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Aymeric Kalife (France), Ludovic Goudenege (France), Saad Mouti (France) 

Managing gap risks in iCPPI for life insurance companies:  

a risk return cost analysis 

Abstract 

Individualized constant proportion portfolio Insurance (iCPPI) products are attractive alternatives to traditional unit 
linked products offering a guaranteed minimum return, such as variable annuities. They offer high potential returns 
whilst limiting the downside risk by implementing a dynamic allocation strategy between risky and risk-free assets 
tailored to the risk attitude of the beneficiary. But performance evaluation of iCPPI products should not rely on the 
unrealistic assumptions of continuous market price variations and continuous rebalancing of asset allocations. We 
adopt a more general and realistic price jump model and examine several dynamic strategies as well as gap put options 
to mitigate the risk that the value of the product falls below the guaranteed minimum. 

Key words: CPPI, dynamic multiplier, jump processes and gap risk, vanilla and gap options 
 

Introduction 1 

Increased market volatility and falling interest rates 
triggered by the 2008-9 financial crisis reduced the 
performance of traditional long-term investment 
products, increased their risks and, where applica-
ble, their capital requirements. In this context the 
new iCPPI products provide an attractive alternative 
to many traditional long-term investment products 
offering a guaranteed minimum return, such as vari-
able annuities, for several reasons: lower exposure to 
uncertain volatilities and extreme market price 
movements, lower costs, and lower regulatory capi-
tal requirements, to name a few. 

Already, with rising life expectancies, current provi-
sions for retirement may not be sufficient for many 
people to secure acceptable life standards after retire-
ment. To achieve sufficiently high investment returns 
together with low risks over the long term, funds 
should remain invested in stocks and other risky 
assets as well as in the safer bonds over an extended 
period well into retirement. The design of long-term 
investment products should also reflect the require-
ments and risk attitudes of individual investors. 

Constant proportion portfolio insurance (CPPI) is 
the name given to an investment strategy that pro-
vides a minimum guaranteed return, the “floor” 
(usually defined as the discounted value of a final 
capital guarantee) and aims to maintain at all times 
an exposure to a risky asset equal to a constant mul-
tiple of the “cushion” defined as the excess value of 
the fund above the floor. The final capital guarantee 
and the multiplier are chosen to satisfy the risk atti-
tude of the investor. Various authors, among which 
Perold (1986), Merton (1971) and Black and Jones 
(1987), proved that, assuming a geometric Brownian 
process for the risky asset price dynamics, a con-
stant rate of return for the risk-free asset, and conti-
nuous rebalancing at no cost between the two assets, 
i.e, under Black-Scholes conditions, the CPPI payoff 
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is optimal for an investor with a coefficient of risk 
tolerance varying linearly with wealth. Specifically, 
the CPPI payoff is equal to the chosen floor plus a 
cushion value proportional to a power of the risky 
asset price equal to the chosen multiplier; the floor 
and the multiplier are chosen according to the two 
parameters of a HARA utility function so as to max-
imize the expected utility of the investor. Additional 
advantages offered by CPPI strategies over more 
traditional investments with minimum guaranteed 
returns are: price transparency, open time-horizon, 
no early redemption penalty, wide range of alterna-
tive investments for the risky asset, and flexibility to 
add other guarantees such as ratchets (see II.1.4). 

iCPPI is a CPPI strategy adapted to evolving indi-
vidual needs and market conditions. The floor and 
the multiplier are modified accordingly. Thus 
iCPPI may combine most of the advantages of 
CPPI with the need for flexibility and enhanced 
risk management. 

However the provider of an iCPPI product (typical-
ly, an insurance company) faces many challenges in 
the implementation of the dynamic strategy that 
replicates the guaranteed payoff. The rebalancing of 
the risky asset/risk-free asset allocation can only be 
made at discrete times, there are transaction costs, and 
risky asset prices may jump. Thus there is likely to be 
a difference between the realized compared to the 
theoretical value of an iCPPI strategy under hypo-
thetical conditions of continuous price movements, 
unfettered zero-cost trading, and continuous reba-
lancing. In particular, here is a finite probability for 
the value of the fund to fall below the guaranteed 
floor. We call such shortfall the gap risk. Managing 
or insuring the gap risk may be delegated to a third 
party (e.g. a bank). 

The analysis of the gap risk has often been limited to 
simple conditions to preserve analytical tractability: 

Unrealistic modelling of the risky asset price 
market including continuous price dynamics, ze-
ro-cost trading and unlimited liquidity. 
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Simple parameterization of the CPPI strategy 
such as constant capital guarantee and multiplier. 
Simplistic rebalancing strategies such as con-
stant frequency. 

As a result, the iCPPI offers a mechanism that takes 
advantage of the specific advantages of both stocks 
and bonds, while complying with growing needs of 
flexibility as experienced by policyholders. 

However, the implementation of iCPPIs at insurance 
companies levels suffers from a number of opera-
tional constraints on the asset management: the reba-
lancing occurs through regular albeit discontinuous 
(at most daily) checks between the insurance com-
pany and a bank; depending on the design of the 
iCPPI and the discontinuous rebalancing frequency, 
the magnitude of the earnings at extreme risk may 
require the externalization of the gap risk management 
to the bank. As a result the main issue experienced by 
the insurance company remains to minimize the down-
side risk and keep control of the gap risk, which in-
volves three main challenges: This article extends 
previous analyses of the gap risk by introducing: 

Price jump dynamics. 
A dynamically adjusted multiplier. 
Advanced rebalancing strategies, vanilla and gap 
put options to mitigate the gap risk. 

Review of CPPI mechanism basics. Consider at time 
t a risky asset (e.g., a share) with price St and a risk-free 
asset (e.g., a Treasury bond) with price Bt returning a 
constant rate r. The CPPI fund is invested into these 
two assets so that part of its value, called the “floor” Ft, 
is guaranteed whilst the excess value above the floor, 
called the “cushion” Ct = Vt – Ft, remains exposed to 
the risky asset price fluctuations. At any time, the ex-
posure to the risky asset, et, is kept at a constant mul-
tiple, m, of the cushion, that is: et = mCt. 

The rest of the value of the fund is invested (or, if neg-
ative, borrowed) at the risk-free rate (Note that the 
exposure et may be acquired at no cost if using an off-
balance sheet instrument such as a future, which may 
be advantageous because of liquidity and low transac-
tion costs). The floor is often chosen to increase over 
time at the risk-free rate (it could not be made to in-
crease faster indefinitely), that is: 

0 .rt

t
F  F e                                                             (1) 

In theory, when the risky asset price follows a geo-
metric Brownian motion, and with continuous, zero- 
 

cost rebalancing (Black-Scholes conditions), the 
value of the cushion is path independent and propor-

tional to m

t
S  In other words, it is the value of a pow-

er option. It is convex when m > 1 (like a long call 
option), linear when m = 1, and concave when  
m < 1, like a short put option. But unlike standard 
call and put options there is no need to fix an expiry 
date, a CPPI strategy is open-ended. Under the 
above assumptions, the value of the cushion would 
never fall to zero; in practice, if it does fall to zero or 
below zero (e.g., because of a price jump or of dis-
crete rebalancing), the entire fund is monetized, i.e., 
is entirely invested in the risk-free asset, and the 
product provider must make up the shortfall to de-
liver the floor value. In practice there may also be 
other constraints such as no borrowing or additional 
features such as ratcheting up the floor. In those 
cases, the path independency and open-endedness of 
the product are lost and the payoff profile becomes 
more complex. 

2. Methodolody and results 

2.1. CPPI in theory and practice. 1.1.1. Conti-

nuous-time framework. The risky asset S is defined 
by the diffusion equation [ ]

t
dS dt dW where W 

is a standard Brownian motion. The previous hypo-
thesis for the risk-free asset is kept. 

In such context, and assuming continuous time 
CPPI, the cushion  is log-normally distributed with 
drift  (  - r) + r and volatility m : 

2 2

0= exp ( ) .
2

t t

m
C C m r r t m W

   

(2) 

and the portfolio value V has the path independent 
expression: 

2 2

0 0= ( ) exp ( ) .
2

t t t

m
V F V F m r r t m W (3) 

However, such assumptions are unrealistic and not 
consistent with market practice. To remedy these 
unrealistic hypothesis, two alternatives are studied: 
modeling in a discrete-time framework and in a 
Lévy framework.  

2.1.2. Discrete-time CPPI. In practice the CPPI is 
rebalanced in discrete time, where the shortfall 
probability is no longer equal to 0, which implies to 
monetize more often. 

 

Table 1. Final value metrics: buy & hold strategy vs CPPI with m = 3 vs CPPI with m = 6 

Buy & hold strategy CPPI with m = 3 CPPI with m = 6

Daily Weekly Monthly Daily Weekly Monthly

Mean 126.97 123.31 122.39 119.75 124.10 124.87 125.01

Std-dev 7.18 31.58 32.66 36.86 42.62 43.88 48.10

95% quantile 116.90 100.48 99.98 97.01 99.99 99.13 89.69
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Table 1 (cont.). Final value metrics: buy & hold strategy vs CPPI with m = 3 vs CPPI with m = 6 

Buy & hold strategy CPPI with m = 3 CPPI with m = 6 

99.5% quantile 113.42 100.02 99.88 91.47 99.98 95.20 74.28

5% quantile 140.21 194.37 195.23 197.94 216.51 218.50 225.46

0.5% quantile 150.63 266.47 284.07 282.58 291.49 293.75 311.46

Rebalancing cost 0.01 0.91 0.44 0.26 0.78 0.46 0.31

pBh 0 0.0018 0.0947 0.5289 0.2016 0.5730 0.6555
 

A sequence of equidistant refinements of the inter-
val [0, T] is defined:  

0 10 ... .
N N

t t t T                         (4) 

where 
1

N N

k k

T
t t

N
 for k = 0,…N – 1. The number 

of shares is constant on the intervals ] ti, ti+1]. Let 

min | 0
k ks k t tt t V F . The first time the 

portfolio value touches the floor. The discrete-time 
cushion follows.  

1 , 1

1 0 0

1
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( min )

1
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or recursievely:  

1

1

( 1) > 0
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0
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k N
t t
k k

t
kt

k
T

r
N

t t
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C e if C
         

(6) 

Vtk is given through the relation Vtk = Ctk + Ftk. In 
order to comply with the CPPI algorithm and re-
spect practical constraints, the number of shares of 
the risky and safe assets (  and ) are as follows: 

max ,0 , .k k

k

k k

t t

t

t t

mC V
min

S S
 

.k k k

k

k

t t t

t

t

V S

B

                                                  

  (7) 

When adding transaction costs, these are taken as a 
proportion of the change in the risky exposure (i.e 

1( )
k k kt t t

Proportional cost S ). So at time tk, 

the number of shares of the risky asset will be re-
duced: 

1
| |

k
k k k

~

t t t t
nb of bps.

                    
(8) 

The CPPI capital guarantee is ensured as long as the 
bond floor is not breached through, enabling to fully 
invest the portfolio into the non risky assets. The 
probability of breaching the floor is defined as the 
probability that the portfolio value falls below the 
floor (i.e. := = 0, :BF

T t tP V G t T V F   

The local shortfall probability is the conditional proba-

bility defined as: 
, 1 1 1

= | >LBF

t t t t t t
i i i i i i

P V F V F . The 

two are related as follows =

,=1 1
= 1 (1 )

i NBF LBF

t ti i i
P P . 

This probability which was equal to zero in the con-
tnuous Black-Scholes model, is now greater than zero. 
Assuming the portfolio hasn’t breached the floor up to 
time tk, the probability of breaching the floor at time 
tk+1 is that of a downside jump in the risky asset of 
more than about 1/m. Its mathematical expression is: 

1

1,

1
: .i

i i

T
rtLSF N

t t

ti

S m
P e

S m
                                     (9) 

where the evolution of the risk-free part with rate r is 
taken into account. 

The backtesting is based on the period Q1-2006 to Q4-
2010 on S&P500 index. Simulating paths (N = 
10,000) in the Black & Scholes model is made using 
the 3-month realized volatility based on the standard 
deviation (see Figure 1), a constant asset return m = 
8%. The rate of the risk-free asset is r = 4%. Three 
rebalancing frequencies are being compared regarding 
the distribution of the final portfolio value (daily, 
weekly and monthly), with the following assumptions: 

Initial investment/Guarantee: $100, and $100 

Duration: 5 years 
Transaction costs: 10 bps. 

The CPPI strategy under daily rebalancing performs 
better against a bear market than the weekly and 
monthly ones due to its reactiveness to decrease the 
risky exposure whenever needed. With such frequen-
cy, the guarantee is almost ensured; the less frequent 
we rebalance the more we are exposed to breaching 
the floor (as illustrated by fatter left tails (see Figure 2 
bottom, right). The backtesting (Figure 2 top) and 
Table 2 illustrate the following remarks: 

In periods of mild market conditions, transaction 
costs negatively affect the performance of a daily 
rebalancing, although not to a significant extent. 
During a market crash, the three strategies monet-
ize, with the daily rebalancing having less losses 
than the two others. 

The empirical probability of breaching the floor 
decreases when the rebalancing frequency in-
creases. 
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The cost of rebalancing increases with the fre-
quency and with the multiplier. However, in our 
results, the cost of daily rebalancing for m = 6 is 
lower than the one with m = 3. This is explained 
by the fact that such a high multiplier allows for 
a total risky exposure and thus no rebalancing 
reducing the cost. 

When comparing different strategies (buy & hold, 
CPPI with m = 3 and m = 6), we have the following 
results:  

The Buy & Hold strategy has higher expectation 
and lower standard deviation (Table 2). This is 
mainly due to the low exposure to the risky as-
set. Its performance is highly correlated to the 
non-risky return (chosen to be 4%). 

The 5% and 0.5% quantiles show that the CPPI 
with m = 6 has a larger right tail and thus, per-
forms better than the two others in bullish mar-
ket. This remark is also illustrated in Figure 8. 

Daily rebalancing almost prevents the bond floor 
from being breached, which ensures the capital 
guarantee at maturity. However, constant volatility 
and log-normal distribution modeling are not consis-
tent with empirically observed jumps during ex-
treme market moves likely to breach the bond floor. 
In order to relax these unrealistic assumptions, 
jumps are thus added through Lévy processes as 
developed in the next section. 

2.1.3. Adding jumps. We assume that the process of 
the risky asset follows a Lévy process: 

,t
t

t

dS
dZ

S
                                                          

(10) 

where Z is a Lévy process. The risk-free asset Ft is 
still deterministic. 

Let inf :
t t

t V B  the time where the portfo-

lio value is fully invested in the risk-free asset. Until 

 the actualized cushion 
*( )t

t

t

C
C

F
 is as follows: 

* *
0 ( )

t t
C C mL , where  denoting the stochastic 

exponential: 
1

< >
2

0 , 0
( ) = (1 ) ,

Z Z Zt t s
t ss t Z

s
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which gives us the portfolio value: 

0

0

( )

1 1 ( )
= .

>

t t

t

r t

V
V mL t

V F

V e if t

      (12) 

The probability of breaching the floor can be ex-
pressed as:  

1
= [0, ], =1 , < .BF

t t t
P t T V B t L

m  

(13) 

1/

=1 exp ( ) ,
m

BF
P T dx                            (14) 

which is illustrated by the fact that the number of 

ownside jumps of size more than 1

m
 follows a Pois-

son distribution with intensity Tv(- , 1/m). 

For computation tractability, we choose the double 
exponential Kou model (see Kou [2002]). Under the 
risk neutral probability, the risky asset is modeled as 
follows: 

=1
= 1 ,

N Yt t i

i

t

dS
dt dW d e

S
                (15) 

where W is a standard brownian motion, N is a pois-
son process with rate A, the constants  and  > 0 
are drift and volatility of the diffusion part and the 
jump sizes {Y1, Y2,...} are i.d.d random variables 
with a common asymmetric double exponential 
distribution of density: 

0 <0( ) = (1 ) 1 1 .y y

Y y yf y p e p e
       

(16) 

+ is intensity of positive jumps while –
 and p are 

the intensity of negative jumps and the probability 
of their occurrence. 

Under this jump model, and assuming a continuous 
rebalancing frequency, the probability of breaching 
the floor takes the following form: 

1

1
= 1 exp (1 ) .BF

P Tp
m

                    

(17) 

In this section, the CPPI strategy keeps the same 
characteristics except for the risky asset which is 
modeled through a Kou process calibrated on im-
plied volatility smile (between 2006 and 2011 on a 
1-month implied volatility on a weekly ). We car-
ried out the calibration by minimizing the quadratic 

error 
29 Market Kou

=1
( , ) ( , , , , , , ) ,t i t ii i i

C T K C T K p
    

(18) 

where T is 1-month maturity, Ki strikes from 80 to 

110 and ( , , , , )p  are the jump parameters 

(more details about). We give different statistics for 
these parameters in the table below: 

Average 5% Quantile Std-Dev

p 0.64 0.84 0.24

+ 0.16 0.28 0.06

- 0.15 0.28 0.07

 0.62 2.44 0.12

 18.29% 29.64% 0.08
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In order to avoid instability in parameters, we 
chose several starting points and set boundary con-
ditions. An example of the result on the calibration 
is shown in Figure 4. A few remarks on the calibra-
tion can be made: 

Since the upward-sloping part of the smile is 
very small, the positive jumps are hardly cali-
brated in a reliable manner. However, the pric-
ing of the gap option (section II.2.2) only needs 
the negative jumps intensity (i.e the downward-
sloping part of the smile). 
The calibration is better on close-to-maturity 
options (as mentioned in Tankov, 2010). It al-
lows a better capture of instantaneous jump. 
The calibrated parameters will be used for hedg-
ing gap risk in the last section 

Figure 5 compares different discrete rebalancing 
frequencies with a jump modeling: 

Even for daily rebalancing, breaching the floor 
is unavoidable with the same probability as the 
two other frequencies. 

The three rebalancing frequencies give similar 
results when taking transaction costs into ac-
count. 

Kou model 

Daily Weekly Monthly

Mean 146.28 147.10 147.57

Std-Dev 52.84 52.93 53.11

95% quantile 92.19 92.21 92.03

99.5% quantile 59.38 59.08 59.23

5% quantile 238.13 238.67 239.41

0.5% quantile 349.41 350.92 350.37

Rebalancing cost 0.92 0.45 0.26

The previous illustrations show that both the fre-
quency of the rebalancing and the modeling affect 
the final value. The two metrics previously defined 
for different modeling assumptions 

The local probability of breaching the floor: 

, 1 1 1
:= | > .LBF

t t t t t t
i i i i i i

P V F V F                     (19) 

The overall probability of breaching the floor: 

:= [0, ] : = .BF

t t T T
P t T V F V F

 
(20) 

For B&S model in discrete-time rebalancing: 

2

, 1

1
( ) ( )

1 2=LBF

t t
i i

m T T
log r

m N NP
T

N   

(21) 

and 
1

, 1
= 0

= 1 1 .
N

BF LBF

t t
i i

i

P P                               (22) 

For Kou jump process in continuous time: 

1

1
= 1 exp (1 ) .BFP Tp

m
                        

(23) 

Results depend on the model parameters and discre-
tization time step: 

Gap risk goes to 0 as the rebalancing tends to be 
more frequent. 
When considering a discontinuous path (jump 
models), even in continuous rebalancing the gap 
risk value > 0. 
 

Model Frequency PBF

B&S
Monthly 
Weekly 
Daily 

9. 07  10-5

1.2  10-10

Kou Continuous 0.00410

Consider the stopping time t as the first time the port-
folio value breaches the floor which does not depend 
on the bond floor level. The distribution of t is the 
same in case of adding the ratchet, i.e. the probability 
of breaching the floor is not usually affected by the 
ratchet feature in theory. However, in our simulations, 
this probability in higher for the monthly rebalancing. 
This might be. 

2.1.4. Impact of the ratchet feature. The ratchet feature 
is used by insurance companies to attract investors as it 
periodically locks in profit (see Brigo and Mercurio 
[2006] and Andersen and Piterbarg, 2010 for more 
details): at anniversary dates the guarantee is set to the 
highest value so far. The guarantee G becomes a time 
dependent function. 

0

*
* *

1

* *
* 1

= 0

= max( , ) = .

[ , ]

t k
t t
k k

k k
t
k

V if t

G G V if t t

G if t t t
                 

(24) 

The bond floor is then defined as ( )= r T t

t tF G e . 

This feature has advantages and drawbacks. Locking-
in the cash will ensure a higher guarantee but also 
reduces the cushion, the risky exposure and thus the 
upside potential risk. 

The main results from Figure 6 are: 

The mean and standard deviation of the final value 
increase with the rebalancing frequency (see Table 
2). This is justified by the path dependency of the 
guarantee which has a larger distribution with 
higher rebalancing frequency. 
The quantiles on the two tails of the final value 
distribution increase with the rebalancing frequen-
cy, while the distribution is shifted to the right 
with narrower body. 
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2.2. Mitigating downside risk: Preventing from 

breaching the floor. 2.2.1. Adjusting the multiplier to 

market conditions. By focusing on managing returns in 
downside markets, CPPI effectively manages portfolio 
volatility. Over the 5-year data (which included one 

bullish market, one bear market and a recovery), the 
CPPI strategy resulted in a slightly lower return – but 
also a significantly lower volatility. Additionally, the 
worst one year return for the CPPI strategy was signif-
icantly less than that of the index portfolio. 

Table 2. Final value metrics: comparison between a CPPI without and with the ratchet feature 

 Without ratchet With ratchet 

 Daily Weekly Monthly Daily Weekly Monthly

Mean  123.82 124.26 124.17 145.46 143.01 134.03

Std-Dev  41.96 43.29 47.25 100.08 81.75 45.60

% quantile  99.99 99.68 90.88 100.61 100.53 99.99

.5% quantile  99.99 97.57 77.84 99.99 99.94 98.27

% quantile  214.18 216.42 222.23 268.74 261.73 219.52

.5% quantile  289.15 292.33 314.58 700.97 603.28 359.59

PBF 0.11 0.47 0.64 0.11 0.48 0.84
 

The manager usually sets the multiplier at the be-
ginning of the period. The risky exposure depends 
then on the evolving cushion. As the probability of 
breaching the floor may surge in market crash, or the 
manager might miss the subsequent market recovery, 
the multiplier needs to be adjusted accordingly with 
the market conditions. 

A first approach to define a dynamic multiplier is the 
choice of the optimal m, deduced from the closed form 
solutions for optimal payoffs, and optimal certainty 
equivalent returns (CERs) using HARA utilities and 
log-normal distribution (see Pezier, 2011). The authors 

give the following formula * 2= ( ) /m r  (  here is 

the investor’s sensitivity of risk tolerance to wealth). A 
particular case is the growth optimal leverage with  = 
1 which is resulted in optimizing the growth rate of the 
leveraged strategy (cushion). 

An alternative to the optimal multiplier is a value-at-
risk based multiplier where investors choose the confi-
dence level according to their risk tolerance as well but 
focused on tail risks. Based on the weight R

tw  of the 

value-at-risk based portfolio insurance (VBPI) intro-
duced by Jiang et al. (2009), and the expression of the 

risky exposure in both strategies = = R

t t t t tE m C w V  

the expression for the multiplier at time t  is: 

2

1
= .

1
1 exp ( )( )

2

t

p

m

r T t z T t

     

(25) 

As the dynamic multiplier depends on both 
volatility and return estimates, in order to improve 
its efficiency,  and  can be made time dependent. 
However, since the estimation of the drift is hardly 
accurate for a short window, we will restraint the 
time dependency to the volatility. It will be re-
estimated through a 3-month sliding window to take 
into account different market regimes.  

The two approaches offer an interesting alternative 
to the constant multiplier which lacks flexibility 
depending on market condition. The comparison 
between these two approaches through a backtesting 
from 2006 to 2011 is illustrated in Figure 7. The 
focus on two periods (2006-2007 and post 2008 
crisis) (Figure 8) illustrates that the VaR-based 
multiplier can perform better than the “optimal” one in 
bullish market and recovery (e.g 18% return Q2-2009 
until Q1-2011 vs 11% in the post 2008 crisis). In 
contrast, during bear market, using the “optimal” 
multiplier (through m  1) helps keep a relatively 
higher cushion but misses the recovery as it doesn’t 
allow a high leverage.  

In order to allow to participate in the market recovery 
to a greater extent, the multiplier is adjusted with a 
modified volatility estimator, either through a short-
term exponentially weighted moving average (EWMA 
with = 0.94 ) realized volatility or an estimator 
based on implied volatility (of the strike consistent 
with the latest market returns). For example, if the 
underlying jumped 5% downward, the implied 
volatility with strike 95%  will be chosen. For 
unavailable strikes, we use a linear interpolation. This 
strategy starts reinvesting into the risky asset as soon 
as Q3 2009, resulting in a higher performance by 
allowing the portfolio to capture more of the upside 
return when markets rebound. The backtesting in 
Figure 10 illustrates that the new multiplier is more 
reactive when adjusting with the implied volatility 
estimator. However, the 3-month realized volatility 
provides a higher multiplier and, when considering 
transaction costs, leads a lower cost of management. 

Finally, the fixed frequency rebalancing is switched to 
a trigger rebalancing which occurs when the multiplier 
is out of a specific range chosen by the portfolio 
manager. In our case, on average the rebalancing 
frequency becomes every other day, which is 
consistent with the usual practice in CPPI asset 
management. At the same time, the cost of rebalancing 
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is cut by half in comparison to a daily rebalancing (i.e. 
as low as a weekly or monthly rebalancing). Figure 11 
illustrates the increasing performance specifically 
under a range-bound high volatility regime, e.g. Q1-
Q3 2008.  

Adjusting the multiplier dynamically allows it to be 
more reactive to market conditions and explicitly 
dependent on the investor’s risk aversion. However, 
it does not totally annihilate the downside risk in 
case of sudden jumps, where options may be useful 
to hedge those gap risks 

2.2.2. Hedging gap risks. The CPPI methodology 
will not necessarily protect the portfolio against a 
“black swan” event (such as a market crash of 20% 
in one day). To the extent that asset allocation shifts 
are implemented via underlying funds, the rebalancing 
trade can only occur at the end-of-day NAV. Even if 
futures are used to implement shifts intra-day, there 
can be gap movements in the future markets. This is 
where a small gap risk protection sleeve can add value 
to the portfolio. To protect against such a “black swan” 
event, it is important to already have put options on 
market indices in the portfolio. 

2.3. Vanilla Put option. A simple hedging strategy for 
the CPPI through embedded option can be constructed 
using short maturity put options. Touching the bond 
floor is mathematically equivalent to the cushion 
becoming negative. Assuming the event hasn’t 
occurred up to time tk, using equation (1), we have: 

1

1
< 0 ( 1) < 0.

T
rt

k N
t
k

t
k

S
C m m e

S
            (26) 

Hedging this risk is equivalent to forcing this quantity 
to be positive. This can be done by buying a put option 
at each of the CPPI rebalancing period with strike 
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time kt  can be written as:  
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Two approaches can be considered: 

The hedging costs (put prices) are deducted only 
afterwards from the portfolio value (which 
allows an estimation of how much the hedge 

would cost). In this case, the cushion follows the 
recursive relation: 
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The cost of hedging can be computed as the sum of 
all put options prices necessary for the hedging:  
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In practice, the price of the puts used for the 
hedge will be deducted from the portfolio value 
at each step. This is translated in the second 
approach where the cushion dynamics follows 
the recursive equation: 
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We compare the effects of the put hedging in Figure 
13. We can see the following remarks:  

The guarantee is ensured and the manager no 
longer holds the risk of breaching the floor. 
However, once the put is exercised and the floor 
recovered, the manager needs to monetize in 
order to keep the guarantee until maturity. 
In terms of distributions, the CPPI distribution 
with a put hedging is a truncation of the 
classical CPPI where losses are cut (left tail 
limited by the guarantee). 

2.4. Gap put option. An alternative risk mitigating 
action lies in the use of Gap Options which allow 
for a protection against sudden significant and 
persistent downside market moves: if a gap event 
occurs between two consecutive dates, the buyer 
receives the difference between the performance of 

the risky asset at gap 
1

= 1t

t

S
r

S
 and the threshold 

J. In case of the CPPI, the proposed solution is a gap 
put option whose notional is the risky exposure with 
strike J = 1/m, where m is the multiplier. 

2.5. Definition and properties. (see Tankov, 2010 
for details). Suppose that the time to maturity T of a 
gap option is subdivided onto N periods of length h 

(e.g. days): =
T

h
N

. The return of the kth period 

will be denoted by ( 1)= /
k kh k h

R S S . Let  denote 

the return level which triggers the gap event and *
k  
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be the time of first gap expressed in the units of h: 
* := inf{ : }h

kk k R . The gap option is an option 

which pays to its holder the amount *( )h

k
f R  at time 

*
hk , if *

k N  and nothing otherwise.  

Assuming a deterministic interest rate r and an i.i.d 

log returns =1( )h N

k kR  and denote the distribution of 

1( )h
log R  by ( )

h
p dx . Then the price of a gap option 

is given by: 
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with := ( ) < 0.log  

Obtaining numerical results using this formula is 
complicated in the general case. An approximate 
formula is used. 

Assume 0=
X

t
tS S e , where X is a Lévy process. 

Considering the hypothesis 410rh  and 0h , 
the following formula is obtained: 
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Assuming a Kou model (for its tractability and 
simplicity in integration) and considering the put 

payoff (i.e ( ) = ( )f x K x ). The price then 

becomes: 
/( )
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with p the probability that a given jump is negative, – 
its intensity and  the Poisson process rate. 

Moreover, for the CPPI we are interested in the payoff 
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 which is equivalent to 

1
( )rhm

e x
m

 and thus, K = (1 – 1/m)e-rh. 

Table 3. Final value metrics: comparison between 
different hedging strategies 

 Hedging strategies 

 Vanilla Put Hedge 
1

Vanilla Put Hedge 
2

Gap Option 

Mean  136.97 133.35 134.98

% quantile  218.70 215.40 217.00

5% quantilee  277.21 273.53 275.22

Hedging cost  N.C 2.26 1.08

The gap put option allows to cut the loss compensates 
for the loss as the portfolio value breaches the bond 

floor. However, insurance investors holding a CPPI 
who want to hedge it with gap option may face the 
following issues: 

The price of the gap option is usually sold higher 
than its theoretical cost for several reasons: 
The cost of the hedging the gap option for the 
bank may be quite higher because of the illiquidity 
of deep out of the money options that replicate it. 
The replicating formula is tricky to implement and 
interpret, as significantly model dependent (jumps 
multiple parameters, lack of robustness). 
Actually, the gap option proposed by the bank 
might have a different design and payoff from the 
one considered for the hedge. 
The bank usually hedges the gap up to the first 
order only. 
The gap risk is borne by the bank only if there is 
some reconciliation by the insurance company 
within 24/48 hours, out of which the insurer bears 
oneself the gap risk. As a result, operational risks 
are significant and represent a major part of the 
economic capital requirements (e.g. under 
Solvency II framework). 

Conclusion 

In this article we have presented a study of the CPPI as 
an insurance contract, a review of its theory and 
practice as well as its modeling and hedging 
issues for a risk/return/cost perspective. The main 
conclusions are:  

Continuous CPPI is only theoretical: given market 
frictions and the probability of not ensuring the 
guarantee, all the more that jumps occur more 
than not. 
As a result, jump processes are a valuable input for 
the CPPI modeling: they allow to catch a 
probability of breaching the floor different than 
zero (even in the continuous-time framework; 
Garcia and Goosens, 2009 and Garcia et al., 2008) 
came up with the same conclusion) and therefore, 
detect, define and hedge gap risk. 
Correctly choosing and adjusting the multiplier 
dynamically significantly reduce the downside risk 
according to a Value-At-Risk indicator: The 
multiplier decreases in period of turmoils reducing 
the risky exposure and increases back during 
market recovery. 
Hedging the gap risk is possible through two types 
of options: vanilla puts and gap put options. The 
first one is more common due to liquid assets, but 
the hedging cost may turn out to be too expensive 
and the maturity too limited. The second type of 
options is less liquid (bought only through an 
agreement) but is cheap. 
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Appendix 

Fig. 1. Evolution of an investment in the S&P500 for the period Q1 2006 to Q4 2010 

Fig. 2. Backtesting and distribution of the three various rebalancing frequencies under B&S model. 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 5, Issue 2, 2014 

33 

Fig. 3. Comparison between the Buy & Hold strategy, CPPI with m = 3 and CPPI with = 6 through backtesting (S&P500) 

Fig. 4. Calibration of the Kou model using 1-month maturity call options price on the S&P500 

Fig. 5. Simulation and distribution of the three various rebalancing frequencies under Kou model.
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Fig. 6. The figure on the top is a backtesting on the previous set of data to compare a classical iCPPI and one with the ratchet

feature. The three histograms on the bottom are those of the final value distribution for the three different rebalancing fre-

quencies on the iCPPI with ratchet 

Fig. 7. Comparison between different multipliers (VaR-based with p = 99.5% and the optimal one with risk tolerance  = 0.2, 

0.4 and 1) based on Realized Volatility 
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Fig. 8. Focus on two bullish market periods where the CPPI with the VaR-based m performs better than the optimal one 

Fig. 9. Comparison between dynamic multiplier based on RV and on IV through backtesting 

Fig. 10. Comparison between dynamic multiplier based on RV and on EWMA through backtesting 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 5, Issue 2, 2014 

 36

Fig. 11. Comparison between trigger rebalancing vs fixed frequency rebalancing 

Fig. 12. Comparison between the dynamic multiplier and an adjusted one based on a manager decision depending on market 

recovery 
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Fig. 13. Comparison between no hedging and put hedging in its two approaches 

Fig. 14. Comparison between a vanilla and a gap option hedging 
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