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The tenacious prevalence of human pancreatic diseases such as diabetes mellitus
and adenocarcinoma has prompted huge research interest in better understanding of
pancreatic organogenesis. The plethora of signaling pathways involved in pancreas
development is activated in a highly coordinated manner to assure unmitigated
development and morphogenesis in vertebrates. Therefore, a complex mesenchymal–
epithelial signaling network has been implicated to play a pivotal role in organogenesis
through its interactions with other germ layers, specifically the endoderm. The Fibroblast
Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand
Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme,
respectively, and therefore are well positioned to transmit mesenchymal to epithelial
signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by
activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number
of studies using genetically engineered mouse models have demonstrated an essential
role of FGF10 in the development of many organs and tissues including the pancreas.
During mouse embryonic development, FGF10 signaling is crucial for epithelial cell
proliferation, maintenance of progenitor cell fate and branching morphogenesis in the
pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression
of FGFR2b is associated with metastatic invasion. A thorough understanding of
FGF10 signaling machinery and its crosstalk with other pathways in development and
pathological states may provide novel opportunities for pancreatic cancer targeted
therapy and regenerative medicine.

Keywords: FGF10, FGFR2b, SOX9, pancreas development, pancreatic adenocarcinoma, mesenchyme, epithelium

INTRODUCTION

The Fibroblast Growth Factor (FGF) family of peptides and the corresponding family of receptor
tyrosine kinases (RTKs) collectively constitute one of the most adaptable, complex, and diverse
growth factor signaling systems that are involved in many developmental and repair processes in
virtually all vertebrate and invertebrate tissues and cells (Goetz and Mohammadi, 2013). Currently,
the mammalian FGF nomenclature encompasses FGF1 to FGF23, comprising of secreted signaling
proteins that transduce signals via their specific FGF receptors (FGFRs), and intracellular FGFs that
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serve as cofactors for voltage-gated sodium channels. These
ligands are divided and grouped into seven subfamilies based on
phylogenetic analysis, sequence similarities, and function (Goetz
et al., 2009; Ornitz and Itoh, 2015).

FGFR family of RTKs comprises of FGFR1, FGFR2, FGFR3,
and FGFR4. As the name suggests, FGFRs bind to members of
secreted FGFs along with the sequential formation of complexes
with heparin/heparan sulfate (HS) cofactor-proteoglycans to
propagate downstream signal transduction pathways, which
include activation of PLCγ, MAPK, AKT, and STAT cascades. At
the cellular level, paracrine FGF-FGFR-HS signaling engages in
vital roles in regulating cell proliferation, migration, survival, and
differentiation during the development of the embryo (Kato and
Sekine, 1999; Ornitz and Itoh, 2015).

FGF10, a FGF7 subfamily member, is a typical paracrine
FGF and chiefly mediates its biological responses by activating
FGFR2b. FGF10 is a potent morphogen and plays a crucial role
in transmitting mesenchyme signaling to the epithelium. Genetic
ablation of FGF10 in mice results in gross developmental defects
characterized by agenesis and dysgenesis in a variety of organs
and tissues highlighting an essential role of FGF10 signaling
for the development of multiple organs including the pancreas
(Bellusci et al., 1997; Bhushan et al., 2001; Itoh and Ohta, 2014).
Although not as widely explored as in the development field,
there is strong evidence suggesting that FGF10 is also involved
in the pancreatic carcinogenesis (Nomura et al., 2008). Herein,
we summarize the recent information about the involvement of
FGF10 in pancreas development and diseases with a focus on
pancreatic cancer.

FGF10 SIGNALING MACHINERY

Alternative splicing of the extracellular IgIII loop of FGFR1-3
generates IIIb- and IIIc-variants of the receptors. Tissue- and
cell-specific expression of these isoforms and modification in
binding properties for the FGF ligands confer signaling specificity
and functional diversity in regulating interactions in embryonic
development, tissue homeostasis, repair, and cancer (Itoh and
Ohta, 2014). FGFR2 generates two isoforms via alternative
splicing, FGFR2b, predominantly expressed in epithelial cells
and FGFR2c, chiefly expressed in mesenchymal cells. A distinct
feature of the FGF7 subfamily is the preferential binding to their
cognate receptor FGFR2b in a HS dependent manner in contrast
to most other FGFs predominantly interacting with FGFR2c
(Givol and Yayon, 1992; Orr-Urtreger et al., 1993; Lindahl et al.,
1998; Holzmann et al., 2012).

Formation of the FGF10-FGFR2b-HS (2:2:2) ternary complex
results in the phosphorylation of intracellular tyrosine residues
in FGFRs (Figure 1A). Phosphorylated FGFRs activate FGFR
substrate 2α(FRS2α) and phospholipase Cγ (PLCγ1), which
mediate cell motility (Zhang et al., 2006; Itoh and Ohta, 2014).
FRS2α, in turn, facilitates the activation of RAS-MAPK or
PI3K-AKT and PLCγ activates protein kinase C. The RAS-
MAPK and PI3K-AKT pathways are predominantly involved
in mitogenic cell responses or cell survival and are subjected
to negative regulation by SPRY1 and SPRY2 (Tefft et al.,

2002; Zhang et al., 2006). These signaling cascades mediate a
diverse range of biological outcomes that define FGF10/FGFR2b
dependent signaling (Figure1A). The spatiotemporal expression
and activity of FGFs and FGFR isoforms is additionally enhanced
by the diversity of HS structures, which are also involved
in developmental processes, insinuating that tissue-specific HS
regulates FGF signaling (Lindahl et al., 1998; Makarenkova et al.,
2009).

Interestingly, although FGF7 and FGF10 share a common
receptor, expression in mesenchyme and the ability to promote
proliferation of embryonic pancreatic epithelial cells in vitro (Ye
et al., 2005), the phenotypes of their knockout mice are drastically
different in that FGF7 null mice are born with no obvious
abnormalities (Guo et al., 1996), whereas FGF10 knockout mice
die at birth with major defects in multiple organs such as lung
agenesis and pancreas dysgenesis (Min et al., 1998; Sekine et al.,
1999; Ohuchi et al., 2000; Itoh and Ornitz, 2011). Based on a
sophisticated quantitative proteomics approach, Francavilla et al.
(2013) uncovered a fascinating ligand-dependent mechanism for
the control of FGFR2b turnover and signaling outputs. FGF7
stimulation leads to FGFR2b degradation and, ultimately, cell
proliferation, whereas FGF10 triggers additional phosphorylation
on Y734 of FGFR2b leading to its recruitment of PI3K and
SH3BP4 to promote receptor recycling and sustained signaling.

Zinkle and Mohammadi recently proposed a threshold
model for RTK signaling specificity and cell fate determination
(Makarenkova et al., 2009; Francavilla et al., 2013; Zinkle
and Mohammadi, 2018). It is suggested that the intensity
and duration of signaling via FGFR2b is dependent on the
phosphorylation of Y734 within the kinase domain. Higher
affinity of FGF10 for binding both FGFR2b and the co-
receptor HS (Makarenkova et al., 2009) generates a more robust
interaction than FGF7-FGFR2b dimers, therefore propagates
more sustained MAPK signal that leads to cell proliferation and
migration whilst FGF7 propagates a transient MAPK signal that
leads to cell proliferation. It is conceivable that the difference in
ligand-induced dimer stability distinguishes FGF7 from FGF10
on the choice and durability of intracellular pathways, which may
well contribute to their functional discrepancies on branching
morphogenesis during embryonic development.

FGF10 IN PANCREAS DEVELOPMENT

The pancreas is an endoderm-derived glandular organ that
partakes in the regulation of glucose homeostasis and nutrient
uptake through the concerted functions of its endocrine and
exocrine compartments, respectively (Edlund, 1999; Shih et al.,
2013). Early mouse pancreas development has two characteristic
periods: a primary transition (E9.5–12.5) that is characterized
by rapid cell proliferation and histogenesis and a secondary
transition (E12,5-birth) after rotation of the gut at E12.5 that
is chiefly characterized by cytodifferentiation and formation of
the significant intracellular organelles of the adult pancreatic cell
(Pictet et al., 1972; Jorgensen et al., 2007; Benitez et al., 2012).

The mesenchyme is critical for the growth of all pancreatic
lineages (Landsman et al., 2011). Reports indicate that FGF
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FIGURE 1 | FGF10 signaling and its key crosstalk during pancreas development. (A) FGF10 is a high affinity ligand for FGFR2b. FGF10 interacts with FGFR2b with
HS as cofactor and induces activation of the RAS-MAPK, PI3K-AKT, and PLCγ pathways, which mediate cell differentiation, proliferation, and motility. SPRYs are
negative regulators of the RAS-MAPK and PI3K-AKT pathways. (B) FGF10 mediates mesenchyme to epithelial signaling through crosstalk with several key
developmental pathways including WNT factors, BMP and SHH, which are important in pancreatic cell fate specification and branching morphogenesis. BMP
signaling is required for the normal development of the mesenchyme as well as the epithelium. (C) FGF10 has a crucial role in epithelial branching morphogenesis
through crosstalk with several key TFs and regulators for pancreas development. The FGF10/FGFR2b/SOX9 regulatory loop promotes proliferation and maintains
pancreatic fate in pancreatic progenitors.

signaling derived from the surrounding mesenchymal tissue is
pivotal for the genesis of specific cellular domains (Hart et al.,
2003; Zhou et al., 2007). FGF10, as a mesenchymal factor, has an
indispensable role in ensuring the development of the pancreatic
epithelium, which gives rise to the functional endocrine and
exocrine cell types (Bhushan et al., 2001; Elghazi et al., 2002;
Hart et al., 2003; Norgaard et al., 2003). To ascertain the
role of FGF10 in pancreas development, Bhushan et al. (2001)
demonstrated that FGF10 expressed from E9.5 until E11.5 in
mice is vital for pancreas growth and differentiation of Pdx1 +
epithelial precursor cells. The absence of this mesenchymal
protein led to pancreatic hypoplasia (Bhushan et al., 2001).
Furthermore, the pancreata of Fgfr2b−/− mutant mice were
smaller than the wild type littermates with pancreatic duct cell
proliferation notably reduced (Miralles et al., 1999; Pulkkinen
et al., 2003). FGF10 signaling predominantly targets the adjacent
tissue due to its paracrine nature, hence in Fgf10 null mutant
mice, the pancreatic progenitor cells are diminished even before
the onset of secondary transition. The few exocrine cells
present do undergo differentiation and form acinar structures
(Bhushan et al., 2001). Mice deficient in FGFR2b exhibit
mild phenotypes comparable to the FGF10 null mice with
differentiation of both pancreas compartments and consequent
reduction of organ size (Miralles et al., 1999; Pulkkinen et al.,
2003).

While many literature sources substantiate the role of FGF10
in epithelial development, the expression levels of the protein
decrease to almost unperceivable levels at E13.5 in mice (Bhushan
et al., 2001; Elghazi et al., 2002; Kobberup et al., 2010). Explant
studies in mice involving pharmacological inhibition of FGF
signaling proved that FGF10 is dispensable at later stages of
gestation, implying that different epithelial cell types not only
depend on FGF10 signals but also on other (same or distinct)
mesenchymal factors (Greggio et al., 2013). Possibly, FGF10′s
primary role is vital for the initial stage of progenitor growth, then

might work in concert with other mesenchymal derived factors or
signaling pathways.

FGF10 CROSSTALK WITH OTHER
SIGNALING PATHWAYS

The mesenchyme is a source of cell-extrinsic signals that
promotes pancreatic specification, yet limits differentiation, so
as to allow expansion of the pancreatic epithelium. Besides
FGFs, other mesenchymal signals that promote growth of the
pancreatic epithelium include WNT factors (Jonckheere et al.,
2008), Retinoic Acid (RA) (Stafford et al., 2006), BMP (Ahnfelt-
Ronne et al., 2010), and the TGF-β pathway (Crisera et al., 2000;
Figure 1B).

FGFs and WNT factors are known to act in synergy to
promote proliferation in a variety of developmental systems
(ten Berge et al., 2008; Afelik et al., 2015). Canonical WNT
signaling is a mediator of epithelial to mesenchymal signaling,
several WNT ligands plus frizzled (FRZ) receptors (e.g., WNT2b,
WNT7b, and FRZ2-9) are expressed by both the mesenchyme
and pancreatic epithelial cells during organogenesis (Heller et al.,
2002; Afelik et al., 2015). Comparable phenotypes are observed
between Pdx1/Frz8CRD (dominant-negative frizzled 8 receptor)
and Pdx1/Fgf10 null neonates revealing pancreatic hypoplasia,
as early as E14, further implying a role for both signaling
pathways in pancreatic growth (Papadopoulou and Edlund, 2005;
Jonckheere et al., 2008).

RA signaling is also an indispensable mediator of
mesenchymal function. In the lung, mesenchyme RA signaling
has been implicated in the induction of FGF10 (Desai et al.,
2004). Furthermore, absence of RA signaling leads to pancreatic
hypoplasia (severe in the dorsal pancreas) (Martin et al., 2005).
In an effort to produce functional β cells from endoderm derived
human embryonic stem (hES) cells, Mfopou et al. (2010) exposed
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these hES cells to noggin and RA, followed by FGF10 during
early stage of induction, and successfully generated pancreatic
cells, the majority of them are Pdx1 + that coexpressed FOXA2,
HNF6, and SOX9.

Unmitigated differentiation of the mesenchyme, which further
ensures proper epithelial development, is reliant on many
signaling molecules except members of the Hedgehog family
from the early pancreatic niche (Kawahira et al., 2005). Ectopic
expression of Sonic Hedgehog (SHH) in mice driven by the Pdx1
promoter results in differentiation of the pancreatic mesenchyme
into smooth muscle and the epithelium assumes an intestinal fate
with the generation of few early endocrine cell types (Apelqvist
et al., 1997). SHH is also implicated in repressing expression of
Fgf10 (Figure 1B; Bhushan et al., 2001).

TRANSCRIPTION FACTORS
IMPLICATED IN FGF10 SIGNALING

Genetic lineage tracing experiments have elucidated that cell
clusters committed to adopting the pancreatic lineage express
the transcription factor (TF) PDX1 (Pancreatic and duodenal
homeobox 1) and PTF1a (Pancreas transcription factor 1).
Ablation of either Pdx1 or Ptf1a causes pancreatic agenesis or
diabetes and wide gastro-duodenal deformations (Offield et al.,
1996; Stoffers et al., 1997; Kawaguchi et al., 2002; Burlison et al.,
2008; Fukuda et al., 2008).

After the establishment of the pancreatic anlage, a gene
regulatory network is established with Pdx1 at the focal apex
in order to maintain pancreatic identity (Shih et al., 2015).
PDX1 exhibits an extensive cross-regulation network between
individual TFs and FGFs such as FGF10; however, sustentation
of the pancreatic lineage requires high levels of PDX1 (Shih et al.,
2015). Augmentation of PDX1 expression levels is supplemented
by PTF1a, which binds to enhancer elements of PDX1 (Wiebe
et al., 2007), whilst FGF10 is required to maintain the PDX1 +
expressing progenitor cell pool (Figure 1C; Bhushan et al.,
2001).

Genetic lineage tracing has shown that multipotent progenitor
cells (MPCs) can be similarly defined by several TFs such as
SOX9, HNF6, NKX2.2, HNF1β, HES1, CAP1, and NKX6.1. At
this juncture, MPCs not only have the potential to self-renew, but
also can differentiate to form exocrine and endocrine progenitors
with PDX1 functioning as the central node (Zhou et al., 2007; Pan
and Wright, 2011; Seymour, 2014).

The SOX9 interacts with the FGF signaling pathway in concert
with PDX1 to maintain both expansion (in a dosage-dependent
manner) and organ identity of MPCs (Shih et al., 2013). SOX9
and PDX1 co-regulate the pancreatic versus intestinal lineage
choice, ablation of both genes causes MPCs to embrace an
alternative hepatic fate (Seymour et al., 2012; Shih et al., 2015).
In mice, SOX9, FGFR2b, and FGF10 form a feed-forward
expression loop; SOX9 cell-autonomously maintains FGFR2b
expression, which in turn, augments its epithelial receptivity to
FGF10, whilst FGF10 maintains SOX9 expression (Figure 1C).
Hence nullification of any component in this loop leads to
pancreatic hypoplasia and loss of both SOX9 plus FGFR2b

in FGF10-deficient MPCs leads to hepatic reprogramming
(Seymour et al., 2012).

FGF10 MEDIATES PANCREATIC CELL
FATE

Spatial and temporal regulation of gene function is vital in the
modeling of specialized cell types from a field of competent
cells. FGF10 is known to maintain progenitor cells in an
undifferentiated state to allow subsequent proliferation, ectopic
expression results in a hyperplastic pancreas. Nascent emergent
patterns of budding cells are additionally controlled by conserved
developmental pathways such as the NOTCH signaling via
lateral inhibition/specification in order to integrate terminal
differentiation in FGF10 signaling. FGF10-positive progenitor
cells express NOTCH1 and NOTCH2, the NOTCH-ligand genes
JAG1 and JAG2, as well as the NOTCH target gene HES1
(Murtaugh et al., 2003; Norgaard et al., 2003; Miralles et al.,
2006).

During the primary transition, NOTCH and FGF10 signaling
are predominantly involved in restricting premature endocrine
differentiation and maintenance of the progenitor state. Ablation
of Notch target genes such as Dll1 (Hrabe de Angelis et al.,
1997), Rbp-jk (Fujikura et al., 2006), or Hes1 (Jensen et al.,
2000) results in an increase of NGN3 + cells, leading to
premature differentiation of the MPCs into glucagon +-cells
(Apelqvist et al., 1999) and p57-expressing progenitor cells, which
undergo premature cell cycle exit evident with the expression
of a hypoplastic pancreas (Georgia et al., 2006). This phenotype
is comparable to Fgf10 and Sox9 null mutant mice. HES1 is
known to repress both the transcriptional activation of Ngn3
and the cyclin kinase inhibitor P57 (Figure 1C; Georgia et al.,
2006).

SOX9 is a positive regulator of NGN3 in a dosage-dependent
manner, and is expressed chiefly in trunk progenitor cells and
its depletion results in the reduction of NGN3 + cells. This
suggests that there may exist a complicated but well-organized
regulatory system involving FGF10, FGFR2b, NOTCH, HES1,
SOX9, and NGN3 that controls endocrine differentiation and
maintenance of progenitor cells (Miralles et al., 2006; Kobberup
et al., 2010; Gouzi et al., 2011; Afelik and Jensen, 2013; Shih
et al., 2015). It can be postulated that both FGF10 and NOTCH
signaling pathways are critical for the establishment of two cell
lineages:

(i) NGN3 + cells that form the early α-cells.
(ii) NGN3 + that will remain proliferative and available to

differentiate to other endocrine cell types (Apelqvist et al.,
1999; Jensen et al., 2000; Miralles et al., 2006; Kobberup
et al., 2010; Afelik and Jensen, 2013).

Ectopic expression of Fgf10 from E10.5 to E13.5 leads to nearly
complete loss of endocrine and ductal differentiation (Kobberup
et al., 2010). This, in turn, favors the exocrine lineage because
of the lack of competence to form the endocrine cell lineage.
Furthermore, exocrine (acinar) differentiation has been observed
to occur in FGF10 null mutant mice implying that FGF10
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does not entirely control exocrine differentiation but rather it
is permissive toward exocrine lineage fate (Miralles et al., 1999;
Bhushan et al., 2001; Kobberup et al., 2010). This is observed with
sustained expression of PTF1A in both Fgf10−/− mutant and
wild type mice though reports have indicated that downstream
effectors of FGF10, such as Etv4 and Etv5, influence expression
of PTF1A (Figure 1C; Dong et al., 2007; Kobberup et al., 2007,
2010).

Cellular proliferation and differentiation are mutually
exclusive events; hence overexpression of FGF10 beyond the
primary transition perturbs differentiation of endocrine and
ductal cell types. At this stage, progenitor cells typically co-
express PDX1, NKX6.1, and PTF1A, failure of endocrine cell
formation leads to diabetes in mice (Hart et al., 2003; Petri
et al., 2006; Kobberup et al., 2010). FGF10 signaling via FGFR2b
is at the expense of endocrine cellular differentiation (Celli
et al., 1998; Miralles et al., 1999; Pulkkinen et al., 2003). By
understanding the exact timing of the competence window
toward endocrine fate, FGF10 could be best exploited in cell-
based therapeutic strategies to combat diabetes (Madsen and
Serup, 2006).

FGF10 -FGFR2B IN PANCREATIC
DUCTAL ADENOCARCINOMA

Pancreatic ductal adenocarcinoma (PDAC) is the most common
exocrine malignancy and represents one of the deadliest
diseases with high mortality due to difficulties in its early
diagnosis, metastasis and intrinsic resistance to conventional
chemoradiotherapy. At a molecular level, cancer cells in PDAC
are often characterized by mutations in the KRAS oncogene,
SMAD4, and TP53. Several FGFs and FGFRs are expressed
in stromal cells scattered around pancreatic cancer cells and
their expression levels have been linked to increased cancer
motility, proliferation and metastatic invasion (Kalluri and
Zeisberg, 2006; Ying et al., 2016). FGF7 and 10 are both
expressed in stromal cells surrounding cancer cells. Regardless
of the high homology the latter induces cell migration and
invasion whilst the former stimulates cell proliferation. FGF10-
FGFR2b signaling induces the expression of type1-matrix
metalloproteinase and TGF-β1 genes (Nomura et al., 2008),
these genes are related to cell motility (Friess et al., 1993; Seiki,
2003). Moreover, FGF10-FGFR2b signaling induced the secretion
of TGF-β1, a crucial regulator of epithelial to mesenchymal
transition (Figure 2; Moustakas and Heldin, 2007; Nomura et al.,
2008).

A hallmark genetic alteration of PDAC is the high frequency
mutation of KRAS. Numerous studies demonstrate that
oncogenic KRAS mutations induce Acinar-to-ductal metaplasia
(ADM), pancreatic intraepithelial neoplasia (PanIN), and
eventually PDAC. Significantly, SOX9 is imperative for
KRASG12D-mediated ADM and PanIN formation (Kopp
et al., 2012). A more recent study demonstrated that KRAS can
independently induce SOX9 expression and promoted its nuclear
translocation and transcriptional activity, which plays a positive
role in the proliferation of PDAC cells (Zhou et al., 2018).

FIGURE 2 | Crosstalk of FGF10 during pancreatic cancer. Interactions of
FGF10 with TGF-β pathway promote EMT and cancer cell invasion. The
positive feedback loops between FGF10-SOX9, KRAS/NF-κB-SOX9, and
ERBB-SOX9, respectively, are enhanced under inflammatory condition, which
contributes to PDAC initiation and progression.

Our recent studies further showed that SOX9 could be induced
by NFATC1 and NFATC4 in response to EGFR activation and
pancreatitis, which promote ADM and PanIN (Chen et al.,
2015; Hessmann et al., 2016). In a separate study, SOX9 is
reported to stimulate expression of several members of the
ERBB pathway, and is required for ERBB signaling activity
to promote pancreatic tumorigenesis (Grimont et al., 2015).
These studies further consolidate SOX9 as a central player in
pancreatic adenocarcinoma via promoting ADM, particularly in
the context of oncogenic KRAS and pancreatitis to accelerate
development of premalignant lesions and PDAC (Figure 2).
Therefore, three positive feedback loops have emerged from these
studies (Figure 2): (1) FGF10/FGFR2/SOX9 inter-dependent
expression is also present in a subset of PDAC patients (Seymour
et al., 2012; O’Sullivan et al., 2017); (2) EGFR, via activation
of NFATC1 and NFATC4, promotes SOX9 expression, whereas
activated SOX9 stimulates ERBB2 protein expression (Chen et al.,
2015; Grimont et al., 2015; Hessmann et al., 2016); (3) Oncogenic
KRAS via TAK1/NF-κβ promotes SOX9 expression/activation,
and SOX9 in turn enhances NF-κβ activity (Zhou et al., 2018).
These findings open new perspectives for precision therapeutic
strategies targeting specific cancer-driven signaling molecules
such as ERBB2 or FGFR2.

CONCLUSION AND PERSPECTIVE

Animal models lacking each of the secreted FGFs have
been developed with diverse phenotypes ranging from mild
abnormality in adult physiology to early embryonic lethality.
Only three FGFs (FGF9, FGF10, and FGF18) upon knockout
result in early postnatal lethality due to severe developmental
defects in multiple organs. While Fgf9 and Fgf18 are essential for
the development of mesenchymal components, numerous studies
highlight FGF10 as an indispensable mesenchyme to epithelium
signal required for the development of epithelial components
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in multiple organs. Despite the interesting observations from
previous reports, research on FGF10/FGFR2b in the pancreas is
lagging behind compared to some other organs such as the lung.
There remain some critical questions unanswered regarding how
FGF/FGFR2b signaling influence acinar and ductal specification
(e.g., further proliferation and differentiation from the progenitor
cells), as well as its impact on the endocrine system remain
largely unexplored. More elegant and specifically targeted genetic
models allowing better spatiotemporal manipulation of gene
expression will be essential to better address these questions.
During both embryonic development and oncogenic process,
FGF10 acquires the ability for unique crosstalk with other
pathways as exemplified by its inter-dependent expression with
SOX9, which may represent a key knot linking oncogenic KRAS,
inflammation and other growth factor signaling. Understanding
of FGF10 signaling machinery and its crosstalk with other
pathways may provide novel opportunities for PDAC precision
therapy and regenerative medicine.
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