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Xueyuan Wu (Australia), Shuanming Li (Australia) 

On a discrete time risk model with time-delayed claims  

and a constant dividend barrier 

Abstract 

In this paper a compound binomial risk model with a constant dividend barrier is considered. Two types of individual 
claims, main claims and by-claims, are defined, where one main claim is dependent with its associated by-claim and 
the settlement of the by-claim may be delayed for one time period under a certain probability. Formulae for calculating 
the expected present value of dividend payments up to the time of ruin are provided for discrete-type individual claims. 
The dividends-penalty identity is then derived. Finally explicit expressions for the corresponding results are obtained 
for two classes of claim size distributions. 

Keywords: compound binomial model, dividend, dividends-penalty identity, main claim, by-claim, dependence. 

Intoduction1 

In recent years, risk models with correlated claims 
and models with dividend payments have been of 
the major interests in the risk theory literature. The 
risk model considered in this paper is a compound 
binomial model with correlated individual claims 
and dividend payments that are ruled by a constant 
dividend barrier. 

In this paper a framework of correlated claims is 
built by introducing two kinds of individual claims, 
namely main claims and by-claims, and allowing the 
dependence between each main claim and its asso-
ciated by-claim. We also assume possible delays of 
the settlement of by-claims. Considerations of delay 
in claim settlement can be found in Waters and Pa-
patriandafylou (1985), Yuen and Guo (2001), Wu 
and Yuen (2004), Xiao and Guo (2007) and Yuen et 
al (2005). Other dependence structures in terms of 
main claims and by-claims are studied in Yuen and 
Wang (2002) and Wu and Yuen (2003). 

Because of the certainty of ruin for a risk model 
with a constant dividend barrier, the calculation of 
the expected discounted dividend payments is a 
major problem of interest in the context, instead of 
the ruin probability of the business. The very first 
risk model with dividends in the literature was pro-
posed by de Finetti (1957), in which a discrete time 
model with very simple periodic gains was studied. 
References for the results of de Finetti’s model can 
be found in Bühlmann (1970) and Gerber and Shiu 
(2004). Other discrete time risk models involving 
dividends include the discrete time model with a 
constant barrier of Claramunt, Marmol and Alegre 
(2003), in which the expected present value of divi-
dends is calculated based on a system of linear eq-
uations, and the model considered in Dickson and 
Waters (2004) that is used to tackle certain problems 
in the classical continuous time model. Also, prob-
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lems relating to dividends have been considered 
more extensively in the continuous time setting. 
Related works can be found in References. 

The paper is organized as follows. Section 1 defines 
the model of interest, describes various payments, 
including the premiums, claims and dividends, and 
lists the notation. In section 2 difference equations 
are developed for the expected present value of div-
idend payments. Then a method for calculating the 
expected present value of dividends is proposed, 
using the technique of generating functions. The 
dividends-penalty identity is derived in section 3. 
Moreover, in section 4, explicit expressions for the 
expected present value of dividends are obtained for 
two classes of claim size distributions. Numerical 
examples are also provided to illustrate the impact 
of the delays of the settlement of by-claims on the 
expected present value of dividends. 

1. The model 

We consider a discrete time compound binomial 
risk model with two types of individual claims: 
main claims and by-claims. Within each time period 
there will originate one main claim together with an 
associated by-claim under a certain probability. The 
settlement of the main claim is right at the end of 
the period. While the settlement time of the by-
claim is either the same as the main claim or one 
time period later. The factors causing the delay of 
the settlement are manifold, such as the length of 
legal procedures, the difficulty of assessing the ex-
act size of the claim and the possibility of sequel 
payments. Here, the main claim can also be inter-
preted as the total amount of payments that can be 
settled within the period, and the by-claim means 
the amount that may have to be delayed. In this pa-
per, a correlation is proposed between a main claim 
and its associated by-claim. 

Let Uk be the total amount of settled claims up to the 
end of the kth time period, k   

+ and U0 = 0. Then 
Uk is the total amount of main claims and by-claims 
settled in the first k time periods. 
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Let X1, X2,... and Y1, Y2,... denote the sizes of the 
main claims and by-claims, respectively, forming 
two independent and identically distributed (i.i.d.) 
sequences of random variables. When a main claim 
and a by-claim have the same subscript (say X1 and 
Y1), they are associated with each other and follow a 
joint p.f. f(m, n), m,n = 1, 2,.... Otherwise, they are 
mutually independent of each other, following the 
marginal p.f.’s fX(m),m = 1,2,... and fY(n), n = 1,2,..., 

respectively, with means x and Y. This is a weaker 
assumption about the relationship between main 
claims and by-claims than the one in Yuen and Guo 
(2001), Xiao and Guo (2007), where all Xi and Yj are 
assumed to be independent of each other. However, 
it can be seen that the dependence in this model only 
effects the distribution of the total claim and is, 
therefore, extremely weak, which enables the ana-
lytical calculations. 

The probability of originating claims, one main 
claim and one by-claim, in each time period is p, 0 < 
p < 1, and the probability of no claim is q = 1 – p. 

Each by-claim and its associated main claim will be 
settled simultaneously with probability 0    1, or 
the settlement of the by-claim will be delayed with 
probability 1 – . 

Assume that premiums are received at the begin-
ning of each time period with a constant premium 
rate of 1 per period, and all claim payments are 
made only at the end of each time period. We in-
troduce a dividend policy to the company that cer-
tain amount of dividends will be paid to the poli-
cyholder instantly, as long as the surplus of the 
company at time k is higher than a constant divi-
dend barrier b (b > 0). It implies that the dividend 
payments will only possibly occur at the beginning 
of each period, right after receiving the premium 
payment. The surplus at the end of the kth time 
period, Sk, is then defined to be, for k = 1, 2,..., 

Sk = u + k – Uk – Dk,           S0 = u.                (1) 

Here the initial surplus is u, u = 1, 2,..., b. The posi-

tive safety loading condition holds if p( X + Y) < 1. 
We define Dk as the sum of dividend payments in 
the first k periods, for k = 1, 2, ..., 

Dk = d1 + d2 + … + dk,         D0 = 0,              

where dn denotes the amount of dividend paid out in 
period n, for n = 1,2,..., with definition 

dn = max{Sn-1 + 1 – b, 0}.                                      (2) 

Define Tb = min{k : Sk < 0} to be the time of ruin 
and  (u; b) = P[Tb <  S0 = u] to be the ruin prob-
ability. Let  be a constant annual discount factor 

for each period. Then the expected present value of 
the dividend payments due until ruin is 

1
0

1

( ; ) : .
bT

k

k

k

V u b d S u  

2. The expected present value of dividends 

To study the expected present value of the divi-
dend payments, V(u; b), we consider the occur-
rences of claims for the surplus process Sk at the 
end of the first time period in three scenarios. In 
the first scenario, there is no claim, and the 
process is renewed at the beginning of the second 
time period. In the second scenario, both a main 
claim and its associated by-claim occur in the first 
period. Thus the surplus process is also renewed 
at the beginning of the next time period. The last 
scenario is simply the complement of the first 
two, i.e., there is a main claim, but its associated 
by-claim will occur one period later. Then condi-
tioning on the occurrences of claims at the end of 
the first time period, we can obtain the following 
result for V(u; b). 

Theorem 1. The expected present value of the divi-
dend payments before ruin satisfies the following 
difference equation: 

1

);1();1();(
unm

bnmuVpbuqVbuV

   (3) 

,),();0()1(),(
2

2

unm

nmfbVpqnmf  

u = 0,1…, b – 1, with boundary condition: 

( ; ) 1 ( 1; ).V b b V b b

                

                   (4) 

Proof. Since the first two scenarios defined above 
are quite straightforward, we will only consider the 
third one extensively, where the by-claim in the first 
time period, given there is one, will be delayed to 
the second period. For initial surplus 0 < u < b, it is 
not difficult to verify that when X1 + Y1  u + 1, the 
delay in the settlement of Y1 does not have any ef-
fects on V(u; b). If X1 + Y1 > u + 1, then there is 
only one possibility ensuring that the ruin will not 
be observed within the first two periods, which is X1 

+ Y1 = u + 2 and there are no other claims in the 
second period. Here the delay of the settlement of Y1 

together with the second premium income at the 
beginning of the second period saves the surplus 
process from being ruined and the surplus process is 
renewed at the beginning of period 3 with an initial 
surplus of 0. 

Then conditioning on the occurrences of claims at 
the end of the first time period, we have for V(u; b): 
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2

1 2
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u = 0,1…, b – 1, 

where I is an indicator function and event U2–U1 = Y1 

means there is only one claim Y1 in the second time 
period. The boundary condition (4) holds because 
when the initial surplus is b, the premium received 
at the beginning of the first period will be paid out 
as a dividend immediately. Except the first dividend 
payment, the rest of the model is the same as that 
starting from an initial surplus b – 1. 

To be able to calculate V(u; b) from (3), we define a 
new function W(u) that satisfies the following equa-
tion, for u = 0,1,..., 

1

2

2

( ) ( 1) ( 1 ) ( , )

(1 ) (0) ( , )

m n u

m n u

W u qW u p W u m n f m n

pq W f m n
  (5) 

with W(0) = 1. The values of W(u) for u  1 can be 
calculated recursively from equation (5). Then follow-
ing the theory of difference equations (see for exam-
ple, Elaydi, 2005), we know that the solution to (3) 
with boundary condition (4) is of the form 

( ; ) ( ) ( ),V u b C b W u                                               (6) 

where C(b) = 1/ ( ) ( 1) .W b W b
 

Remark. Result (6) is the discrete counterpart of V(u; 
b) for the classical model, which is of the form V(u; b) 
= h(u)/h'(b) for a certain function h (Gerber, 1979). 

Instead of the recursive calculation, the explcit ex-
pression for V(u; b) is of interest. For that purpose, 
we will derive the probability generating function 
for W(u). Let the generating function of W(u) be:  

)(
~

zW  : = 
0

( ) , 1u

u
W u z  < ( )z < 1.  

Similarly, 1 2 1 21 1
( ) : ( , ) m n

m n
f z z f m n z z is 

the generating function of {f(m,n)} , 1.m n  It is not 

difficult to verify that ( , )f z z  is actually the prob-

ability generating function (p.g.f.) of X1 + Y1. 

Furthermore, we construct a new generating func-

tion ( ) : ( , )h z q pf z z . Let h(i) be such that 

0
( ) ( )i

i
h z z h i  with h(i) being the probability 

function of the total claims in a single time periods 

in the ordinary compound binomial model with in-
dividual claim amount X1 + Y1, where the indepen-
dence of X1 and Y1 is not necessary. 

Using the technique of generating functions, multip-
lying both sides of (5) by z

u
 and summing over u 

from 0 to , we get 

0 0

0 1

2

0 2

( ) ( 1)

( 1 ) ( , )

(1 ) (0 ) ( , ) .

u u

u u

u

u m n u

u

u m n u

W u z q W u z

p W u m n f m n z

pq W f m n z

 

Rewriting both sides of the above equation in terms 

of )(
~

zW yields 

).,(
~

)0()1(

),(
~

)(
~

)]0()(
~

[)(
~

22

11

zzfzWpq

zzfzWpzWzWqzzW
 

From the fact that W(0) = 1, the above equation 
simplifies to 

.1),(
~

)1(

),(
~

1)(
~

11

1

zzzfpqz

zzzfpqzW
                (7) 

From (7) and the definition of )(
~

zh we obtain a final 

expression for )(
~

zW :

  

.
)(

~
1

1)1()(
~

)1(
)(

~
1

111

zzh

zqzzhqz
zW         (8) 

3. The dividends-penalty identity 

In this section, as in Gerber et al. (2006), we derive 
an identity for the expected present value of the 
dividend payment and the expected discounted pe-
nalty functions. 

First, define 
b
 to be the first time that the surplus Sk 

reaches the barrier b and for 0 <   1 define 

0( ; ) ( | ,b

b bL u b I T S u 0  u  b. 

L(u;b) can be interpreted as the expected present 
value of an arbitrary money unit payable at the 
time of the reaching barrier b from the initial sur-
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plus u  b. Alternatively, it can be viewed as the 
probability generating function of the time to reach 
barrier b without ruin occurring. Using the same 
arguments as in section 2, we can show that L(u; b) 
satisfies the following recursive formula: 

,1,...,1,0

),();0()1(

),();1(

);1();(

2

2

1

bu

nmfbLpq

nmfbnmuLp

buqLbuL

unm

unm
                 (9) 

with boundary condition L(b;b) = 1. The solution of 
equation (9) is the following: 

L(u;b) = A(b)W(u), 

where A(b) can be determined by the boundary con-
dition L(b; b) = 1 so that A(b) = 1/W(b). 

Let w(x, y), x, y = 0,1, 2,..., be a non-negative penal-
ty function. For 0 <  < 1, define  

 
1 0( ; ) , | |, ( ) | ,b

b b

T

T T bu b w S S I T S u

 0  u  b, to be expected discounted penalty function 
for the surplus before ruin and deficit at ruin. In par-
ticular, when  = 1,  (u; b) simplifies to the proba-
bility of ruin, (u; b), defined in section 1. For sim-
plicity, denote  ( ) = limb   (u; b) as the expected 
discounted penalty function and (u) = limb  (u; b) 
as the probability of ruin for the corresponding risk 
model without a dividend barrier. 

Using the same arguments as in Gerber et al. (2006), 
we have for 0 < u < b that 

)].();()[;()();( bbbbuLubu                (10) 

The formula (10) can be obtained by considering 
a particular sample path of the surplus starting at 
u < b: the probability generating function of the 
time of ruin with and without a dividend barrier 
can be different only if the surplus reaches the 
barrier b before ruin. Furthermore, we have (b;b) 
= (b – 1;b), since when the process starts with u 

= b – 1, premium of one money unit is received 
immediately so the surplus will stay at b until a 
claim occurs and, therefore, Tb-1 and Tb have the 
same distribution. 

Setting u = b – 1 in (10) and using the fact of (b; b) 
= (b – 1; b), we have  

1
( ; ) ( 1) .

1 ( 1; )
b b b b b

L b b

 Then,  

)].()1()[;()(

)]()1([
)1()(

)(
)(

)]()1([
)(/)1(1

)(/)(
)(

)]()1([
);1(1

);(
)();(

bbbuVu

bb
bWbW

uW
u

bb
bWbW

bWuW
u

bb
bbL

buL
ubu

        (11) 

In particular, when  = 1, the dividends-penalty 
identity simplifies to  

; ; 1 .u b u V u b b b     (12)

 
The identity (12) can be used to confirm that ruin is 
certain for our risk model under a barrier dividend 
strategy as follows. Following the same procedure 
as in section 2, we can show that ( ) = 1  (u) is 
a particular solution of the difference equation (5) 
with  = 1. Then 1 – (u) = W( ) (0) and therefore 
equation (12) simplifies to 

.1)0()()0()(1

)0(]1()0()([
)1()(

)(

)0()(1);(

uWuW

bWbW
bWbW

uW

uWbu

 

4. Two classes of claim size distributions 

In this section, we consider two special cases for the 
distribution of X1 + Y1 such that W(u) has a rational 
generating function which can be easily inverted. 
One case is that the probability function of X1 + Y1 

has finite support such that its p.g.f. is a polynomial, 
and the other case is that X1 + Y1 has a discrete Kn 

distribution, i.e., the p.g.f. of X1 + Y1 is a ratio of two 
polynomials with certain conditions. 

4.1. Claim amount distributions with finite sup-

port. Now assume that the distribution of X1 + Y1 

has finite support, e.g., for N = 2, 3,..., 

1 1 ,
x

X Y x

     

x = 2,3…, N. 

Then 
2

( ) : ,
N

x

N x

x

D z h z q p z              (13)

 -1  (z)  1, is a polynomial of degree N. Then 
W(z) in (8) simplifies to 

2 2 2 2 2

2

1 2

1 1 1
1

11
1 ,

N

N N

N N

q D z q qz q q z
zW z q

z D z D z z

q q z
q

p z R z R z R
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where R1, R2,..., RN are the N roots of the equation of 
DN(z) – z = 0 in the whole complex plane. Further, 

if R1,R2,... ,RN are distinct, then by partial fractions, 
we have 

1

1
1 ,

N
i

iN i

a
zW z q

p R z

 
where 

2

1,

1
,i

i N

j j i i j

q R q
a

R R
i = 1, 2, …, N.

 

Setting z = 0 gives 
1

1 .
N

i
N

i i

a
p q

R

 
Inverting the p.g.f. )(

~
zW yields 

2

1

,
N

ui
i

i N

a
W u R

p      

u = 0,1,…. (14) 

Now ( ; ) ( ) ( ),V u b C b W u for u = 0,1,..., b – 1, and 

as V(b; b) = 1 + V(b  1; b), then 

.,...,1,0

,
)1()1()(

)(
);(

1

)2(

1

)2(
i

bu

RRa

Ra

bWbW

uW
buV

N

i

b
iii

N

i

u
i

   (15) 

Example 1. In this example, we assume f(1,1) = 1. 

Then Sk  Sk 1 can only take four possible values: 1, 
0, -1 or -2. This generalizes de Finetti’s original 
model where periodic gains are +1 or -1. The p.g.f. 
of W(u) in (8), has a simplified expression  

2

1 1
.

q p z
W z

pz z q
                      (16) 

Let 0 < R1 < 1 < R2 be the solutions of the equation 
2 0.pz z q Then by partial fractions, (16) can be 

rewritten as

   
1 2

1 2

1
1 ,

a a
zW z q

p R z R z
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2

1
1

2 1

1
,

q R q
a
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2
2

2

1 2

1
.

q R q
a

R R
 

Substituting them into (15) gives, for u = 0,1,..., b, 

.
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The last equality holds because of the properties of 

roots R1 and R2 giving 1 2

1 2

.
R R

R R
Two extreme cases of 

equation (17) are 

1( 1)
1 2

( 1) ( 1)
1 1 2 2

( ; )
1 1

uu

b b

R R
V u b

R R R R   for  = 1,
 

and 
2( 2)

1 2
( 2) ( 2)

1 1 2 2

( ; )
1 1

uu

b b

R R
V u b

R R R R
  for  = 0. 

Another value of interest in Example 1 is the optim-
al dividend barrier b*, which is the optimal value of 
b that maximizes V(u; b) for a given u. From (17) 
we know that b* is the solution of equation 

( 1 )
1 1 2 1

( 1 )
2 2 1 2

1
0 ,

1

b

b

R R R Rd

d b R R R R
 

since  

( 1 )
1 1 2 1

2 ( 1 )
2 2 1 2

1

1

b

b

R R R Rd

d b R R R R  

   

for all b  . Thus we have 

2 1 2 2

1 2 1 1

2 1

1 ln
ln

1 ln
1,

ln ln

R R R R

R R R R
b

R R
 

which does not depend on the initial surplus u. Prac-
tically, we round b* to the closest integral value. 
Furthermore, we can prove the following result. 

Proposition 1. For the risk model considered in 
Example 1, the expected present value of the divi-
dend payments up to the time of ruin, V(u; b), in-
creases as the probability of a delay of the by-claims 
is increasing as well. 

Proof. The proposition can be proved by the fol-
lowing fact: 

,0
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since 0  R1  1  R2 

In Example 1, let p = 0.45,  = 0.95, b = 9, then we 
have R1 = 0.78786, R2 = 1.55132. Table 1 summaries 
the results for V(u;b) for  = 0, 0.25, 0.5, 0.75, 1, and 
 

u = 0,1,...,9. The numbers show that the higher the 
initial surplus of the insurance company, the higher the 
expected present value of dividend payments prior to 
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the time of ruin. They also confirm Proposition 1 that 
V(u; b) is increasing as the probability of the delay of 
by-claims is increasing, i.e.,  is decreasing. Moreover, 
the impact of the delay of by-claims on V(u; b) is get-
ting smaller as u increases. 

Table 1. Values of V(u; 9) when f(1; 1) = 1 

 = 0 0.25 0.5 0.75 1

 = 0 0.40851 0.36231 0.32549 0.29547 0.27052

1 0.60719 0.57724 0.55338 0.53392 0.51775

2 0.82786 0.80834 0.79279 0.78011 0.76957

3 1.08763 1.07477 1.06453 1.05618 1.04924

4 1.40424 1.39561 1.38874 1.38313 1.37847

5 1.79767 1.79167 1.78689 1.78300 1.77976

6 2.29159 2.28717 2.28365 2.28078 2.27839

7 2.91499 2.91144 2.90862 2.90631 2.90439

8 3.70400 3.70082 3.69829 3.69623 3.69451

9 4.70400 4.70082 4.69829 4.69623 4.69451

With fixed  = 0.5, we get the optimal dividend 
barrier b*  1. In Table 2, the expected present val-
ues of dividend payments V(u; b) for u = 0,1 and b = 
0,1,..., 9 are provided. The values confirm the fact 
that when b = 1, the policyholders receive the most 
dividends prior to ruin. 

Table 2. Values of V(u; b) when  = 0.5 

 b = 0 1 2 3 4

u = 0 

u = 1 

1.35364 

-

1.42832 

2.42832 

1.35958 

2.31146 

1.19780 

2.03640 

1.00398 

1.70688 

 b = 5 6 7 8 9

u = 0 

u= 1 

0.81751 

1.38987 

0.65524 

1.11399 

0.52082 

0.88546 

0.41219 

0.70077 

0.32549

0.55338

4.2. Kn claim amount distributions. Li (2005a, 
2005b) studied a class of discrete Sparre Andersen 
risk models in which the claims inter-arrival times 
are Kn distributed. This class of distributions in-
cludes geometric, negative binomial, discrete phase-
type, as well as linear combinations (including mix-
tures) of these.

In this subsection, we assume that P(X1 + Y1 = x) is 
Kn distributed for x = 2, 3,..., and n = 1,2,..., i.e., the 
p.g.f. of X1 + Y1 is given by 
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is a polynomial of degree n – 1 or less 

with En-1(1) = 1
1 .

n
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transformed to the following rational function 
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Since the denominator of the above equation is a poly-
nomial of degree n + 1, it can be factored as 
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where R1, R2,..., Rn+1 are the n + 1 zeros of the denomi-
nator. We remark that 
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Then W (z) simplifies to 
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Inverting )(
~

zW  gives  
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u = 1,2,…. 

Not that C(b) = 1/[W(b) – W(b – 1)], then finally we 
have 
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and for u = 1,2,…,b, 
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Example 2. In this example, we assume that the 
random variable X1 + Y1 follows a mixture of two 
geometric distributions, with a p.g.f. 
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where 0  ,   ,  = a(  – ) +  (1 – ), and 0  

a  1. Here n = 2, q1 = , q2 = , and En-1(z) = (1 – 

)(1 – ) + (1 – z). Let R1, R2, R3 be the three roots 
of the equation  
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Then inverting the Laplace transform gives 

3
( 1)

1 2 3
1

( ) ,u

i i

i

W u R R R rR  u = 0,1,2…,          (20) 

where  

3

1,

1 1 1 1 1 1
.

i i i i

i

j ij j i

R R pq R R
r

R R

 

Then (18) and (19) simplify to  
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As an example, let p = 0.35,  = 0.95, b = 9,  = 
0.8,  = 0.6, a = 0.4. From the above results we 
get  = 0.24, R1 = 0.72505, R2 = 1.05964, and R3 

= 1.43574. The values of V(u; 9) for  = 0, 0.25, 
0.5, 0.75, 1, and u = 0,1,..., 9 are listed in Table 3. 
We observe the same features as in Example 1, 
that V(u;b) is an increasing function with respect 
to u, and a decreasing function over . Also, the 
impact of the delay of by-claims on the expected 
present value of dividends is reduced for higher 
initial surplus of the company. 

Table 3. Values of V(u; 9) for geometric 
distributed claims 

= 0 0.25 0.5 0.75 1

u = 0 0.14656 0.14274 0.13911 0.13566 0.13237

1 0.22721 0.22375 0.22046 0.21734 0.21437

2 0.33612 0.33294 0.32993 0.32707 0.32435

3 0.48439 0.48145 0.47867 0.47602 0.47349

4 0.68728 0.68453 0.68192 0.67944 0.67709

5 0.96571 0.96311 0.96065 0.95831 0.95608

6 1.34851 1.34603 1.34368 1.34145 1.33932

7 1.87538 1.87299 1.87072 1.86856 1.86651

8 2.60108 2.59873 2.59650 2.59438 2.59237

9 3.60108 3.59873 3.59650 3.59438 3.59237

Conclusion 

This paper considered the compound binomial model 
with a constant dividend barrier. Further, two types of 
individual claims are defined, where one main claim 
is dependent with its associated by-claim and the 
settlement of the by-claim may be delayed for one 
time period. Both theoretical and numerical results 
are obtained for the expected present value of total 
dividends up to the time of ruin. In particular, from 
the two numerical examples given above we can see 
that the possible delay for the settlement of by-claims 
has a positive effect on increasing the total expected 
present value of dividends. With a fixed initial sur-
plus, the higher the probability of delay, the more the 
total dividends increase. However, this positive effect 
is reducing when the initial surplus increases. 
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