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Abstract. A trigonometric plate theory is assessed for the static bending analysis of plates resting on Winkler 
elastic foundation. The theory considers the effects of transverse shear and normal strains. The theory accounts for 
realistic variation of the transverse shear stress through the thickness and satisfies the traction free conditions at the 
top and bottom surfaces of the plate without using shear correction factors. The governing equations of equilibrium 
and the associated boundary conditions of the theory are obtained using the principle of virtual work. A closed-form 
solution is obtained using double trigonometric series. The numerical results are obtained for flexure of simply 
supported plates subjected to various static loadings. The displacements and stresses are obtained for three different 
values of foundation modulus. The numerical results are also generated using higher order shear deformation 
theory of Reddy, first order shear deformation theory of Mindlin, and classical plate theory for the comparison of 
the present results. 

Keywords: Shear deformation; Normal strain; Shear stress; Shear correction factor; Winkler elastic foundation; Foundation 
modulus. 

1. Introduction 
The bending of plates resting on elastic foundation has many practical applications in civil, mechanical, aerospace, marine, 

offshore, and automotive structures. Therefore, various analytical and numerical methods have been employed to study 
bending analysis of plates resting on elastic foundation. Winkler foundation is the most commonly used elastic foundation. The 
well-known classical plate theory (CPT) is based on the Kirchhoff [1] hypothesis that straight lines perpendicular to the 
midplane before deformation remain straight and perpendicular to the midplane after deformation. The theory assumes linear 
variation of inplane displacements through the thickness and neglects the effects of transverse shear deformation and normal 
strain. In the Mindlin [2] first-order shear deformable theory (FSDT), it is assumed that straight lines perpendicular to the mid-
surface before deformation remain straight but not perpendicular to the mid-surface after deformation. The theory removes 
some of the defects of the classical plate theory. Although this theory considers the effect of transverse shear deformation, it 
neglects the effect of transverse normal strain. Although the effect of transverse shear deformation is considered in this theory, 
the effect of transverse normal strain is neglected. This theory predicts the constant shear strain through the plate thickness and 
requires a problem dependent shear correction coefficient. These limitations of CPT and FSDT have been rectified in recent 
years by introducing higher-order functions in the displacement field which has led to the development of higher-order plate 
theories. The third order theory of Reddy [3] is a well-known higher order theory but neglects the effect of transverse normal 
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strain. Matsunaga [4] obtained natural frequencies and buckling stresses of a thick isotropic plate resting on two-parameter 
elastic foundations considering the effect of shear deformation, thickness change, and rotatory inertia. A higher order theory 
based on power series expansion of the displacement components is used. The bending analysis of a plate resting on Winkler 
elastic foundation is studied by Huang and Thambiratnam [5]. Chen and Bian [6] applied the methods of state space and the 
differential quadrature for bending and free vibration of arbitrarily thick beams resting on a Pasternak elastic foundation. A 
new shear deformation theory for the free vibration analysis of simply supported functionally graded plates resting on a 
Winkler-Pasternak elastic foundation has been presented by Atmane et al. [7]. The closed-form solutions were obtained by 
using Navier technique. Thai et al. [8] proposed a refined shear deformation theory for bending, buckling, and vibration of 
thick plates resting on elastic foundation. The elastic foundation is modeled as two-parameter Pasternak foundation. The Levy-
type solution is presented for rectangular plates with two opposite simply-supported edges and the other two edges having 
arbitrary boundary conditions. Zenkour [9] carried out bending analysis of orthotropic plates resting on Pasternak's foundations 
by using the mixed first-order shear deformation theory. Zenkour et al. [10] also presented mixed first-order theories for plates 
resting on elastic foundations. Sayyad [11] has developed the exponential shear deformation theory for the bending of 
orthotropic plates. Akbas [12] presented free vibration and static bending of a simply-supported functionally graded plate with 
the porosity effect using the first-order shear deformation theory. Akbas [13, 14] also presented static and stability analysis of a 
nanoplate using the generalized differential quadrature method based on the classical plate model. Civalek [15] and Gurses et 
al. [16, 17] developed the discrete singular convolution method, for the static analysis of thick symmetric cross-ply laminated 
composite plates based on the first-order shear deformation theory. Recently, Sayyad and Ghugal [18, 19] presented a detailed 
review of displacement-based shear deformation theories for the analysis of beams and plates. 

 

1.1. Motivation and contribution 

1. It is highly recommended that any refinements of classical models are meaningless in general, unless the effects of 
transverse shear and normal deformations are both taken into account. But, in a whole lot of literature on this subject many 
researchers neglected this effect in view of minimizing the number of unknown variables. In the present study, authors have 
developed a trigonometric shear deformation theory for the bending of shear flexible plates considering both transverse shear 
and normal deformations. 
2. The kinematics of the present theory is much richer than those of the other higher order shear deformation theorie
s, because if the trigonometric term is expanded in power series, the kinematics of higher order theories are implicit
ly taken into account to a great extent. Moreover, it needs to be noted that every additional power of thickness coordinate 
in the displacement field of higher-order theories introduces additional unknown variables in those theories which are difficult 
to interpret physically. Thus, the use of the sinusoidal function in terms of thickness coordinate enhances the richness of the 
theory and also results in reduction of the number of unknown variables as compared with other competitive displacement-
based higher-order theories without loss of the physics of the problem in modeling.  
3. In this study, a bending analysis of thick plates resting on Winkler elastic foundation has been carried out. A uniformly 
distributed layer of Winkler’s springs usually represents the elastic foundation. A trigonometric shear and normal deformation 
theory developed by Ghugal and Sayyad [20-23] is applied for the analytical solutions. The theory has four unknown variables 
and includes the effect of transverse shear and transverse normal strain. The theory developed is based on certain kinematical 
and physical assumptions. The governing equations and boundary conditions are obtained using the principle of virtual work. A 
closed-form solution is obtained using Navier’s solution technique. The results obtained for various loading cases are 
compared with those of the higher order theory of Reddy [3], the first-order shear deformation theory of Mindlin [2], and the 
classical plate theory [1].  
4. The effect of local stress concentration due to concentrated load has assessed effectively by the present   theory 
which has not addressed by the other researchers. 

2.1. Plate under consideration 

Consider a rectangular plate of length ‘a’, width ‘b’, and total thickness ‘h’ made up of linearly elastic isotropic material. 
The plate occupies a region (0 ≤ x ≤ a, 0 ≤ y ≤ b, -h/2 ≤ z ≤ h/2) in Cartesian coordinate system. The plate is resting on Winkler 
elastic foundation. The geometry and coordinate system of the plate is shown in Fig. 1. 

 
Fig. 1. The geometry and coordinate system of plate 



Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory 

Journal of Applied and Computational Mechanics, Vol. 4, No. 3, (2018), 187-201 

189
2.2. The displacement field, strains and stresses 

Based upon the aforementioned assumptions, the displacement field of the present theory is given as below: 
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where u, v, and w are the displacements in x, y, and z directions, respectively. The trigonometric functions in in-plane 
displacements are associated with the cosine distribution of transverse shear stress through the thickness of the plate. 
The , and    are the unknown functions to be determined. The strains associated with the displacement field given by Eq. 
(1) are obtained within the framework of linear theory of elasticity. 
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The three-dimensional stress-strain relationships for the isotropic plate given by Timoshenko and Goodier [15] are used as 
follows: 
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where and G  are the Lame’s constants as given below: 
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The moment and shear force resultants are obtained by integrating stresses through the thickness. The moment 
resultants  andx y xyM ,M M analogues to classical plate theory are as follows: 
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The refined moment resultants  ands s s s
x y z xyM ,M ,M M  corresponding to transverse shear deformation are defined as follows: 
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The shear force resultants  andx yQ Q corresponding to transverse shear deformation are as follows: 
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The constants L1 to L12 appeared in stress resultants are as follows: 
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2.3. Governing differential equations and boundary conditions for present theory 

The governing differential equations and boundary conditions associated with the present theory are obtained using the 
principle of virtual work given below where  is the variational operator, and kf is Winkler modulus. 
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By substituting the strains from Eq. (2) and the stresses from Eq. (3) into Eq. (10), the principle of virtual work can be 
rewritten as: 

 

2 2 2

2 2
0 0 0 0

0 0 0 0 0 0

2 s s
x xy y x xy x

s s s
y xy y x y z f

b a b a

b a b a b a

w w wM M M dx dy M M Q dx dy
x y x yx y

h hM M Q dx dy Q Q M dx dy q k wdx dy
y x x y

     

     
 

       
               

      
                

   

     

 (11) 

By integrating Eq. (11) by parts and collecting coefficients of andw, ,    , one can obtain the following 
variationally consistent governing equations and associated boundary conditions. 
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The boundary conditions obtained at x = 0 and x = a are of the following form: 
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The boundary conditions obtained at y = 0 and y = b are of the following form: 
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The governing equations of the plate in terms of displacement variables can be written as follows: 
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where D1 through D9 are the stiffnesses as given below: 
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3. Analytical solution using double trigonometric series (The Navier solution)  
To prove the efficiency and validity of the presented theory, the bending analysis of a simply supported plate resting on 

Winkler elastic foundation is considered. The plate is subjected to a transverse load,  q x, y  on the top surface of the plate 
(i.e. / 2z h  ). Six different types of static loading conditions are considered for the detailed numerical study. Navier’s 
solution technique is employed to determine numerical solution for the simply supported plate. The following are the boundary 
conditions of the simply supported plate. 
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According to Navier solution technique, the transverse load can be expressed in double trigonometric series as: 
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where mnq  is the coefficient of Fourier expansion of load. The values of this coefficient for various loading cases are 
obtained using Eq. (23) and are given in Table 1. 



 A.S. Sayyad and Y.M. Ghugal, Vol. 4, No. 3, 2018  

Journal of Applied and Computational Mechanics, Vol. 4, No. 3, (2018), 187-201 

192

 
0 0

4 , sin sin
b a

mn
m x n yq q x y dx dy

ab a b
 

    (23) 

Table 1. Coefficients (qmn) in the double trigonometric series expansion of loads in the Navier method 
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Central patch load   0q x , y q  
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Central concentrated load  q x, y P  

 

4 sin sin
2 2mn

P m nq
ab

 
  

 25, 25m n   

 
The following is the solution form assumed for unknown variables in the displacement field which exactly satisfies simply 

supported boundary conditions: 

 
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m n
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m n
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m n
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m n
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m x n yx y
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m x n yx y
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m x n yx y
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  
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 

 









 

 

 

 

 (24) 

where , , andmn mn mn mnw     are the unknown coefficients of the respective Fourier expansions and m, n are positive integers. 
Substitution of the load  ,q x y  from Eq. (22) and solution form from Eq. (24) into the Eqs. (15) - (18) yields the four 
algebraic simultaneous equations in the following matrix form. 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0
0
0

mn mn

mn

mn

mn

K K K K w q
K K K K
K K K K
K K K K





     
     

                      

 (25) 

where elements of stiffness matrix [K] are as follows: 
4 4 2 2 4 4 4 3 3 2 3 3 3 2 3

11 1 12 2 13 24 2 2 4 3 2 3 2

2 2 2 2 2 2 2 2 2

14 3 22 4 5 6 23 7 24 82 2 2 2

2 2 2 2

33 4 5 62 2

2 f
m m n n m m n n n mK D k , K D , K D ,

a a b b a ab b b a

m n m n m n mK D , K D D D , K D , K D ,
ab aa b a b

n mK D D D ,
b a

      

     

 

     
              

     
 

         
 

  
2 2 2 2

34 8 44 5 92 2

n m nK D , K D D .
b a b
   

    
 

 (26) 

Solving Eq. (25) gives the values of , , andmn mn mn mnw    . Having these values, one can then calculate all the displacement 
and stress components within the plate using Eqs. (1) - (3). Transverse shear stresses can be obtained by either constitutive 
relations or integrating equilibrium equations of the theory of elasticity. These stresses are indicated by andCR CR

xz yz   when 

obtained by constitutive relations and are indicated by andEE EE
xz yz   when obtained by using equilibrium equations. The 

equilibrium equations of the theory of elasticity are given below. 
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0, 0, 0xy y xy yz yzx xz xz z

x y z y x z x y z
              

        
        

 (27) 

 

4. Numerical results and discussion 
The numerical results are obtained for isotropic square (b = a) plates subjected to different static loadings. The following 

material properties are used for the plate.  

 
210 , 0.3 and =

2 1
EE GPa G


 


 (28) 

where ‘E’ is Young’s modulus, ‘  ’is Poisson’s ratio, and ‘G’ is Shear modulus. The transverse deflection (w), in-plane stresses 
( , ,x y xy   ), and transverse shear stresses ( ,xz yz  ) are presented in the following normalized form for the purpose of 
presenting the results. 

   4
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4 2
0 0

2
0 00

,100, , ,0 , , 0,0, ,
2 2 2

, , , ,0,0 , 0, ,0
2 2 2 2 2

f x y
x y

xy yzzx
xy zx yz

k a a b E w hK w
D q hS q S

a b h a b
q S q Sq S

 
 

 
  

         
   

             
     

 (29) 

Here, S is the aspect ratio (a/h) of the plate. In case of central point load q0 becomes P. Since an exact three-
dimensional elasticity solution for bending of the isotropic plate resting on Winkler elastic foundation is not available in the 
literature, the present results are compared and discussed with the corresponding results of the classical plate theory (CPT), 
first-order shear deformation theory (FSDT), and higher order shear deformation theory of Reddy (HSDT). The numerical 
results are obtained for different values of foundation modulus (K = 1, 3, 5) and aspect ratios (S = 4, 10, 100).  

4.1. A simply supported isotropic plate subjected to sinusoidally distributed load    

The normalized transverse displacement and stresses for the isotropic square plate subjected to sinusoidally distributed load 
are shown in Table 2. The examination of this table reveals that the results of displacement and stresses obtained by the present 
theory are in good agreement with those of Reddy’s theory. CPT underestimates the value of transverse displacement for aspect 
ratios 4 and 10. The in-plane stresses predicted by FSDT and CPT are closer to each other. 

4.2. A simply supported isotropic plate subjected to uniformly distributed load    

Table 3 shows the comparison of transverse displacement and stresses for the isotropic square plate subjected to uniformly 
distributed load. The through-thickness distributions of in-plane normal stress and transverse shear stress for different 
foundation modulus are plotted in Figs. 2 and 3, respectively. Table 3 shows that the transverse displacement and stresses 
obtained by using the present theory are in excellent agreement with those of Reddy’s theory. It is also observed that the 
transverse displacements and in-plane stresses are decreased with an increase in aspect ratio as well as foundation modulus. 
The numerical results obtained by all the theories are more or less the same for the thin plate (S = 100). 
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Fig. 2. Through thickness distribution of in-plane normal stress ( x ) for isotropic square plate subjected to uniformly distributed load 
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Fig. 3. Through thickness distribution of transverse shear stress ( EE
zx ) for isotropic square plate subjected to uniformly distributed load 

4.3. A simply supported isotropic plate subjected to linearly varying (Hydrostatic) load  

The comparison of transverse displacement and stresses for the isotropic square plate subjected to a linearly (Hydrostatic) 
load is reported in Table 4. The intensity of load (q0) is zero at edge x = 0 and maximum at x = a. From Table 4 it is figured out 
that the present theory predicts the transverse displacement and stresses very accurately compared with those of Reddy’s theory. 
FSDT and CPT show more or less the same values for stresses.    

4.4. A simply supported isotropic plate subjected to parabolic load  

In this example, bending analysis of the isotropic square plate is carried out for a parabolic load. The intensity of load (q0) 
is zero at edge x = 0 and maximum at edge x = a. The numerical results are reported in Table 5 and found to agree well with 
those of Reddy’s theory. FSDT and CPT underestimate the values of transverse displacement and in-plane stresses, whereas 
they overestimate the values of transverse shear stresses. 

4.5. A simply supported isotropic plate subjected to central patch load 

In this example, bending response of the isotropic square plate is examined under the patch load. The load is centrally 
applied with size x0 × y0. The value of x0=0.02a and y0=0.02b. The transverse displacement and stresses for various aspect 
ratios and foundation moduli are reported in Table 6. The examination of Table 6 reveals that as compared with other loading 
cases discussed in the preceding sections, the stresses developed due to central patch load are very small. It is also seen that the 
present results are in excellent agreement with those of Reddy’s theory. 
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Fig. 4. Through thickness distribution of in-plane normal stress ( x ) for isotropic square plate subjected to central concentrated load 
       
4.6. A simply supported isotropic plate subjected to central concentrated load 

      
The displacements and stresses for the isotropic square plate when subjected to a central concentrated load are shown in Table 
7. The through-thickness distributions of in-plane normal stress are shown in Fig. 4 for S = 4 and K = 1, 3, 5. The variation of 
this stress is non-linear through the thickness, which may be the effect of local stress concentration due to concentrated load, 
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that cannot be captured by the classical theories. The through-thickness distributions of transverse shear stress ( EE
zx ) when 

obtained by using equation of equilibrium is shown in Fig. 5. These distributions are plotted for the aspect ratio 4 and 
foundation modulus 1, 3, and 5. The distributions show that the maximum transverse shear stress occurs at z = ± 0.35 h instead 
of at neutral plane. However, these distributions show the negative values at neutral plane. This anomalous behavior of 
transverse shear stress may be attributed to the effect of local stress concentration due to concentrated load. 
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Fig. 5. Through thickness distribution of transverse shear stress ( EE
zx ) for isotropic square plate subjected to central concentrated load 

 
Table 2. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to sinusoidally distributed load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 3.3348 0.2260 0.2260 0.1060 0.2437 0.2319 0.2437 0.2319 
  HSDT [3] 3.4554 0.2084 0.2084 0.1122 0.2369 0.2344 0.2369 0.2344 
  FSDT [2] 3.3094 0.1969 0.1969 0.1060 0.1586 0.2379 0.1586 0.2379 
  CPT [1] 2.5599 0.1971 0.1971 0.1061 --- 0.2381 --- 0.2381 
 3 Present 2.6531 0.1798 0.1798 0.0843 0.1938 0.1845 0.1938 0.1845 
  HSDT [3] 2.7071 0.1633 0.1633 0.0879 0.1856 0.1837 0.1856 0.1837 
  FSDT [2] 2.6166 0.1557 0.1557 0.0838 0.1254 0.1881 0.1254 0.1881 
  CPT [1] 2.1248 0.1636 0.1636 0.0881 --- 0.1976 --- 0.1976 
 5 Present 1.1100 0.0752 0.0752 0.0353 0.0811 0.0772 0.0811 0.0772 
  HSDT [3] 1.0948 0.0660 0.0660 0.0356 0.0751 0.0743 0.0751 0.0743 
  FSDT [2] 1.0797 0.0642 0.0642 0.0346 0.0518 0.0776 0.0518 0.0776 
  CPT [1] 0.9856 0.0759 0.0759 0.0409 --- 0.0917 --- 0.0917 

10 1 Present 2.6791 0.2119 0.2119 0.1059 0.2448 0.2351 0.2448 0.2351 
  HSDT [3] 2.7038 0.1989 0.1989 0.1071 0.2379 0.2375 0.2379 0.2375 
  FSDT [2] 2.6799 0.1970 0.1970 0.1061 0.1587 0.2381 0.1587 0.2381 
  CPT [1] 2.5599 0.1971 0.1971 0.1061 --- 0.2381  0.2381 
 3 Present 2.2101 0.1748 0.1748 0.0872 0.2019 0.1939 0.2019 0.1939 
  HSDT [3] 2.2230 0.1635 0.1635 0.0881 0.1956 0.1953 0.1956 0.1953 
  FSDT [2] 2.2068 0.1623 0.1623 0.0874 0.1307 0.1961 0.1307 0.1961 
  CPT [1] 2.1248 0.1636 0.1636 0.0881 --- 0.1976 --- 0.1976 
 5 Present 1.0090 0.0798 0.0798 0.0398 0.0922 0.0885 0.0922 0.0885 
  HSDT [3] 1.0062 0.0740 0.0740 0.0399 0.0885 0.0884 0.0885 0.0884 
  FSDT [2] 1.0029 0.0737 0.0737 0.0397 0.0594 0.0891 0.0594 0.0891 
  CPT [1] 0.9856 0.0759 0.0759 0.0409 --- 0.0917 --- 0.0917 

100 1 Present 2.5529 0.2093 0.2093 0.1058 0.2450 0.2356 0.2450 0.2356 
  HSDT [3] 2.5619 0.1971 0.1971 0.1061 0.2381 0.2382 0.2381 0.2382 
  FSDT [2] 2.5603 0.1970 0.1970 0.1061 0.1587 0.2380 0.1587 0.2380 
  CPT [1] 2.5599 0.1971 0.1971 0.1061 --- 0.2381 --- 0.2381 
 3 Present 2.1200 0.1738 0.1738 0.0878 0.2034 0.1957 0.2034 0.1957 
  HSDT [3] 2.1262 0.1636 0.1636 0.0881 0.1976 0.1977 0.1976 0.1977 
  FSDT [2] 2.1251 0.1635 0.1635 0.0880 0.1317 0.1976 0.1317 0.1976 
  CPT [1] 2.1248 0.1636 0.1636 0.0881 --- 0.1976 --- 0.1976 
 5 Present 0.9846 0.0807 0.0807 0.0408 0.0945 0.0909 0.0945 0.0909 
  HSDT [3] 0.9859 0.0759 0.0759 0.0408 0.0916 0.0917 0.0916 0.0917 



Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory 

Journal of Applied and Computational Mechanics, Vol. 4, No. 3, (2018), 187-201 

197
  FSDT [2] 0.9856 0.0758 0.0758 0.0408 0.0611 0.0916 0.0611 0.0916 
  CPT [1] 0.9856 0.0759 0.0759 0.0409 --- 0.0917 --- 0.0917 

 
Table 3. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to uniformly distributed load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 5.1840 0.3206 0.3206 0.2076 0.4820 0.4087 0.4820 0.4087 
  HSDT [3] 5.3548 0.2980 0.2980 0.2174 0.4814 0.4507 0.4814 0.4507 
  FSDT [2] 5.1410 0.2863 0.2863 0.1942 0.3292 0.4937 0.3292 0.4937 
  CPT [1] 4.0517 0.2865 0.2865 0.1943 --- 0.4940 --- 0.4940 
 3 Present 4.0838 0.2469 0.2469 0.1721 0.4001 0.3356 0.4001 0.3356 
  HSDT [3] 4.1478 0.2259 0.2259 0.1775 0.3970 0.3672 0.3970 0.3672 
  FSDT [2] 4.0230 0.2202 0.2202 0.1579 0.2746 0.4118 0.2746 0.4118 
  CPT [1] 3.3472 0.2326 0.2326 0.1649 --- 0.4280 --- 0.4280 
 5 Present 1.6117 0.0841 0.0841 0.0904 0.2101 0.1864 0.2101 0.1864 
  HSDT [3] 1.5693 0.0744 0.0744 0.0897 0.2106 0.1833 0.2106 0.1833 
  FSDT [2] 1.5609 0.0765 0.0765 0.0761 0.1506 0.2259 0.1506 0.2259 
  CPT [1] 1.5060 0.0924 0.0924 0.0876 --- 0.2534 --- 0.2534 

10 1 Present 4.2240 0.3071 0.3071 0.1950 0.5033 0.4811 0.5033 0.4811 
  HSDT [3] 4.2609 0.2884 0.2884 0.2028 0.4914 0.4851 0.4914 0.4851 
  FSDT [2] 4.2261 0.2865 0.2865 0.1943 0.3293 0.4940 0.3293 0.4940 
  CPT [1] 4.0517 0.2865 0.2865 0.1943 --- 0.4940 --- 0.4940 
 3 Present 3.4650 0.2474 0.2474 0.1648 0.4333 0.4066 0.4333 0.4066 
  HSDT [3] 3.4828 0.2315 0.2315 0.1718 0.4223 0.4161 0.4223 0.4161 
  FSDT [2] 3.4605 0.2305 0.2305 0.1637 0.2835 0.4253 0.2835 0.4253 
  CPT [1] 3.3472 0.2326 0.2326 0.1649 --- 0.4280 --- 0.4280 
 5 Present 1.5260 0.0961 0.0961 0.0870 0.2520 0.2324 0.2520 0.2324 
  HSDT [3] 1.5191 0.0891 0.0891 0.0924 0.2451 0.2393 0.2451 0.2393 
  FSDT [2] 1.5170 0.0895 0.0895 0.0855 0.1656 0.2484 0.1656 0.2484 
  CPT [1] 1.5060 0.0924 0.0924 0.0876 --- 0.2534 --- 0.2534 

100 1 Present 4.0405 0.3044 0.3044 0.1937 0.5082 0.4941 0.5082 0.4941 
  HSDT [3] 4.0547 0.2866 0.2866 0.1999 0.4940 0.4940 0.4940 0.4940 
  FSDT [2] 4.0521 0.2864 0.2864 0.1942 0.3293 0.4939 0.3293 0.4939 
  CPT [1] 4.0517 0.2865 0.2865 0.1943 --- 0.4940 --- 0.4940 
 3 Present 3.3395 0.2472 0.2472 0.1645 0.4404 0.4236 0.4404 0.4236 
  HSDT [3] 3.3492 0.2326 0.2326 0.1705 0.4279 0.4279 0.4279 0.4279 
  FSDT [2] 3.3475 0.2325 0.2325 0.1649 0.2852 0.4279 0.2852 0.4279 
  CPT [1] 3.3472 0.2326 0.2326 0.1649 --- 0.4280 --- 0.4280 
 5 Present 1.5045 0.0984 0.0984 0.0874 0.2610 0.2510 0.2610 0.2510 
  HSDT [3] 1.5062 0.0924 0.0924 0.0930 0.2533 0.2533 0.2533 0.2533 
  FSDT [2] 1.5059 0.0924 0.0924 0.0876 0.1689 0.2534 0.1689 0.2534 
  CPT [1] 1.5060 0.0924 0.0924 0.0876 --- 0.2534 --- 0.2534 

Table 4. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to linearly varying (Hydrostatic) load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 2.5920 0.1603 0.1603 0.1038 0.2410 0.2044 0.2410 0.2044 
  HSDT [3] 2.6774 0.1490 0.1490 0.1087 0.2407 0.2254 0.2407 0.2254 
  FSDT [2] 2.5705 0.1432 0.1432 0.0971 0.1646 0.2469 0.1646 0.2469 
  CPT [1] 2.0259 0.1433 0.1433 0.0972 --- 0.2470 --- 0.2470 
 3 Present 2.0419 0.1235 0.1235 0.0861 0.2001 0.1678 0.2001 0.1678 
  HSDT [3] 2.0739 0.1130 0.1130 0.0888 0.1985 0.1836 0.1985 0.1836 
  FSDT [2] 2.0115 0.1101 0.1101 0.0790 0.1373 0.2059 0.1373 0.2059 
  CPT [1] 1.6736 0.1163 0.1163 0.0825 --- 0.2140 --- 0.2140 
 5 Present 0.8059 0.0421 0.0421 0.0452 0.1051 0.0932 0.1051 0.0932 
  HSDT [3] 0.7847 0.0372 0.0372 0.0449 0.1053 0.0917 0.1053 0.0917 
  FSDT [2] 0.7805 0.0383 0.0383 0.0381 0.0753 0.1130 0.0753 0.1130 
  CPT [1] 0.7530 0.0462 0.0462 0.0438 --- 0.1267 --- 0.1267 

10 1 Present 2.1120 0.1536 0.1536 0.0975 0.2517 0.2406 0.2517 0.2406 
  HSDT [3] 2.1305 0.1442 0.1442 0.1014 0.2457 0.2426 0.2457 0.2426 
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  FSDT [2] 2.1131 0.1433 0.1433 0.0972 0.1647 0.2470 0.1647 0.2470 
  CPT [1] 2.0259 0.1433 0.1433 0.0972 --- 0.2470 --- 0.2470 
 3 Present 1.7325 0.1237 0.1237 0.0824 0.2167 0.2033 0.2167 0.2033 
  HSDT [3] 1.7414 0.1158 0.1158 0.0859 0.2112 0.2081 0.2112 0.2081 
  FSDT [2] 1.7303 0.1153 0.1153 0.0819 0.1418 0.2127 0.1418 0.2127 
  CPT [1] 1.6736 0.1163 0.1163 0.0825 --- 0.2140 --- 0.2140 
 5 Present 0.7630 0.0481 0.0481 0.0435 0.1260 0.1162 0.1260 0.1162 
  HSDT [3] 0.7596 0.0446 0.0446 0.0462 0.1226 0.1197 0.1226 0.1197 
  FSDT [2] 0.7585 0.0448 0.0448 0.0428 0.0828 0.1242 0.0828 0.1242 
  CPT [1] 0.7530 0.0462 0.0462 0.0438 --- 0.1267 --- 0.1267 

100 1 Present 2.0203 0.1522 0.1522 0.0969 0.2541 0.2471 0.2541 0.2471 
  HSDT [3] 2.0274 0.1433 0.1433 0.1000 0.2470 0.2470 0.2470 0.2470 
  FSDT [2] 2.0261 0.1432 0.1432 0.0971 0.1647 0.2470 0.1647 0.2470 
  CPT [1] 2.0259 0.1433 0.1433 0.0972 --- 0.2470 --- 0.2470 
 3 Present 1.6698 0.1236 0.1236 0.0823 0.2202 0.2118 0.2202 0.2118 
  HSDT [3] 1.6746 0.1163 0.1163 0.0853 0.2140 0.2140 0.2140 0.2140 
  FSDT [2] 1.6738 0.1163 0.1163 0.0825 0.1426 0.2140 0.1426 0.2140 
  CPT [1] 1.6736 0.1163 0.1163 0.0825 --- 0.2140 --- 0.2140 
 5 Present 0.7523 0.0492 0.0492 0.0437 0.1305 0.1255 0.1305 0.1255 
  HSDT [3] 0.7531 0.0462 0.0462 0.0465 0.1267 0.1267 0.1267 0.1267 
  FSDT [2] 0.7530 0.0462 0.0462 0.0438 0.0845 0.1267 0.0845 0.1267 
  CPT [1] 0.7530 0.0462 0.0462 0.0438 --- 0.1267 --- 0.1267 

Table 5. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to parabolic load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 1.5228 0.0903 0.0903 0.0666 0.1636 0.1303 0.1636 0.1303 
  HSDT [3] 1.5716 0.0838 0.0838 0.0691 0.1654 0.1508 0.1654 0.1508 
  FSDT [2] 1.5100 0.0811 0.0811 0.0603 0.1142 0.1712 0.1142 0.1712 
  CPT [1] 1.1964 0.0812 0.0812 0.0603 --- 0.1713 --- 0.1713 
 3 Present 1.1961 0.0685 0.0685 0.0560 0.1389 0.1069 0.1389 0.1069 
  HSDT [3] 1.2133 0.0625 0.0625 0.0571 0.1400 0.1257 0.1400 0.1257 
  FSDT [2] 1.1780 0.0616 0.0616 0.0495 0.0977 0.1466 0.0977 0.1466 
  CPT [1] 0.9870 0.0652 0.0652 0.0516 --- 0.1516 --- 0.1516 
 5 Present 0.4636 0.0209 0.0209 0.0314 0.0806 0.0519 0.0806 0.0519 
  HSDT [3] 0.4496 0.0182 0.0182 0.0307 0.0827 0.0693 0.0827 0.0693 
  FSDT [2] 0.4484 0.0194 0.0194 0.0250 0.0597 0.0895 0.0597 0.0895 
  CPT [1] 0.4400 0.0238 0.0238 0.0285 --- 0.0989 --- 0.0989 

10 1 Present 1.2459 0.0870 0.0870 0.0608 0.1739 0.1622 0.1739 0.1622 
  HSDT [3] 1.2566 0.0816 0.0816 0.0644 0.1701 0.1671 0.1701 0.1671 
  FSDT [2] 1.2466 0.0812 0.0812 0.0603 0.1142 0.1713 0.1142 0.1713 
  CPT [1] 1.1964 0.0812 0.0812 0.0603 --- 0.1713 --- 0.1713 
 3 Present 1.0203 0.0693 0.0693 0.0518 0.1529 0.1421 0.1529 0.1421 
  HSDT [3] 1.0254 0.0648 0.0648 0.0551 0.1494 0.1464 0.1494 0.1464 
  FSDT [2] 1.0190 0.0646 0.0646 0.0512 0.1005 0.1508 0.1005 0.1508 
  CPT [1] 0.9870 0.0652 0.0652 0.0516 --- 0.1516 --- 0.1516 
 5 Present 0.4445 0.0247 0.0247 0.0286 0.0981 0.0894 0.0981 0.0894 
  HSDT [3] 0.4422 0.0227 0.0227 0.0313 0.0958 0.0929 0.0958 0.0929 
  FSDT [2] 0.4419 0.0230 0.0230 0.0279 0.0648 0.0972 0.0648 0.0972 
  CPT [1] 0.4400 0.0238 0.0238 0.0285 --- 0.0989 --- 0.0989 

100 1 Present 1.1931 0.0863 0.0863 0.0601 0.1762 0.1695 0.1762 0.1695 
  HSDT [3] 1.1973 0.0812 0.0812 0.0634 0.1713 0.1713 0.1713 0.1713 
  FSDT [2] 1.1965 0.0812 0.0812 0.0603 0.1142 0.1713 0.1142 0.1713 
  CPT [1] 1.1964 0.0812 0.0812 0.0603 --- 0.1713 --- 0.1713 
 3 Present 0.9847 0.0694 0.0694 0.0514 0.1560 0.1500 0.1560 0.1500 
  HSDT [3] 0.9876 0.0652 0.0652 0.0547 0.1516 0.1515 0.1516 0.1515 
  FSDT [2] 0.9870 0.0651 0.0651 0.0516 0.1010 0.1515 0.1010 0.1515 
  CPT [1] 0.9870 0.0652 0.0652 0.0516 --- 0.1516 --- 0.1516 
 5 Present 0.4395 0.0254 0.0254 0.0285 0.1018 0.0979 0.1018 0.0979 
  HSDT [3] 0.4400 0.0238 0.0238 0.0315 0.0989 0.0989 0.0989 0.0989 
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  FSDT [2] 0.4399 0.0238 0.0238 0.0285 0.0659 0.0989 0.0659 0.0989 
  CPT [1] 0.4400 0.0238 0.0238 0.0285 --- 0.0989 --- 0.0989 

Table 6. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to central patch load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 0.0191 0.0011 0.0011 0.0039 0.0026 0.0035 0.0026 0.0035 
  HSDT [3] 0.0197 0.0010 0.0010 0.0031 0.0029 0.0028 0.0029 0.0028 
  FSDT [2] 0.0190 0.0010 0.0010 0.0015 0.0022 0.0033 0.0022 0.0033 
  CPT [1] 0.0153 0.0010 0.0010 0.0015 --- 0.0033 --- 0.0033 
 3 Present 0.0148 0.0008 0.0008 0.0037 0.0023 0.0033 0.0023 0.0033 
  HSDT [3] 0.0149 0.0007 0.0007 0.0030 0.0026 0.0025 0.0026 0.0025 
  FSDT [2] 0.0146 0.0007 0.0007 0.0013 0.0020 0.0030 0.0020 0.0030 
  CPT [1] 0.0126 0.0007 0.0007 0.0013 --- 0.0030 --- 0.0030 
 5 Present 0.0053 0.0002 0.0002 0.0034 0.0015 0.0029 0.0015 0.0029 
  HSDT [3] 0.0050 0.0001 0.0001 0.0026 0.0018 0.0020 0.0018 0.0020 
  FSDT [2] 0.0051 0.0002 0.0002 0.0010 0.0015 0.0022 0.0015 0.0022 
  CPT [1] 0.0053 0.0002 0.0002 0.0010 --- 0.0022 --- 0.0022 

10 1 Present 0.0159 0.0010 0.0010 0.0019 0.0032 0.0027 0.0032 0.0027 
  HSDT [3] 0.0160 0.0010 0.0010 0.0020 0.0032 0.0030 0.0032 0.0030 
  FSDT [2] 0.0159 0.0010 0.0010 0.0015 0.0022 0.0033 0.0022 0.0033 
  CPT [1] 0.0153 0.0010 0.0010 0.0015 --- 0.0033 --- 0.0033 
 3 Present 0.0129 0.0008 0.0008 0.0018 0.0029 0.0024 0.0029 0.0024 
  HSDT [3] 0.0130 0.0007 0.0007 0.0018 0.0029 0.0027 0.0029 0.0027 
  FSDT [2] 0.0129 0.0007 0.0007 0.0013 0.0020 0.0030 0.0020 0.0030 
  CPT [1] 0.0126 0.0007 0.0007 0.0013 --- 0.0030 --- 0.0030 
 5 Present 0.0053 0.0002 0.0002 0.0015 0.0022 0.0019 0.0022 0.0019 
  HSDT [3] 0.0053 0.0002 0.0002 0.0015 0.0022 0.0020 0.0022 0.0020 
  FSDT [2] 0.0053 0.0002 0.0002 0.0010 0.0015 0.0022 0.0015 0.0022 
  CPT [1] 0.0053 0.0002 0.0002 0.0010 --- 0.0022 --- 0.0022 

100 1 Present 0.0153 0.0010 0.0010 0.0015 0.0034 0.0033 0.0034 0.0033 
  HSDT [3] 0.0153 0.0010 0.0010 0.0016 0.0033 0.0033 0.0033 0.0033 
  FSDT [2] 0.0153 0.0010 0.0010 0.0015 0.0022 0.0033 0.0022 0.0033 
  CPT [1] 0.0153 0.0010 0.0010  --- 0.0033 --- 0.0033 
 3 Present 0.0125 0.0008 0.0008 0.0013 0.0031 0.0030 0.0031 0.0030 
  HSDT [3] 0.0126 0.0007 0.0007 0.0015 0.0030 0.0030 0.0030 0.0030 
  FSDT [2] 0.0126 0.0007 0.0007 0.0013 0.0020 0.0030 0.0020 0.0030 
  CPT [1] 0.0126 0.0007 0.0007 0.0013 --- 0.0030 --- 0.0030 
 5 Present 0.0053 0.0002 0.0002 0.0010 0.0024 0.0023 0.0024 0.0023 
  HSDT [3] 0.0053 0.0002 0.0002 0.0012 0.0023 0.0023 0.0023 0.0023 
  FSDT [2] 0.0053 0.0002 0.0002 0.0010 0.0015 0.0022 0.0015 0.0022 
  CPT [1] 0.0053 0.0002 0.0002 0.0010 --- 0.0022 --- 0.0022 

Table 7. Comparison of non-dimensional deflection and stresses in isotropic square plate subjected to central concentrated load 

S K Theory w  x  y  xy  CR
zx  EE

zx  CR
yz  EE

yz  

4 1 Present 21.709 11.950 11.950 0.3647 0.6488 1.3790 0.6488 1.3790 
  HSDT [3] 20.831 6.7873 6.7873 0.3660 0.7585 1.1278 0.7585 1.1278 
  FSDT [2] 20.498 2.3435 2.3435 0.3645 0.6652 0.9978 0.6652 0.9978 
  CPT [1] 11.564 2.3442 2.3442 0.3648 --- 0.9985 --- 0.9985 
 3 Present 19.014 11.738 11.738 0.2797 0.4577 1.2807 0.4577 1.2807 
  HSDT [3] 17.773 6.5913 6.5913 0.2713 0.5619 1.0253 0.5619 1.0253 
  FSDT [2] 17.674 2.1695 2.1695 0.2773 0.5377 0.8065 0.5377 0.8065 
  CPT [1] 9.8169 2.2071 2.2071 0.2934 --- 0.8399 --- 0.8399 
 5 Present 12.658 11.154 11.154 0.0931 0.0542 1.0742 0.0542 1.0742 
  HSDT [3] 10.941 6.1075 6.1075 0.0756 0.1697 0.8220 0.1697 0.8220 
  FSDT [2] 11.203 1.7483 1.7483 0.0895 0.2740 0.4110 0.2740 0.4110 
  CPT [1] 5.2137 1.8364 1.8364 0.1090 --- 0.4376 --- 0.4376 

10 1 Present 13.087 5.2258 5.2258 0.3646 0.7933 1.0504 0.7933 1.0504 
  HSDT [3] 13.222 3.4420 3.4420 0.3526 0.9149 0.8035 0.9149 0.8035 
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  FSDT [2] 12.994 2.3441 2.3441 0.3647 0.6656 0.9983 0.6656 0.9983 
  CPT [1] 11.564 2.3442 2.3442 0.3648 --- 0.9985 --- 0.9985 
 3 Present 11.218 5.0726 5.0726 0.2914 0.6260 0.9659 0.6260 0.9659 
  HSDT [3] 11.287 3.2959 3.2959 0.2776 0.7499 0.6826 0.7499 0.6826 
  FSDT [2] 11.090 2.2008 2.2008 0.2907 0.5562 0.8343 0.5562 0.8343 
  CPT [1] 9.8169 2.2071 2.2071 0.2934 --- 0.8399 --- 0.8399 
 5 Present 6.3915 4.6614 4.6614 0.1069 0.2130 0.7572 0.2130 0.7572 
  HSDT [3] 6.3405 2.9086 2.9086 0.0917 0.3483 0.4352 0.3483 0.4352 
  FSDT [2] 6.2013 1.8209 1.8209 0.1053 0.2883 0.4324 0.2883 0.4324 
  CPT [1] 5.2137 1.8364 1.8364 0.1090 --- 0.4376 --- 0.4376 

100 1 Present 11.542 2.5076 2.5076 0.3636 1.0259 0.9842 1.0259 0.9842 
  HSDT [3] 11.584 2.3569 2.3569 0.3502 0.9974 0.9949 0.9974 0.9949 
  FSDT [2] 11.575 2.3439 2.3439 0.3647 0.6655 0.9982 0.6655 0.9982 
  CPT [1] 11.564 2.3442 2.3442 0.3648 --- 0.9985 --- 0.9985 
 3 Present 9.8035 2.3623 2.3623 0.2926 0.8632 0.8277 0.8632 0.8277 
  HSDT [3] 9.8340 2.2197 2.2197 0.2788 0.8388 0.8362 0.8388 0.8362 
  FSDT [2] 9.8275 2.2068 2.2068 0.2932 0.5597 0.8397 0.5597 0.8397 
  CPT [1] 9.8169 2.2071 2.2071 0.2934 --- 0.8399 --- 0.8399 
 5 Present 5.2156 1.9688 1.9688 0.1089 0.4496 0.4298 0.4496 0.4298 
  HSDT [3] 5.2259 1.8487 1.8487 0.0954 0.4365 0.4338 0.4365 0.4338 
  FSDT [2] 5.2231 1.8362 1.8362 0.1089 0.2917 0.4375 0.2917 0.4375 
  CPT [1] 5.2137 1.8364 1.8364 0.1090 --- 0.4376 --- 0.4376 

5. Conclusions  
A trigonometric plate theory is assessed for bending analysis of square isotropic plates resting on Winkler elastic 

foundation subjected to various static loadings. The theory is variationally consistent and obviates the need of shear correction 
factor. The displacements and stresses are obtained for different foundation moduli. The present results are compared with 
those generated using other theories. From the numerical results and discussion, the following conclusions are drawn.  

1. The results of displacements and stresses predicted by the present theory are in excellent agreement with those of Reddy’s 
theory. 

2. The transverse displacements and stresses are found to decrease with an increase in foundation modulus. 
The present theory can predict the effect of local stress concentration on the in-plane and transverse shear stress distributions 
due to concentrated load more prominently compared with other higher order theories. 
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