S., and Soltanian-Zadeh, H. (2017). “Graph

theoretical metrics and machine learning for diagnosis of Parkinson’s disease

using Rs-fMRI,” in 2017 Artificial Intelligence and Signal Processing Conference

(AISP) (Shiraz: IEEE), 134–139. doi: 10.1109/AISP.2017.8324124

Keown, C. L., Datko, M. C., Chen, C. P., Maximo, J. O., Jahedi, A., and Müller,

R. A. (2017). Network organization is globally atypical in autism: a graph

theory study of intrinsic functional connectivity. Biol. Psychiatr. 2, 66–75.

doi: 10.1016/j.bpsc.2016.07.008

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection. Available online at: http://ai.stanford.edu/~

ronnyk/accEst.pdf

Kruschwitz, J. D., List, D., Waller, L., Rubinov, M., and Walter, H. (2015).

GraphVar: a user-friendly toolbox for comprehensive graph analyses

of functional brain connectivity. J. Neurosci. Methods 245, 107–115.

doi: 10.1016/j.jneumeth.2015.02.021

Leung, R. C., Ye, A. X., Wong, S. M., Taylor, M. J., and Doesburg, S. M. (2014).

Reduced beta connectivity during emotional face processing in adolescents

with autism.Molecul. Autism 5:51. doi: 10.1186/2040-2392-5-51

Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., and Phillips, M.

D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-

cortical connections. NeuroImage 12, 582–87. doi: 10.1006/nimg.2000.0654

Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy,

S., Doyon, J., et al. (2006). Partial correlation for functional brain

interactivity investigation in functional MRI. Neuroimage 32, 228–237.

doi: 10.1016/j.neuroimage.2005.12.057

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E.

D., et al. (2013). Multisite functional connectivity MRI classification of autism:

ABIDE results. Front. Hum. Neurosci. 7:599. doi: 10.3389/fnhum.2013.00599

Pernet, C. R., Wilcox, R., and Rousselet, G. A. (2012). Robust correlation analyses:

false positive and power validation using a new open source matlab toolbox.

Front. Psychol. 3:606. doi: 10.3389/fpsyg.2012.00606

Plitt, M., Barnes, K. A., and Martin, A. (2015). Functional connectivity

classification of autism identifies highly predictive brain features but falls

short of biomarker standards. YNICL 7, 359–366. doi: 10.1016/j.nicl.2014.

12.013
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