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Making predictions and validating the predictions against actual sensory information
is thought to be one of the most fundamental functions of the nervous system. A
growing body of evidence shows that the neural mechanisms controlling behavior,
both in motor and non-motor domains, rely on prediction errors, the discrepancy
between predicted and actual information. The cerebellum has been viewed as a key
component of the motor system providing predictions about upcoming movements and
receiving feedback about motor errors. Consequentially, studies of cerebellar function
have focused on the motor domain with less consideration for the wider context in which
movements are generated. However, motor learning experiments show that cognition
makes important contributions to motor adaptation that involves the cerebellum. One
of the more successful theoretical frameworks for understanding motor control and
cerebellar function is the forward internal model which states that the cerebellum predicts
the sensory consequences of the motor commands and is involved in computing
sensory prediction errors by comparing the predictions to the sensory feedback. The
forward internal model was applied and tested mainly for effector movements, raising the
question whether cerebellar encoding of behavior reflects task performance measures
associated with cognitive involvement. Electrophysiological studies based on pseudo-
random tracking in monkeys show that the discharge of Purkinje cell, the sole output
neurons of the cerebellar cortex, encodes predictive and feedback signals not only
of the effector kinematics but also of task performance. The implications are that the
cerebellum implements both effector and task performance forward models and the
latter are consistent with the cognitive contributions observed during motor learning. The
implications of these findings include insights into recent psychophysical observations
on moving with reduced feedback and motor learning. The findings also support the
cerebellum’s place in hierarchical generative models that work in concert to refine
predictions about behavior and the world. Therefore, cerebellar representations bridge
motor and non-motor domains and provide a better understanding of cerebellar function
within the functional architecture of the brain.

Keywords: Purkinje cell, simple spike, complex spike, kinematics, performance error, sensory prediction error,
forward internal model, generative model

INTRODUCTION

Yogi Berra and Niels Bohr agreed: ‘‘Predictions are very hard, especially when they are about the
future’’ (Stanislaw, 1976; Wilford, 1991). It turns out they could be ubiquitous throughout the
brain too.

It has been hypothesized that central to brain function is learning to make predictions
about behavior and the world. The use of predictions to control behavior relies on computing
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prediction errors, the differences between predictions and
reality. Early on, motor control research strongly embraced
the importance of generating predictions about upcoming
movements using the framework of forward internal models
of effectors. Recent work has emphasized that controlling and
learning self-directed motor behaviors involves both an implicit
forward model of the effector and an explicit model of the task
(Taylor and Ivry, 2011; Streng et al., 2018b; see Figure 1F).
Multiple forward models require a more nuanced view on the
error sources. Further, self-directed motor behavior cannot be
cleanly separated from the underlying cognitive context.

The cerebellum is an integral part of the motor control system
and is thought to be geared to predicting aspects of upcoming
motor behavior and involved in processing prediction errors.
This review focuses on the cerebellum’s role in implementing
forward internal models and examines whether the discharge
of cerebellar neurons have the requisite predictive and feedback
signals essential for generating prediction errors. Importantly,
the review examines whether the signals encoded are restricted
to information only about effectors or whether the signals include
task-related information.

PREDICTIVE PROWESS OF THE MOTOR
SYSTEM AND FORWARD INTERNAL
MODELS

Motor behavior, being amenable to precise measurement
and manipulation of well-defined parameters of movement,
showcases the nervous system’s ability to anticipate motor
outcomes over a wide range of behaviors and experimental
conditions. For example, during a saccade there is neither visual
nor proprioceptive sensory feedback (Keller and Robinson, 1971;
Guthrie et al., 1983; Thiele et al., 2002). Yet, the variability in
the motor command, as reflected in eye movement velocity, is
corrected to maintain saccade accuracy (Golla et al., 2008; Xu-
Wilson et al., 2009). Similarly, the neural machinery generating
saccades compensates for perturbations due to blinking (Rottach
et al., 1998). Therefore, in the absence of sensory feedback,
the control of saccadic eye movements relies on predicting the
consequences of motor commands rather than sensory feedback.
The anticipatory grip forces on an object when predictable loads
are applied to the arm (Johansson and Cole, 1992; Flanagan
and Wing, 1997) are also consistent with making predictions
about armmovements and the associated inertial forces (Kawato,
1999). Adaptation to perturbations, such as force fields or
visuomotor transformations, provides compelling evidence that
the brain learns to anticipate the consequences of motor
commands (Shadmehr and Mussa-Ivaldi, 1994; Thoroughman
and Shadmehr, 1999). Similarly, a persuasive framework for
hand-eye coordination requires the anticipation of effector
kinematics (Scarchilli et al., 1999). In addition, the CNS predicts
the effects of common environmental constraints, for example
gravitation (Zago et al., 2004; Lacquaniti et al., 2013).

The ubiquitous predictions observed during motor
psychophysical experiments have to be integrated into a
wider range of control processes including compensating for

the inherent delays in sensory feedback, countering sensory
reafferent signals, state estimation, and motor learning. Internal
models offer a widely accepted computational framework for
these control requirements by providing neural representations
of the input-output relationships or their inverses for specific
elements of the motor plant or properties of the environment
to be controlled (Kawato, 1999). With the motor command
and current sensory information as its inputs, a forward
internal model predicts the consequences of motor actions
(Jordan and Rumelhart, 1992; Miall et al., 1993; Miall and
Wolpert, 1996). Forward model predictions can be compared
to the actual sensory feedback to compute the difference
between the intended and achieved action. This difference is
termed a sensory prediction error. In turn, sensory prediction
errors are used to control movements online, cancel sensory
reafference due to self-generated movement, perform state
estimation, guide motor learning, and update the forward
model (Jordan and Rumelhart, 1992; Miall et al., 1993; Wolpert
et al., 1995; Doya, 1999; Shadmehr et al., 2010). In support
of this concept, sensory prediction errors have been shown
to be used in motor adaptation across different effectors and
behaviors (Wallman and Fuchs, 1998; Noto and Robinson, 2001;
Morton and Bastian, 2006; Tseng et al., 2007; Xu-Wilson et al.,
2009).

CEREBELLUM AS A FORWARD INTERNAL
MODEL

Many investigators have hypothesized that internal models of the
motor system, in general, and forward models, specifically, are
acquired and maintained in the cerebellum (Miall et al., 1993;
Shidara et al., 1993; Shadmehr and Holcomb, 1997; Wolpert
et al., 1998; Kawato, 1999; Imamizu et al., 2000; Pasalar et al.,
2006; Taylor et al., 2010; Popa et al., 2013). As a large body of
literature supports this hypothesis, we summarize only a few key
findings. The motor deficits in patients with cerebellar disorders
are consistent with corrupted forward models, including loss
of saccade accuracy due to motor command variability (Golla
et al., 2008; Xu-Wilson et al., 2009), inability to adapt reaching
movements to motor perturbations such as force fields or
visuomotor rotations (Maschke et al., 2004; Tseng et al., 2007;
Taylor et al., 2010) and selective disruptions of predictive
adjustments during split belt locomotion (Bastian, 2006; Morton
and Bastian, 2006).

In healthy subjects, functional imaging reveals changes
in cerebellar activation following motor learning, further
supporting the postulate that the cerebellum is the locus for the
acquisition and storage of internal models of the musculoskeletal
system (Shadmehr and Holcomb, 1997; Imamizu et al., 2000;
Diedrichsen et al., 2005; Bursztyn et al., 2006; Tseng et al.,
2007). To illustrate with a specific study, one experiment
required participants to perform a ballistic hand movement
and use their thumb to press a button at a fixed time
interval relative to movement onset. The results reveal that
control of the thumb was based on an internal representation
of relative time if the time interval was longer than the
movement period. Conversely, thumb control was based on
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FIGURE 1 | Implicit and explicit mechanisms of motor adaptation. (A) The canonical motor-learning curve, including baseline (period 1), adaptation to a sensorimotor
perturbation (period 2), and return to baseline (period 3). (B) Following the first trial after introducing the perturbation (denoted by the black X), subjects are taught to
compensate for the rotation by aiming away from the target, towards an additional marker, resulting in immediate task success. In subsequent trials, performance
deteriorates due to implicit learning. (C) In an extended training period, task performance is eventually restored by strategy adjustments. An after-effect, indicative of
implicit learning is revealed when the participants aim directly to the target and the perturbation is turned off. (D) Measuring strategy use during adaptation to a
visuomotor rotation task. Before movement, participants explicitly report their aim. The implicit learning magnitude is the difference between aiming angle and actual
end-point angle. (E) The explicit strategy (Aim) is responsible for a large immediate contribution following the perturbation that declines with time. Implicit learning
(Adaptation) is slower and monotonic and matches the magnitude of the initial aftereffect. Adapted with permission from McDougle et al. (2016). (F) Schematics of
the forward internal model hypothesis. Based on inputs from the motor cortex (Motor Command) and sensory system (Sensory Feedback), the cerebellar cortex
(symbolized by the blue box) implements two independent forward models, an implicit one for the effector (coded in black) and an explicit one for the task strategy
(coded in red). These models provide sensory predictions in two different spaces: one effector-related (kinematic predictions) and one task-related (task performance
predictions). These sensory predictions are compared with the correspondent sensory feedback to compute sensory prediction errors in both spaces. Sensory
prediction errors are used to independently update each internal model. The cerebellar output, integrating all sensory prediction errors, is used to update the Motor
Controller.
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a state estimation of the arm if the time interval overlapped
with the arm movement. Consistent with the forward model
hypothesis, the cerebellum was selectively activated when state
estimation was required by the task (Diedrichsen et al., 2007).
Imaging studies also demonstrate strong cerebellar activation
by motor errors, both task performance errors (Flament et al.,
1996; Imamizu et al., 2000; Diedrichsen et al., 2005; Grafton
et al., 2008) and sensory prediction errors (Schlerf et al.,
2012). These are essential signals for the formation and
modification of internal models. Finally, transient cerebellar
disruption using transcranial magnetic stimulation induces
movement perturbations that can be accounted for by the
cerebellum making a prediction of the kinematic state of
the arm at a lead time of 130 ms (Miall et al., 2007), as
expected if the cerebellum implements a forward internal
model.

IMPLICIT AND EXPLICIT CONTRIBUTIONS
TO MOTOR LEARNING

Explicit or declarative information processing occurs under
conscious control, for example following a verbal instruction on
how to execute a motor task. Implicit or procedural information
processing is automatic and manifest in skill performance, such
as experience driven improvement in motor output (Haith and
Krakauer, 2018). Historically, motor learning was considered as
purely an implicit process, solely based on updating an effector
forward internal model (Figure 1A). However, during motor
adaptation, there are both explicit and implicit contributions
with different effects and implications for cerebellar forward
internal models.

An elegant experiment successfully decoupled the
contributions of implicit and explicit processes on motor
learning. In a reaching task the visual feedback was perturbed
by introducing a constant angular rotation between the hand
and cursor positions. In the second trial after introducing this
visuomotor rotation, the subjects were instructed to change the
aim of the movement to compensate for the visual perturbation.
This explicit strategy immediately restored task performance
by minimizing the end-point errors, defined as the angular
distance between target and cursor. However, in subsequent
trials end-point errors gradually increased, reflecting the normal
motor adaptation that occurs during visuomotor rotation
(Mazzoni and Krakauer, 2006; Figure 1B).

This unexpected result challenged the canonical view of
motor learning and required a closer look at motor errors.
Implicit sensory prediction errors, defined as the difference
between the forward model predictions of the kinematics of
the arm and the corresponding sensory feedback and, measured
in this experiment as the difference between direction of arm
movement and direction of cursor movement, are maximal in
early perturbed trials. In contrast, end-point error is minimal
because the explicit strategy counteracts the perturbation. The
findings demonstrate that sensory prediction errors computed
in effector-related space drive implicit motor adaptation, as
predicted by the forward internal model hypothesis and that
implicit learning occurs relatively independently from task

performance, as defined by the end-point errors. Conversely,
a task performance measure is computed in a task-related
space and reflects both the kinematic sensory prediction errors
and the explicit strategy. The results establish a functional
segregation between an effector-related domain involved in
implicit processes and a task-related domain related to explicit
strategies. However, when adaptation is allowed to progress
over a large number of trials, task performance errors plateau
and then decrease (Taylor and Ivry, 2011; Figure 1C). This
non-monotonic distribution of task performance allows for
several possible explanations. One would be that subjects
decide to disregard the instructions received. This would
result in abrupt changes in task performance unlike the
gradual recovery of the end-point errors observed. A model
that fits the data adds to the implicit learning driven by
kinematic error prediction, an explicit learning strategy driven
by task performance. In this scenario, the implicit and explicit
adaptation processes compensate each other to restore task
accuracy.

To further elucidate the contribution of explicit strategies,
in a series of newer studies of adaptation to visuomotor
rotation, subjects were required to report their reach aim
before movement in the absence of prior knowledge about
the perturbation (Taylor et al., 2014; Bond and Taylor, 2015).
In contrast with previous studies (Taylor and Ivry, 2011),
the declarative contribution was measured by the verbally
reported aim direction. The difference between aim and end
point directions served as a measure of implicit adaptation,
as the subjects endeavored to reach the target (Figure 1D).
In these conditions an explicit strategy emerges, counteracting
the imposed rotation and contributing in parallel with the
implicit adaptation to the motor learning, consistent with the
observations of the previous experiment. The implicit adaptation
is a slow monotonic process and context independent as it is
driven by sensory prediction errors computed in an effector
centered domain. The explicit learning is faster, driven by task
performance errors, exploratory, responsive to changing task
demands, accounts for a large fraction of the improvement
throughout the learning process (Figure 1E) and involves the
cerebral cortex as diminished prefrontal function increases task
error drift (Taylor and Ivry, 2014; Taylor et al., 2014; Bond
and Taylor, 2015). The implicit process is thought to reflect the
updating of a cerebellar forward model of the arm while the
explicit strategy is thought to be under frontal control, at least
in the early phase of learning, and reflects strategic planning and
action selection (McDougle et al., 2016). Patients with cerebellar
pathology when given a declarative strategy that accounts for the
visuomotor rotation lack the after effects associated with motor
adaptation and lack the gradual degrading in task performance
present in the healthy subjects, confirming that intact cerebellar
function is required for implicit motor adaptation (Taylor et al.,
2010). One surprising observation is that the emergence of the
explicit strategy depends on the cerebellar function (Butcher
et al., 2017). As motor adaptation unfolds in both implicit and
explicit domains, this raises the question whether are there
representations of both of these processes in the discharge of
cerebellar neurons?

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 524

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Popa and Ebner Cerebellum, Predictions and Errors

INFORMATION PROCESSING IN
CEREBELLAR NEURONS FOR IMPLICIT
AND EXPLICIT FORWARD INTERNAL
MODELS

Strong support for cerebellar involvement in forward models
and in computing sensory prediction errors is emerging from
studying the activity of cerebellar neurons. The output of
a well-tuned forward model should be relatively insensitive
to sensory reafferents due to self-generated movements, as
the predictions should closely match the sensory feedback.
Conversely, the output should be highly sensitive to passive
movements or unexpected perturbations. During passive
movement sensory feedback dominates in the absence of motor
commands and during perturbations the model predictions
predicted will be poorly matched with the actual feedback. These
expectations for a forward internal model were successfully
tested in the rostral fastigial nucleus. The discharge of these
neurons have higher sensitivity to passive movements compared
to comparable self-generated movements (Brooks and Cullen,
2013). Moreover, when the head movement is perturbed by
external forces, the initially high sensitivity of fastigial neurons
gradually decreases, mirroring the adaptation that occurs in
head movement (Brooks et al., 2015). Together these results are
consistent with the output of an effector forward model that
adapts its predictions to minimize sensory prediction errors.

What about the discharge of Purkinje neurons, the final
stage in the information processing of the cerebellar cortex
and the only output? Within the framework of the forward
internal model hypothesis, we proposed that Purkinje cell
firing represents both the predictions of the motor command
consequences and the corresponding sensory feedback (Popa
et al., 2013, 2016a). For an effector forward model, both the
prediction and the sensory feedback are thought to be expressed
in the effector kinematics space (Wolpert et al., 1995; Miall and
Wolpert, 1996).

Purkinje cell simple spike (SS) discharge modulates with
and is correlated to upcoming eye and arm kinematics in
a variety of motor behaviors (for reviews, see Ebner and
Pasalar, 2008; Ebner et al., 2011). Conversely, SSs modulate
with limb kinematics during passive movements, arguing for
sensory feedback encoding. The wide timing distribution of SS
firing relative to movement, spanning both feedforward and
feedback timing with a mean hovering around 100 ms prior
to movement, suggests a bias in favor of predictive kinematic
representations (Hewitt et al., 2011). More compelling evidence
for a forward model is the observation that SS activity is strongly
linked to the kinematic consequences of the motor commands
and not to the dynamic output of the motor plant (Pasalar
et al., 2006). Also, kinematic representations in the SS firing
are conserved across different behaviors (Roitman et al., 2005;
Hewitt et al., 2011). These findings offer support, but not proof,
of the concept that the cerebellar cortex realizes a forward
model of the arm.

A better understanding of the nature and temporal aspects of
Purkinje cell representations requires a task that imposes robust

and sustained online error processing and allows a decoupling of
past and future states. These requirements were fulfilled by using
a pseudo-random, manual tracking task (Hewitt et al., 2011;
Popa et al., 2012, 2017). Purkinje cell recordings during pseudo-
random tracking confirm that SS firing encodes arm movement
kinematics including position, velocity, and acceleration (Hewitt
et al., 2011; Popa et al., 2012, 2017; Streng et al., 2017). The
use of linear regression analyses in which we first removed
the contribution of all motor parameters from the SS firing
except the parameter of interest and then evaluated the relation
between the parameter of interest and the residual SS firing
show that these kinematic signals are independently represented,
and that individual Purkinje cells simultaneously encode several
kinematic parameters (Popa et al., 2012, 2017).

The utility of the pseudo-random tracking paradigm is best
revealed by establishing the predictive and feedback encoding
of kinematics by Purkinje cells (Popa et al., 2012, 2017). The
predictive and feedback modulation is illustrated in the sequence
of firing maps of SS modulation with velocity across a range
of time shifts (i.e., τ-values) as shown in Figure 2A. In this
example, SS firing relative to the mean firing precedes hand
velocity, with higher firing in the lower left quadrant that
reaches a maximum at a feedforward timing of −120 ms.
At feedback lag, a reciprocal SS modulation pattern emerges,
with peak firing in the upper right quadrant at approximately
200 ms. Temporal linear regressions of the SS discharge with
each behavioral parameter provide quantitative measures of the
temporal relationship (τ-value) and the correlation strength (R2

and regression coefficient-β; Hewitt et al., 2011; Popa et al.,
2012). For this Purkinje cell, the velocity R2 and β profiles
(Figures 2B,C, respectively) characterize the feedforward and
feedback SS encoding, with local maxima at the leads and lags
corresponding to the timing of the maximal modulations in
the firing maps (Figure 2A). The lead and lag correlations are
well above chance, as determined by regressions of the trial
randomized data. Approximately, 70% of Purkinje cells exhibit
this bi-modal profile with kinematics. We interpret these SS
modulation profiles as the predictive and feedback constituents
of the sensory prediction error computed by an implicit forward
internal model of the arm.

Importantly, pseudo-random tracking provides additional
insights into Purkinje cell representations. As the monkeys
track the moving target, they attempt to maintain the cursor
in the target center. The task also requires that the monkeys
correct cursor excursions outside the target within 500 ms.
This provides for several natural and continuous measures of
performance errors including position error (components of
the position error vector defined by the cursor and target
center positions), radial error (magnitude of the position error
vector) and direction error (angle between the current cursor
position and the target center; Popa et al., 2012, 2017). The SS
firing encodes these error parameters using bimodal, predictive-
feedback representations. The firing maps of a Purkinje cell
(Figure 2D) shows that the SS discharge leads position error
from −300 ms to −100 ms, as the highest firing occurs in
the lower left quadrant. The SS firing also lags position error
from 300 ms to 500 ms when the highest firing occurs in the
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FIGURE 2 | Time course of the simple spike (SS) modulation with behavioral parameters during pseudo-random tracking. (A) Color coded maps of the SS firing,
relative to the overall mean, for an example Purkinje cell in the velocity space (Vx, Vy) at different lead/lags (τ). Negative τ represents the firing leading velocity. (B) For
the cell in (A), the R2 for Vx as a function of lead/lag (τ) reveals modulation at both feedforward and feedback timing. The red trace shows the mean of the control
regressions computed on trial shuffled data (100 repetitions). The dashed red trace is the mean +3 SD of the control regressions. On the R2 temporal profiles
asterisks (∗) indicate the leads/lags of the corresponding SS firing maps in (A). (C) For the same neuron, the regression coefficients for Vx (βVx ) are plotted as a
function of τ. The sign change in βVx represents the reversal in the firing sensitivity at feedforward lead compared to feedback lag. (D) SS firing maps of another
example Purkinje cell with position error (XE, YE) at different leads/lags (τ). Target depicted by black circles. Same conventions as in (A). (E,F) For the cell in (D), the
temporal profiles for the R2 (E) and regression coefficients (βXE) for XE (F) exhibit predictive and feedback local maxima. βXE shows the reversal in the SS firing
sensitivity at lead compared to lag timings (F). Conventions for red lines as in (B). Adapted with permission from Popa et al. (2016a).

upper right quadrant. The R2 and β profiles (Figures 2E,F,
respectively) for the x-component (XE) of position error
have local maxima at −220 and 440 ms (Figures 2E,F,
respectively). For a large majority of the Purkinje cells, the
SS discharge signals at least one of these performance error
parameters.

At the population level, the strength of performance error
encoding is robust and comparable to the encoding of
kinematics. Also, there is no segregation of Purkinje cells
into error or kinematic subpopulations, showing that the
integration of the task errors and kinematics occurs at the
individual cell level (Popa et al., 2012). As mentioned before,
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FIGURE 3 | Effects of feedback manipulations on behavioral parameters encoding by SS discharge. (A) R2 temporal profiles for an example Purkinje cell SS firing
regressed with position error during delay cursor delay (baseline—black trace, 200 ms delay—green trace). The predictive encoding shifts to more negative τ-values
while the timing of the feedback modulation does not change. (B) R2 temporal profiles for an example Purkinje cell SS firing regressed with position error during the
hidden cursor condition (baseline—black trace, hidden cursor—red trace). The reduction in visual feedback decreases the strength of the feedback encoding of
position error but not the predictive encoding. (C) R2 temporal profiles for an example Purkinje cell SS firing regressed with velocity during cursor delay
(baseline—black trace, 100 ms delay—green trace). (D) R2 temporal profiles for an example Purkinje cell SS firing regressed with velocity during the hidden cursor
condition (baseline—black trace, hidden cursor—red trace). The kinematic representations are not changed by either manipulation of the visual feedback. Adapted
with permission from Streng et al. (2018b).

the pseudo-random tracking task uncouples the past and future
behavioral states, thus unveiling that the SS dual representations
of individual error parameters, including a pair of predictive
and feedback signals with opposing modulations, are ubiquitous
in the Purkinje cells population (Popa et al., 2012). As these
performance error signals are task-related and independent
of kinematics, we interpret these modulation profiles as the
feedforward and feedback elements computed by a forward
internal model of a task specific, explicit strategy (Popa et al.,
2013, 2014).

To establish that Purkinje cells provide the output of a forward
internal model of performance errors it needs to be shown
that the feedforward signals are the predicted consequences
of the motor commands while the feedback signals reflect
the sensory input. To test these requirements, Purkinje cell
recordings during a modified pseudo-random tracking involving
two perturbations of the visual feedback (Streng et al., 2018b).
The first manipulation introduced delays between hand and
cursor movements. If the feedforward modulation of position
error is driven by the motor commands, the prediction will
occur earlier relative to the cursor and the temporal shift should

match the imposed delay. However, the feedback signal timing,
being based on visual sensory input, will not be affected. The
results confirmed these expectations, as shown for an example
Purkinje cell in which the cursor delay shifts the predictive
timing of the position error modulation, as determined by the
local maxima in the R2 temporal profile, to more negative
τ-values while the timing of the feedback modulation does not
change (Figure 3A). The second manipulation hid the cursor
while inside the target, thus reducing the visual feedback during
task execution (Hidden cursor condition). The expectations
were that the SS feedback modulation inside the target will be
reduced as a result of reduced visual input, while the predictive
modulation, driven by efferent copies of themotor commandwill
not be affected. Again, the experimental findings confirmed the
expectations based on a forward internal model of performance
errors, with a decrease in the strength of the feedback
encoding of position error but not the predictive encoding
(Figure 3B). Moreover, the kinematic representations were not
affected by either manipulation (Figures 3C,D), confirming the
independence of the error and kinematic representations in the
SS firing.
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FIGURE 4 | During hold periods SS firing correlates with movement parameters during track period. (A) SS firing (inset) during the initial hold period prior to tracking
(gray shadow) from an example trial matched to position (specifically X-position) at τ values spanning 0 to −2,000 ms illustrated by the sliding window. Note that the
window length is equal in duration to the initial hold period. Colored traces illustrate the X sliding window at different times: black (0 ms), pink (−500 ms), blue
(−1,000 ms), green (−1,500 ms), and red (−2,000 ms). (B) For the SS discharge of this neuron, the R2 obtained from correlating firing rate with X-position across all
trials is shown as a function of time (τ). The key observation is that the SS firing in the hold period encodes information about the upcoming position. (C) SS
discharge rate (inset) during the final hold period (gray shadow) matched to position error (specifically YE) recorded in both track (gray) and final hold (black) periods
using a sliding window of the same duration as the final hold period spanning from 0 to 2,000 ms. Colored traces illustrate the YE sliding window at different times:
black (0 ms), pink (500 ms), blue (1,000 ms), green (1,500 ms), and red (2,000 ms). (D) For this Purkinje cell, plot of the R2 as a function of time (τ) from regressing
SS with YE across all trials. Here the critical observation is that the firing in the hold period contains position error information about the just completed track period.
Direction of recording time is indicated by bottom arrows in (A,C). For (B,D), conventions for the colored dots conventions are as in (A,C), respectively. Chance
encoding (red traces) and conventions for τ values, as in Figure 2. Adapted with permission from Popa et al. (2017).

The results described above focused on the SS activity
centered on current movement (±500 ms). However, the
pseudo-random tracking task also allowed a determination of
the relation between Purkinje cell firing and the behavior over
longer time intervals (Popa et al., 2017). Both kinematic and task
performance parameters were found to be represented in the SS
firing at leads and lags spanning 2,000 ms before to 2,000 ms
after the movement. We refer to these extended predictive and
feedback modulations as ‘‘long-range signals.’’ During tracking,
these long-range signals allowed decoding of the individual
behavioral parameters, kinematic and task performance, with
remarkable accuracy, well above the random level. Moreover,
during the periods preceding (Figures 4A,B) and following
tracking (Figures 4C,D), when the monkeys were required to
hold the cursor within a stationary target, the SS activity encoded
expectations or memories of both kinematics and performance
errors (Popa et al., 2017).

The long-range signals of effector states and task performance
following a movement are consistent with a form of working
memory that can bridge the inter-trial intervals as expected by
the cerebellar involvement in generating the explicit strategy.
The long-range predictive signals are consistent with planning

and action expectations that could be used to seed the forward
model acquisition. Long-range preparatory Purkinje cells activity
could be used for evidence accumulation prior to movement,
as observed in a task requiring mice to make a left-right
decision (Deverett et al., 2018). Support for these long-range
signals likely involves the cerebellum’s closed-loops connections
with numerous regions in the cerebral cortex (for reviews, see
Schmahmann and Pandya, 1997; Strick et al., 2009; Bostan et al.,
2013; Lena, 2016). Further, a network relying on hippocampal-
cerebellar interactions is involved in learning sequence-based
navigation in mice (Babayan et al., 2017). These findings argue
for the cerebellar involvement in persistent activity loops with the
cerebral cortex related to higher functions.

ROLE FOR COMPLEX SPIKES IN
PREDICTIONS, ERROR PROCESSING AND
FORWARD MODELS

One of the more prominent hypotheses of cerebellar function
is that complex spikes (CSs) are the sole conduits of error
information and those error signals drive motor learning
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(Marr, 1969; Albus, 1971; Oscarsson, 1980; Ito and Kano, 1982).
While supported by several studies (for reviews, see Ito, 2002;
Gao et al., 2012), the hypothesis that CS discharge primarily
provides error information critical for motor learning does not
cover accurately the spectrum of experimental observations.
Many studies failed to find error signals in the firing of inferior
olivary neurons or in the CS discharge (for reviews, see Catz
et al., 2005; Llinás, 2014; Popa et al., 2016b; Streng et al., 2018a).
In addition there are multiple demonstrations of cerebellar
learning that is independent of climbing fiber input (Boyden
et al., 2004; Ke et al., 2009; Nguyen-Vu et al., 2013; Shin et al.,
2014; Hewitt et al., 2015).

CSs also convey parametric information related to
movements contrasting with the error signaling hypothesis.
For example, climbing fiber input modulates with eye and head
movements induced by vestibulo-ocular rotation in the dark,
when the retinal slip is absent (Winkelman et al., 2014), with
movement kinematics during ocular pursuit (Kobayashi et al.,
1998) and with reach kinematics (Fu et al., 1997; Kitazawa et al.,
1998). Moreover, during pseudo-random tracking CS firing
modulates strongly with arm kinematics including position,
velocity, and acceleration, showing that climbing fiber input
signals movement information beyond motor errors (Streng
et al., 2017).

Although typically thought to be primarily driven by
feedback errors, during pseudo-random tracking, climbing
fiber modulation leads both kinematics and performance
errors (Streng et al., 2017). Furthermore, at the population
level feedforward CS activity is more frequent than feedback
modulation. Others have observed this predictive property, as
CSs modulate with eye performance inferred errors (Frens
et al., 2001; Winkelman and Frens, 2006; Winkelman et al.,
2014), anticipatory errors in eye blink conditioning (Ohmae
and Medina, 2015) and with learned sensorimotor predictions
of reward (Heffley et al., 2018). Together these observations
demonstrate the need to reconsider the view that CSs only
convey information about feedback errors and acknowledge
the robust kinematic information carried by the climbing fiber
input. Therefore, the dominant view that SS and CS discharge
carry functionally unique signals cannot withstand a detailed
examination.

The roles played by climbing fiber input in motor learning
and error signaling are under reconsideration (Catz et al., 2005;
Streng et al., 2018a). Taking into account that spontaneous
CS firing is essential for cerebellar function and climbing
fiber input results in a global depolarization that is likely
to alter how Purkinje cells process parallel fiber input (for
review, see Kitamura and Kano, 2013; Streng et al., 2018a),
we hypothesized that climbing fiber input to Purkinje cells
modulates the information present in the SS firing (Streng et al.,
2017). An examination of the SS firing encoding uncovered
that CSs trigger robust, step-like changes in the kinematic
and position error signals present in the SS discharge. This
control over a Purkinje cell’s encoding state is hypothesized
to optimize motor performance and/or compensate for drifts
in the SS representations and is consistent with climbing fiber
input providing both error and non-error information as well

as predictive encoding (Streng et al., 2018a). These findings
also account for spontaneous CSs firing as a mechanism to
provide SS encoding homeostasis. Consistent with the CSs
playing a homeostatic role in spontaneous SS firing, earlier
studies showed that removal or stimulation of climbing fiber
input produces dramatic and long-term changes in the SS firing
(Colin et al., 1980; Montarolo et al., 1982; Cerminara and
Rawson, 2004). Moreover, the rapid changes in SS encoding
suggest that CS discharge directs an internal model selection
process, allowing cerebellar cortical output to accommodate to
changes in behavioral conditions.

IMPLICATIONS FOR CEREBELLUM
PROVIDING BOTH IMPLICIT AND
EXPLICIT MODELS

The encoding of kinematic and performance errors in the
discharge of Purkinje cells supports the simultaneous presence
of cerebellar effector and task-specific forward models. When
visual feedback was disrupted, the predictive and feedback SS
modulations are mismatched (Streng et al., 2018b). However, the
animals can still perform the task and previous psychophysical
studies found that the motor system continues to generate
accurate predictions during altered visual feedback (Kumar and
Mutha, 2016). The invariance in the SS kinematic signals as well
as the constancy of the task error predictions (Figure 3) argue
that the internal models are making precise estimates of the
consequences of the motor command based on the present states
of the effector and target, allowing the animals to perform skilled
behaviors even with sub-optimal visual feedback.

The independence of arm kinematics and task performance
forward models is consistent with recent psychophysical results.
When subjects were asked to intercept their moving index finger
with the index of the other hand in the absence of visual feedback,
there was no difference in performance whether the target finger
was moving voluntarily or passively (Darling et al., 2018). This
result was interpreted as evidence that forward internal models
are not necessary for state estimation. However, the task in
this psychophysical study is similar to the hidden condition
during pseudo-random tracking by primarily providing sensory
feedback about target kinematics. Under these conditions, the
effector and task performance forward internal models work in
concert to preserve the task performance in noisy conditions.

The presence of arm and task performance forward models
integrated at the Purkinje cell level could provide insights into
motor learning as presented in Figure 1. The effector forward
model operates in the kinematics domain and is consistent with
the classical view of implicit motor learning (Figure 1A). The
task model operates in the task performance domain and is
consistent with a forward model of the explicit strategy (see
Figure 1E). In this view, in the initial phase of adaptation
only the effector model is updated to exclusively minimize the
sensory prediction errors related to kinematic parameters, while
the explicit strategy, under cerebral cortical control (McDougle
et al., 2016), is conserved. As a result, the implicit learning
progresses to the detriment of task performance (Figure 1B).
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In the late stages of adaptation, the cerebellum acquires and
updates forward models of the explicit strategy. Based on the
motor command, both forward models provide predictions and
compute sensory prediction errors, simultaneously optimizing
the effector response and the action outcome (see Figure 1C).
This two stage hypothesis for the explicit strategy is also
consistent with the observation that working memory load
interferes with motor learning in the early phase but not in latter
phase of motor learning (Keisler and Shadmehr, 2010).

An important aspect of brain function is skilled performance.
Skilled behavior requires fast execution, decreased sensitivity
to perturbations and reduced cognitive effort (Ramnani, 2014;
Haith and Krakauer, 2018). Skilled behavior is thought to
involve the acquisition of task-specific cerebellar forward models
(Ramnani, 2014), consistent with the task performance forward
model observed during pseudo-random tracking. These models,
once established and refined by over-training, could be conserved
over long period of time without reconsolidation.

IMPLICATIONS FOR GENERATIVE
MODELS

Recent attempts at a unifying framework of brain function
hypothesize that the CNS acts as a predictive machine (Friston,
2010; Picard and Friston, 2014). The brain improves its belief
and hypotheses about the world by continuously generating
predictions about inputs, comparing those predictions with
results and acting to minimize prediction errors. The
theory posits that the brain is organized hierarchically
into generative models in which higher levels provide
predictions to lower level models and the higher levels use
sensory prediction errors from the lower level as inputs to
update the predictions (Picard and Friston, 2014). In this
framework, perception is understood as inferring causes to
sensations by minimizing sensory prediction errors, and
action is understood as minimizing sensory prediction errors
between expected consequences of action and sensations
(Friston, 2010; Aggelopoulos, 2015; Barrett and Simmons,
2015; O’Callaghan et al., 2017). The prediction hypothesis and

generative model architecture are being applied to a multitude
of brain functions including representation of self (Moutoussis
et al., 2014; Picard and Friston, 2014), theory of the mind
(Picard and Friston, 2014), and mental disorders (Sterzer et al.,
2018a,b).

Cerebellar forward internal models have been proposed as an
example of generative models (Pickering and Clark, 2014). The
connectivity between the cerebellum and cerebral cortex noted
above provides the substrate for recursive network interactions
between the two structures, and suggest possible candidates
for such hierarchical levels. One of the open issues in this
framework is the integration of the cerebellar forward models
in the larger cognitive architecture, hinging on whether and
how cerebellar models integrate context dependent outputs. The
observation that the cerebellar cortex encodes simultaneously
forward models of arm kinematics and task performance errors
supports the hypothesis that the behavioral context is reflected
in the cerebellar activity (see Figure 1F). The independence
of the kinematic and task specific models suggests that the
cerebellum can engage and update combinations of different
forward internal models depending on the behavioral context.
This could provide a ‘‘complete’’ control mechanism, integrating
execution accuracy and outcome, allowing fast execution of
complex behaviors in variable contexts.

AUTHOR CONTRIBUTIONS

LP and TE jointly wrote the review.

FUNDING

This work was supported in part by National Institutes of Health
(NIH) grant R01 NS18338.

ACKNOWLEDGMENTS

We would like to thank Kathleen Beterams for her help with the
manuscript.

REFERENCES

Aggelopoulos, N. C. (2015). Perceptual inference. Neurosci. Biobehav. Rev. 55,
375–392. doi: 10.1016/j.neubiorev.2015.05.001

Albus, J. S. (1971). A theory of cerebellar function. Math. Biosci. 10, 25–61.
doi: 10.1016/0025-5564(71)90051-4

Babayan, B. M., Watilliaux, A., Viejo, G., Paradis, A. L., Girard, B., and Rondi-
Reig, L. (2017). A hippocampo-cerebellar centred network for the learning and
execution of sequence-based navigation. Sci. Rep. 7:17812. doi: 10.1038/s41598-
017-18004-7

Barrett, L. F., and Simmons, W. K. (2015). Interoceptive predictions in the brain.
Nat. Rev. Neurosci. 16, 419–429. doi: 10.1038/nrn3950

Bastian, A. J. (2006). Learning to predict the future: the cerebellum adapts
feedforward movement control. Curr. Opin. Neurobiol. 16, 645–649.
doi: 10.1016/j.conb.2006.08.016

Bond, K. M., and Taylor, J. A. (2015). Flexible explicit but rigid implicit learning in
a visuomotor adaptation task. J. Neurophysiol. 113, 3836–3849. doi: 10.1152/jn.
00009.2015

Bostan, A. C., Dum, R. P., and Strick, P. L. (2013). Cerebellar networks with the
cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254. doi: 10.1016/j.
tics.2013.03.003

Boyden, E. S., Katoh, A., and Raymond, J. L. (2004). Cerebellum-dependent
learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27,
581–609. doi: 10.1146/annurev.neuro.27.070203.144238

Brooks, J. X., Carriot, J., and Cullen, K. E. (2015). Learning to expect the
unexpected: rapid updating in primate cerebellum during voluntary self-
motion. Nat. Neurosci. 18, 1310–1317. doi: 10.1038/nn.4077

Brooks, J. X., and Cullen, K. E. (2013). The primate cerebellum selectively encodes
unexpected self-motion.Curr. Biol. 23, 947–955. doi: 10.1016/j.cub.2013.04.029

Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M., and Flanagan, J. R.
(2006). Neural correlates of internal-model loading. Curr. Biol. 16, 2440–2445.
doi: 10.1016/j.cub.2006.10.051

Butcher, P. A., Ivry, R. B., Kuo, S. H., Rydz, D., Krakauer, J. W., and Taylor, J. A.
(2017). The cerebellum does more than sensory prediction error-based
learning in sensorimotor adaptation tasks. J. Neurophysiol. 118, 1622–1636.
doi: 10.1152/jn.00451.2017

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 January 2019 | Volume 12 | Article 524

https://doi.org/10.1016/j.neubiorev.2015.05.001
https://doi.org/10.1016/0025-5564(71)90051-4
https://doi.org/10.1038/s41598-017-18004-7
https://doi.org/10.1038/s41598-017-18004-7
https://doi.org/10.1038/nrn3950
https://doi.org/10.1016/j.conb.2006.08.016
https://doi.org/10.1152/jn.00009.2015
https://doi.org/10.1152/jn.00009.2015
https://doi.org/10.1016/j.tics.2013.03.003
https://doi.org/10.1016/j.tics.2013.03.003
https://doi.org/10.1146/annurev.neuro.27.070203.144238
https://doi.org/10.1038/nn.4077
https://doi.org/10.1016/j.cub.2013.04.029
https://doi.org/10.1016/j.cub.2006.10.051
https://doi.org/10.1152/jn.00451.2017
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Popa and Ebner Cerebellum, Predictions and Errors

Catz, N., Dicke, P. W., and Thier, P. (2005). Cerebellar complex spike firing
is suitable to induce as well as to stabilize motor learning. Curr. Biol. 15,
2179–2189. doi: 10.1016/j.cub.2005.11.037

Cerminara, N. L., and Rawson, J. A. (2004). Evidence that climbing fibers
control an intrinsic spike generator in cerebellar Purkinje cells. J. Neurosci. 24,
4510–4517. doi: 10.1523/JNEUROSCI.4530-03.2004

Colin, F., Manil, J., and Desclin, J. C. (1980). The olivocerebellar system.
I. Delayed and slow inhibitory effects: an overlooked salient feature of
cerebellar climbing fibers. Brain Res. 187, 3–27. doi: 10.1016/0006-8993(80)
90491-6

Darling, W. G., Wall, B. M., Coffman, C. R., and Capaday, C. (2018). Pointing
to one’s moving hand: putative internal models do not contribute to
proprioceptive acuity. Front. Hum. Neurosci. 12:177. doi: 10.3389/fnhum.2018.
00177

Deverett, B., Koay, S. A., Oostland, M., and Wang, S. S. (2018). Cerebellar
involvement in an evidence-accumulation decision-making task. Elife 7:e36781.
doi: 10.7554/eLife.36781

Diedrichsen, J., Criscimagna-Hemminger, S. E., and Shadmehr, R. (2007).
Dissociating timing and coordination as functions of the cerebellum.
J. Neurosci. 27, 6291–6301. doi: 10.1523/JNEUROSCI.0061-07.2007

Diedrichsen, J., Hashambhoy, Y., Rane, T., and Shadmehr, R. (2005).
Neural correlates of reach errors. J. Neurosci. 25, 9919–9931.
doi: 10.1523/JNEUROSCI.1874-05.2005

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia
and the cerebral cortex? Neural Netw. 12, 961–974. doi: 10.1016/s0893-
6080(99)00046-5

Ebner, T. J., Hewitt, A. L., and Popa, L. S. (2011).What features of limbmovements
are encoded in the discharge of cerebellar neurons? Cerebellum 10, 683–693.
doi: 10.1007/s12311-010-0243-0

Ebner, T. J., and Pasalar, S. (2008). Cerebellum predicts the future motor state.
Cerebellum 7, 583–588. doi: 10.1007/s12311-008-0059-3

Flament, D., Ellermann, J. M., Kim, S.-G., Ugurbil, K., and Ebner, T. J. (1996).
Functional magnetic resonance imaging of cerebellar activation during the
learning of a visuomotor dissociation task. Hum. Brain Map. 4, 210–226.
doi: 10.1002/hbm.460040302

Flanagan, J. R., and Wing, A. M. (1997). The role of internal models in motion
planning and control: evidence from grip force adjustments during movements
of hand-held loads. J. Neurosci. 17, 1519–1528. doi: 10.1523/jneurosci.17-04-
01519.1997

Frens, M. A., Mathoera, A. L., and van der, S. J. (2001). Floccular complex spike
response to transparent retinal slip. Neuron 30, 795–801. doi: 10.1016/s0896-
6273(01)00321-x

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Fu, Q. G., Mason, C. R., Flament, D., Coltz, J. D., and Ebner, T. J. (1997).
Movement kinematics encoded in complex spike discharge of primate
cerebellar Purkinje cells. Neuroreport 8, 523–529. doi: 10.1097/00001756-
199701200-00029

Gao, Z., van Beugen, B. J., and De Zeeuw, C. I. (2012). Distributed
synergistic plasticity and cerebellar learning. Nat. Rev. Neurosci. 13, 619–635.
doi: 10.1038/nrn3312

Golla, H., Tziridis, K., Haarmeier, T., Catz, N., Barash, S., and Thier, P.
(2008). Reduced saccadic resilience and impaired saccadic adaptation due to
cerebellar disease. Eur. J. Neurosci. 27, 132–144. doi: 10.1111/j.1460-9568.2007.
05996.x

Grafton, S. T., Schmitt, P., Van, H. J., and Diedrichsen, J. (2008). Neural substrates
of visuomotor learning based on improved feedback control and prediction.
Neuroimage 39, 1383–1395. doi: 10.1016/j.neuroimage.2007.09.062

Guthrie, B. L., Porter, J. D., and Sparks, D. L. (1983). Corollary discharge provides
accurate eye position information to the oculomotor system. Science 221,
1193–1195. doi: 10.1126/science.6612334

Haith, A. M., and Krakauer, J. W. (2018). The multiple effects of practice:
skill, habit and reduced cognitive load. Curr. Opin. Behav. Sci. 20, 196–201.
doi: 10.1016/j.cobeha.2018.01.015

Heffley, W., Song, E. Y., Xu, Z., Taylor, B. N., Hughes, M. A., McKinney, A.,
et al. (2018). Coordinated cerebellar climbing fiber activity signals learned
sensorimotor predictions. Nat. Neurosci. 21, 1431–1441. doi: 10.1038/s41593-
018-0228-8

Hewitt, A. L., Popa, L. S., and Ebner, T. J. (2015). Changes in Purkinje cell
simple spike encoding of reach kinematics during adaptation to a mechanical
perturbation. J. Neurosci. 35, 1106–1124. doi: 10.1523/JNEUROSCI.2579-
14.2015

Hewitt, A., Popa, L. S., Pasalar, S., Hendrix, C. M., and Ebner, T. J.
(2011). Representation of limb kinematics in Purkinje cell simple spike
discharge is conserved across multiple tasks. J. Neurophysiol. 106, 2232–2247.
doi: 10.1152/jn.00886.2010

Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., et al. (2000).
Human cerebellar activity reflecting an acquired internal model of a new tool.
Nature 403, 192–195. doi: 10.1038/35003194

Ito, M. (2002). Historical review of the significance of the cerebellum and the
role of Purkinje cells in motor learning. Ann. N Y Acad. Sci. 978, 273–288.
doi: 10.1111/j.1749-6632.2002.tb07574.x

Ito,M., and Kano,M. (1982). Long-lasting depression of parallel fiber-Purkinje cell
transmission induced by conjunctive stimulation of parallel fibers and climbing
fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258. doi: 10.1016/0304-
3940(82)90380-9

Johansson, R. S., and Cole, K. J. (1992). Sensory-motor coordination during
grasping and manipulative actions. Curr. Opin. Neurobiol. 2, 815–823.
doi: 10.1016/0959-4388(92)90139-c

Jordan, M. I., and Rumelhart, D. E. (1992). Forward models: supervised learning
with a distal teacher. Cogn. Sci. 16, 307–354. doi: 10.1207/s15516709cog
1603_1

Kawato, M. (1999). Internal models for motor control and trajectory
planning. Curr. Opin. Neurobiol. 9, 718–727. doi: 10.1016/s0959-4388(99)
00028-8

Ke, M. C., Guo, C. C., and Raymond, J. L. (2009). Elimination of climbing
fiber instructive signals during motor learning. Nat. Neurosci. 12, 1171–1179.
doi: 10.1038/nn.2366

Keisler, A., and Shadmehr, R. (2010). A shared resource between
declarative memory and motor memory. J. Neurosci. 30, 14817–14823.
doi: 10.1523/JNEUROSCI.4160-10.2010

Keller, E. L., and Robinson, D. A. (1971). Absence of a stretch reflex in extraocular
muscles of the monkey. J. Neurophysiol. 34, 908–919. doi: 10.1152/jn.1971.
34.5.908

Kitamura, K., and Kano, M. (2013). Dendritic calcium signaling in cerebellar
Purkinje cell. Neural Netw. 47, 11–17. doi: 10.1016/j.neunet.2012.
08.001

Kitazawa, S., Kimura, T., and Yin, P. B. (1998). Cerebellar complex spikes
encode both destinations and errors in arm movements. Nature 392, 494–497.
doi: 10.1038/33141

Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., et al.
(1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral
paraflocculus during ocular following responses in monkeys II. Complex
spikes. J. Neurophysiol. 80, 832–848. doi: 10.1152/jn.1998.80.2.832

Kumar, N., and Mutha, P. K. (2016). Adaptive reliance on the most stable
sensory predictions enhances perceptual feature extraction of moving stimuli.
J. Neurophysiol. 115, 1654–1663. doi: 10.1152/jn.00850.2015

Lacquaniti, F., Bosco, G., Indovina, I., La, S. B., Maffei, V., Moscatelli, A., et al.
(2013). Visual gravitational motion and the vestibular system in humans. Front.
Integr. Neurosci. 7:101. doi: 10.3389/fnint.2013.00101

Lena, C. (2016). ‘‘Cerebrocerebellar loops in the rodent brain,’’ in The Neuronal
Codes of the Cerebellum, ed. D. H. Heck (New York, NY: Elsevier), 135–153.

Llinás, R. R. (2014). The olivo-cerebellar system: a key to understanding the
functional significance of intrinsic oscillatory brain properties. Front. Neural
Circuits 7:96. doi: 10.3389/fncir.2013.00096

Marr, D. (1969). A theory of cerebellar cortex. J. Physiol. 202, 437–470.
doi: 10.1113/jphysiol.1969.sp008820

Maschke, M., Gomez, C. M., Ebner, T. J., and Konczak, J. (2004). Hereditary
cerebellar ataxia progressively impairs force adaptation during goal-directed
arm movements. J. Neurophysiol. 91, 230–238. doi: 10.1152/jn.00557.2003

Mazzoni, P., and Krakauer, J. W. (2006). An implicit plan overrides an
explicit strategy during visuomotor adaptation. J. Neurosci. 26, 3642–3645.
doi: 10.1523/JNEUROSCI.5317-05.2006

McDougle, S. D., Ivry, R. B., and Taylor, J. A. (2016). Taking aim at the
cognitive side of learning in sensorimotor adaptation tasks. Trends Cogn. Sci.
20, 535–544. doi: 10.1016/j.tics.2016.05.002

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 524

https://doi.org/10.1016/j.cub.2005.11.037
https://doi.org/10.1523/JNEUROSCI.4530-03.2004
https://doi.org/10.1016/0006-8993(80)90491-6
https://doi.org/10.1016/0006-8993(80)90491-6
https://doi.org/10.3389/fnhum.2018.00177
https://doi.org/10.3389/fnhum.2018.00177
https://doi.org/10.7554/eLife.36781
https://doi.org/10.1523/JNEUROSCI.0061-07.2007
https://doi.org/10.1523/JNEUROSCI.1874-05.2005
https://doi.org/10.1016/s0893-6080(99)00046-5
https://doi.org/10.1016/s0893-6080(99)00046-5
https://doi.org/10.1007/s12311-010-0243-0
https://doi.org/10.1007/s12311-008-0059-3
https://doi.org/10.1002/hbm.460040302
https://doi.org/10.1523/jneurosci.17-04-01519.1997
https://doi.org/10.1523/jneurosci.17-04-01519.1997
https://doi.org/10.1016/s0896-6273(01)00321-x
https://doi.org/10.1016/s0896-6273(01)00321-x
https://doi.org/10.1038/nrn2787
https://doi.org/10.1097/00001756-199701200-00029
https://doi.org/10.1097/00001756-199701200-00029
https://doi.org/10.1038/nrn3312
https://doi.org/10.1111/j.1460-9568.2007.05996.x
https://doi.org/10.1111/j.1460-9568.2007.05996.x
https://doi.org/10.1016/j.neuroimage.2007.09.062
https://doi.org/10.1126/science.6612334
https://doi.org/10.1016/j.cobeha.2018.01.015
https://doi.org/10.1038/s41593-018-0228-8
https://doi.org/10.1038/s41593-018-0228-8
https://doi.org/10.1523/JNEUROSCI.2579-14.2015
https://doi.org/10.1523/JNEUROSCI.2579-14.2015
https://doi.org/10.1152/jn.00886.2010
https://doi.org/10.1038/35003194
https://doi.org/10.1111/j.1749-6632.2002.tb07574.x
https://doi.org/10.1016/0304-3940(82)90380-9
https://doi.org/10.1016/0304-3940(82)90380-9
https://doi.org/10.1016/0959-4388(92)90139-c
https://doi.org/10.1207/s15516709cog1603_1
https://doi.org/10.1207/s15516709cog1603_1
https://doi.org/10.1016/s0959-4388(99)00028-8
https://doi.org/10.1016/s0959-4388(99)00028-8
https://doi.org/10.1038/nn.2366
https://doi.org/10.1523/JNEUROSCI.4160-10.2010
https://doi.org/10.1152/jn.1971.34.5.908
https://doi.org/10.1152/jn.1971.34.5.908
https://doi.org/10.1016/j.neunet.2012.08.001
https://doi.org/10.1016/j.neunet.2012.08.001
https://doi.org/10.1038/33141
https://doi.org/10.1152/jn.1998.80.2.832
https://doi.org/10.1152/jn.00850.2015
https://doi.org/10.3389/fnint.2013.00101
https://doi.org/10.3389/fncir.2013.00096
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1152/jn.00557.2003
https://doi.org/10.1523/JNEUROSCI.5317-05.2006
https://doi.org/10.1016/j.tics.2016.05.002
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Popa and Ebner Cerebellum, Predictions and Errors

Miall, R. C., Christensen, L. O., Cain, O., and Stanley, J. (2007). Disruption
of state estimation in the human lateral cerebellum. PLoS Biol. 5:e316.
doi: 10.1371/journal.pbio.0050316

Miall, R. C., Weir, D. J., Wolpert, D. M., and Stein, J. F. (1993). Is the cerebellum
a Smith predictor? J. Mot. Behav. 25, 203–216. doi: 10.1080/00222895.1993.
9942050

Miall, R. C., and Wolpert, D. M. (1996). Forward models for physiological
motor control. Neural Netw. 9, 1265–1279. doi: 10.1016/s0893-6080(96)
00035-4

Montarolo, P. G., Palestini, M., and Strata, P. (1982). The inhibitory effect of the
olivocerebellar input on the cerebellar Purkinje cells in the rat. J. Physiol. 332,
187–202. doi: 10.1113/jphysiol.1982.sp014409

Morton, S. M., and Bastian, A. J. (2006). Cerebellar contributions to locomotor
adaptations during splitbelt treadmill walking. J. Neurosci. 26, 9107–9116.
doi: 10.1523/JNEUROSCI.2622-06.2006

Moutoussis, M., Fearon, P., El-Deredy, W., Dolan, R. J., and Friston, K. J. (2014).
Bayesian inferences about the self (and others): a review. Conscious. Cogn. 25,
67–76. doi: 10.1016/j.concog.2014.01.009

Nguyen-Vu, T. D., Kimpo, R. R., Rinaldi, J. M., Kohli, A., Zeng, H., Deisseroth, K.,
et al. (2013). Cerebellar Purkinje cell activity drives motor learning. Nat.
Neurosci. 16, 1734–1736. doi: 10.1038/nn.3576

Noto, C. T., and Robinson, F. R. (2001). Visual error is the stimulus for
saccade gain adaptation. Cogn. Brain Res. 12, 301–305. doi: 10.1016/s0926-
6410(01)00062-3

O’Callaghan, C., Kveraga, K., Shine, J. M., Adams, R. B. Jr., and Bar, M. (2017).
Predictions penetrate perception: converging insights from brain, behaviour
and disorder. Conscious. Cogn. 47, 63–74. doi: 10.1016/j.concog.2016.
05.003

Ohmae, S., and Medina, J. F. (2015). Climbing fibers encode a temporal-
difference prediction error during cerebellar learning in mice. Nat. Neurosci.
18, 1798–1803. doi: 10.1038/nn.4167

Oscarsson, O. (1980). ‘‘Functional organization of olivary projection to the
cerebellar anterior lobe,’’ in The Inferior Olivary Nucleus: Anatomy and
Physiology, ed. J. Courville (New York, NY: Raven), 279–290.

Pasalar, S., Roitman, A. V., Durfee, W. K., and Ebner, T. J. (2006). Force field
effects on cerebellar Purkinje cell discharge with implications for internal
models. Nat. Neurosci. 9, 1404–1411. doi: 10.1038/nn1783

Picard, F., and Friston, K. (2014). Predictions, perception, and a sense of self.
Neurology 83, 1112–1118. doi: 10.1212/WNL.0000000000000798

Pickering, M. J., and Clark, A. (2014). Getting ahead: forward models and their
place in cognitive architecture. Trends Cogn. Sci. 18, 451–456. doi: 10.1016/j.
tics.2014.05.006

Popa, L. S., Hewitt, A. L., and Ebner, T. J. (2014). The cerebellum for jocks and
nerds alike. Front. Syst. Neurosci. 8:113. doi: 10.3389/fnsys.2014.00113

Popa, L. S., Hewitt, A. L., and Ebner, T. J. (2012). Predictive and feedback
performance errors are signaled in the simple spike discharge of individual
Purkinje cells. J. Neurosci. 32, 15345–15358. doi: 10.1523/JNEUROSCI.2151-
12.2012

Popa, L. S., Hewitt, A. L., and Ebner, T. J. (2013). Purkinje cell simple spike
discharge encodes error signals consistent with a forward internal model.
Cerebellum 12, 331–333. doi: 10.1007/s12311-013-0452-4

Popa, L. S., Streng, M. L., and Ebner, T. J. (2017). Long-term predictive
and feedback encoding of motor signals in the simple spike discharge of
Purkinje cells. eNeuro 4:ENEURO.0036-17.2017. doi: 10.1523/ENEURO.0036-
17.2017

Popa, L. S., Streng, M. L., and Ebner, T. J. (2016a). ‘‘Signaling of predictive and
feedback information in Purkinje cell simple spike activity,’’ in Neuronal Codes
of the Cerebellum, ed. D. H. Heck (New York, NY: Elsevier), 1–25.

Popa, L. S., Streng, M. L., Hewitt, A. L., and Ebner, T. J. (2016b). The errors of
our ways: understanding error representations in cerebellar-dependent motor
learning. Cerebellum 15, 93–103. doi: 10.1007/s12311-015-0685-5

Ramnani, N. (2014). Automatic and controlled processing in the corticocerebellar
system. Prog. Brain Res. 210, 255–285. doi: 10.1016/B978-0-444-63356-9.
00010-8

Roitman, A. V., Pasalar, S., Johnson, M. T., and Ebner, T. J. (2005). Position,
direction of movement, and speed tuning of cerebellar Purkinje cells
during circular manual tracking in monkey. J. Neurosci. 25, 9244–9257.
doi: 10.1523/JNEUROSCI.1886-05.2005

Rottach, K. G., Das, V. E., Wohlgemuth, W., Zivotofsky, A. Z., and
Leigh, R. J. (1998). Properties of horizontal saccades accompanied by blinks.
J. Neurophysiol. 79, 2895–2902. doi: 10.1152/jn.1998.79.6.2895

Scarchilli, K., Vercher, J. L., Gauthier, G. M., and Cole, J. (1999). Does the
oculo-manual co-ordination control system use an internal model of the
arm dynamics? Neurosci. Lett. 265, 139–142. doi: 10.1016/s0304-3940(99)
00224-4

Schlerf, J. E., Ivry, R. B., and Diedrichsen, J. (2012). Encoding of sensory
prediction errors in the human cerebellum. J. Neurosci. 32, 4913–4922.
doi: 10.1523/JNEUROSCI.4504-11.2012

Schmahmann, J. D., and Pandya, D. N. (1997). The cerebrocerebellar system. Int.
Rev. Neurobiol. 41, 31–60. doi: 10.1016/s0074-7742(08)60346-3

Shadmehr, R., and Holcomb, H. H. (1997). Neural correlates of motor memory
consolidation. Science 277, 821–825. doi: 10.1126/science.277.5327.821

Shadmehr, R., and Mussa-Ivaldi, F. A. (1994). Adaptive representation of
dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224.
doi: 10.1523/JNEUROSCI.14-05-03208.1994

Shadmehr, R., Smith, M. A., and Krakauer, J. W. (2010). Error correction, sensory
prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108.
doi: 10.1146/annurev-neuro-060909-153135

Shidara, M., Kawano, K., Gomi, H., and Kawato, M. (1993). Inverse-dynamics
model eye movement control by Purkinje cells in the cerebellum. Nature 365,
50–52. doi: 10.1038/365050a0

Shin, S. L., Zhao, G. Q., and Raymond, J. L. (2014). Signals and learning
rules guiding oculomotor plasticity. J. Neurosci. 34, 10635–10644.
doi: 10.1523/JNEUROSCI.4510-12.2014

Stanislaw, M. U. (1976). Adventures of a Mathematician. New York, NY: Charles
Scribner’s Sons.

Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L.,
et al. (2018a). The predictive coding account of psychosis. Biol. Psychiatry 84,
634–643. doi: 10.1016/j.biopsych.2018.05.015

Sterzer, P., Voss, M., Schlagenhauf, F., and Heinz, A. (2018b). Decision-making
in schizophrenia: a predictive-coding perspective. Neuroimage doi: 10.1016/j.
neuroimage.2018.05.074 [Epub ahead of print].

Streng, M. L., Popa, L. S., and Ebner, T. J. (2017). Climbing fibers
predict movement kinematics and performance errors. J. Neurophysiol. 118,
1888–1902. doi: 10.1152/jn.00266.2017

Streng, M. L., Popa, L. S., and Ebner, T. J. (2018a). Complex spike wars: a new
hope. Cerebellum 17, 735–746. doi: 10.1007/s12311-018-0960-3

Streng, M. L., Popa, L. S., and Ebner, T. J. (2018b). Modulation of sensory
prediction error in Purkinje cells during visual feedback manipulations. Nat.
Commun. 9:1099. doi: 10.1038/s41467-018-03541-0

Strick, P. L., Dum, R. P., and Fiez, J. A. (2009). Cerebellum and nonmotor
function. Annu. Rev. Neurosci. 32, 413–434. doi: 10.1146/annurev.neuro.31.
060407.125606

Taylor, J. A., and Ivry, R. B. (2011). Flexible cognitive strategies during motor
learning. PLoS Comput. Biol. 7:e1001096. doi: 10.1371/journal.pcbi.1001096

Taylor, J. A., and Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions
to adaptation, strategies, and reinforcement learning. Prog. Brain Res. 210,
217–253. doi: 10.1016/B978-0-444-63356-9.00009-1

Taylor, J. A., Klemfuss, N. M., and Ivry, R. B. (2010). An explicit strategy prevails
when the cerebellum fails to computemovement errors.Cerebellum 9, 580–586.
doi: 10.1007/s12311-010-0201-x

Taylor, J. A., Krakauer, J. W., and Ivry, R. B. (2014). Explicit and implicit
contributions to learning in a sensorimotor adaptation task. J. Neurosci. 34,
3023–3032. doi: 10.1523/JNEUROSCI.3619-13.2014

Thiele, A., Henning, P., Kubischik, M., and Hoffmann, K. P. (2002).
Neural mechanisms of saccadic suppression. Science 295, 2460–2462.
doi: 10.1126/science.1068788

Thoroughman, K. A., and Shadmehr, R. (1999). Electromyographic correlates of
learning an internal model of reaching movements. J. Neurosci. 19, 8573–8588.
doi: 10.1523/JNEUROSCI.19-19-08573.1999

Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., and Bastian, A. J.
(2007). Sensory prediction errors drive cerebellum-dependent adaptation of
reaching. J. Neurophysiol. 98, 54–62. doi: 10.1152/jn.00266.2007

Wallman, J., and Fuchs, A. F. (1998). Saccadic gain modification: visual error
drives motor adaptation. J. Neurophysiol. 80, 2405–2416. doi: 10.1152/jn.1998.
80.5.2405

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 524

https://doi.org/10.1371/journal.pbio.0050316
https://doi.org/10.1080/00222895.1993.9942050
https://doi.org/10.1080/00222895.1993.9942050
https://doi.org/10.1016/s0893-6080(96)00035-4
https://doi.org/10.1016/s0893-6080(96)00035-4
https://doi.org/10.1113/jphysiol.1982.sp014409
https://doi.org/10.1523/JNEUROSCI.2622-06.2006
https://doi.org/10.1016/j.concog.2014.01.009
https://doi.org/10.1038/nn.3576
https://doi.org/10.1016/s0926-6410(01)00062-3
https://doi.org/10.1016/s0926-6410(01)00062-3
https://doi.org/10.1016/j.concog.2016.05.003
https://doi.org/10.1016/j.concog.2016.05.003
https://doi.org/10.1038/nn.4167
https://doi.org/10.1038/nn1783
https://doi.org/10.1212/WNL.0000000000000798
https://doi.org/10.1016/j.tics.2014.05.006
https://doi.org/10.1016/j.tics.2014.05.006
https://doi.org/10.3389/fnsys.2014.00113
https://doi.org/10.1523/JNEUROSCI.2151-12.2012
https://doi.org/10.1523/JNEUROSCI.2151-12.2012
https://doi.org/10.1007/s12311-013-0452-4
https://doi.org/10.1523/ENEURO.0036-17.2017
https://doi.org/10.1523/ENEURO.0036-17.2017
https://doi.org/10.1007/s12311-015-0685-5
https://doi.org/10.1016/B978-0-444-63356-9.00010-8
https://doi.org/10.1016/B978-0-444-63356-9.00010-8
https://doi.org/10.1523/JNEUROSCI.1886-05.2005
https://doi.org/10.1152/jn.1998.79.6.2895
https://doi.org/10.1016/s0304-3940(99)00224-4
https://doi.org/10.1016/s0304-3940(99)00224-4
https://doi.org/10.1523/JNEUROSCI.4504-11.2012
https://doi.org/10.1016/s0074-7742(08)60346-3
https://doi.org/10.1126/science.277.5327.821
https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1038/365050a0
https://doi.org/10.1523/JNEUROSCI.4510-12.2014
https://doi.org/10.1016/j.biopsych.2018.05.015
https://doi.org/10.1016/j.neuroimage.2018.05.074
https://doi.org/10.1016/j.neuroimage.2018.05.074
https://doi.org/10.1152/jn.00266.2017
https://doi.org/10.1007/s12311-018-0960-3
https://doi.org/10.1038/s41467-018-03541-0
https://doi.org/10.1146/annurev.neuro.31.060407.125606
https://doi.org/10.1146/annurev.neuro.31.060407.125606
https://doi.org/10.1371/journal.pcbi.1001096
https://doi.org/10.1016/B978-0-444-63356-9.00009-1
https://doi.org/10.1007/s12311-010-0201-x
https://doi.org/10.1523/JNEUROSCI.3619-13.2014
https://doi.org/10.1126/science.1068788
https://doi.org/10.1523/JNEUROSCI.19-19-08573.1999
https://doi.org/10.1152/jn.00266.2007
https://doi.org/10.1152/jn.1998.80.5.2405
https://doi.org/10.1152/jn.1998.80.5.2405
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Popa and Ebner Cerebellum, Predictions and Errors

Wilford, K. (1991). ‘‘Tourist visits to state sites up 0.1% IN ‘90—blue ridge
highlands region has biggest gain, 6.1 percent,’’ in Richmond Times-Dispatch
(Richmond, VA: NewsBank Access World News).

Winkelman, B. H., Belton, T., Suh, M., Coesmans, M., Morpurgo, M. M., and
Simpson, J. I. (2014). Nonvisual complex spike signals in the rabbit cerebellar
flocculus. J. Neurosci. 34, 3218–3230. doi: 10.1523/JNEUROSCI.3080-
13.2014

Winkelman, B., and Frens, M. (2006). Motor coding in floccular climbing fibers.
J. Neurophysiol. 95, 2342–2351. doi: 10.1152/jn.01191.2005

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). An internal model
for sensorimotor integration. Science 269, 1880–1882. doi: 10.1126/science.
7569931

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in
the cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/S1364-6613(98)
01221-2

Xu-Wilson, M., Chen-Harris, H., Zee, D. S., and Shadmehr, R. (2009). Cerebellar
contributions to adaptive control of saccades in humans. J. Neurosci. 29,
12930–12939. doi: 10.1523/JNEUROSCI.3115-09.2009

Zago,M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., and Lacquaniti, F. (2004).
Internal models of target motion: expected dynamics overrides measured
kinematics in timing manual interceptions. J. Neurophysiol. 91, 1620–1634.
doi: 10.1152/jn.00862.2003

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer EL declared a past co-authorship with the authors to the handling
editor.

Copyright © 2019 Popa and Ebner. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 524

https://doi.org/10.1523/JNEUROSCI.3080-13.2014
https://doi.org/10.1523/JNEUROSCI.3080-13.2014
https://doi.org/10.1152/jn.01191.2005
https://doi.org/10.1126/science.7569931
https://doi.org/10.1126/science.7569931
https://doi.org/10.1016/S1364-6613(98)01221-2
https://doi.org/10.1016/S1364-6613(98)01221-2
https://doi.org/10.1523/JNEUROSCI.3115-09.2009
https://doi.org/10.1152/jn.00862.2003
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	Cerebellum, Predictions and Errors
	INTRODUCTION
	PREDICTIVE PROWESS OF THE MOTOR SYSTEM AND FORWARD INTERNAL MODELS
	CEREBELLUM AS A FORWARD INTERNAL MODEL
	IMPLICIT AND EXPLICIT CONTRIBUTIONS TO MOTOR LEARNING
	INFORMATION PROCESSING IN CEREBELLAR NEURONS FOR IMPLICIT AND EXPLICIT FORWARD INTERNAL MODELS
	ROLE FOR COMPLEX SPIKES IN PREDICTIONS, ERROR PROCESSING AND FORWARD MODELS
	IMPLICATIONS FOR CEREBELLUM PROVIDING BOTH IMPLICIT AND EXPLICIT MODELS
	IMPLICATIONS FOR GENERATIVE MODELS
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


