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ON ENTIRE FUNCTIONS WITH GIVEN ASYMPTOTIC
BEHAVIOR

Abstract. We study approximation of subharmonic functions
on the complex plane by logarithms of moduli of entire functions.
In the theory of series of exponentials these entire functions are
the main tool. In questions of decomposition of functions into
a series of exponentials, the subharmonic function, as a rule,
satisfies the Lipschitz condition. We prove the theorem on ap-
proximation of such subharmonic functions. Also we prove the
theorem on joint approximation of two subharmonic functions.
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1. Introduction. Entire functions with prescribed asymptotic be-
havior serve as the main tool in constructing the exponential series. The
problems of existence and constructing entire functions with prescribed
asymptotic properties arose as inner problems of the theory of entire func-
tions. This problem was dealt with by many mathematicians. See, for
example, [1], [3]– [5], [8]. The next theorem is proved in [8].

Theorem A. [8] For each subharmonic on the plain function u of finite
order greater than zero and for each β < 0, there exists an entire function
f satisfying the relation

|u(λ)− ln |f(λ)|| = O(ln(|λ|+ 1)), λ /∈ E, |λ| −→ ∞,

where the exceptional set E can be covered by a set of disks B(wk, rk) so
that

∑
|wk|>R rk = O(Rβ), R −→∞.

By B(z, t) we denote the open disk with center z and radius t.
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In applications, approximated subharmonic functions often have some
additional properties that can refine the asymptotics. On the other hand,
one usually requires not just to estimate the size of the exceptional set,
but, to a greater extent, to get its construction. In questions of decompo-
sition of functions into series of exponentials, subharmonic functions, as a
rule, satisfy the Lipschitz condition (see, for example, [6]). Therefore, we
consider the approximation of such functions separately.

For a measure µ we denote the µ-measure of the disk B(z, t) by µ(z, t)
and let µ(t) = µ(0, t). The set of zeros of an entire function L is denoted by
N(L). The notation A(x) ≺ B(x), x ∈ X, means that for some constant
C > 0, for all x ∈ X, the estimate A(x) 6 CB(x) holds true.

In the present work we prove the following theorem.

Theorem 1. Let u be a subharmonic function on the plane, and µ be
the Riesz measure of u. If for some M > 0, for all points z ∈ C the
condition

µ(z, t) 6Mt, t ∈ (0; 1), (1)

holds true, then there exists an entire function f with simple zeros λn
such that for some δ ∈ (0; 1) the disks Bδ(λn) = B(λn, δ(|λn|+ 1)−1) are
pairwise disjoint and the function satisfies the relations

| ln |f(λ)| − u(λ)| 6 A ln(|λ|+ 1) + C, λ /∈
⋃
n

Bδ(λn),

| ln |f ′(λ)| − u(λ)| 6 A ln(|λ|+ 1) + C ′, λ ∈ N(f).

Here the constant A > 0 is independent on the constant M and the
function u, and constants C, C ′, δ depend on M , but not on u.

Note that if a subharmonic function u satisfies for some constantK > 0
the Lipschitz condition |u(z)− u(w)| 6 K|z−w|, z, w ∈ C, then its Riesz
measure satisfies condition (1): µ(z,t) 6 Ke t, z ∈ C, t > 0. This follows
from Jensen’s formula

1

2π

2π∫
0

u(z + reiϕ)dϕ = u(z) +

r∫
0

µ(z,t)

t
dt, z ∈ C, t > 0.

In fact, the Lipschitz condition implies the estimate

µ
(
z,
r

e

)
6

r∫
r
e

µ(z,t)

t
dt 6

1

2π

2π∫
0

|u(z + reiϕ)− u(z)|dϕ 6 Kr.
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In applications of approximation theorems, one often needs joint ap-
proximation of several subharmonic functions. In the next theorem we
consider the joint approximation of two subharmonic functions which
Riesz measure satisfying condition (1).

Theorem 2. Let uj , j = 1, 2, be two subharmonic functions on the
plane, and µj , j = 1, 2, their Riesz measures satisfy the conditions

µj(z, t) 6Mt, t ∈ (0; 1), (2)

and the measure µ2 satisfies the condition

∞∫
1

µ2(r)dr

r2
<∞. (3)

Then there exist entire functions fj , j = 1, 2, such that all zeros of f =
= f1f2 are simple; for some δ > 0 the disks Bδ(λ) = B(λ, δ(|λ| + 1)−1),
λ ∈ N(f), are pairwise disjoint; and for some constants B, C, C ′ > 0 the
relations

| ln |fj(λ)| − uj(λ)| 6 B ln(|λ|+ 1) + C, λ /∈
⋃

z∈N(fj)

Bδ(z),

| ln |f ′j(λ)| − uj(λ)| 6 B ln(|λ|+ 1) + C ′, λ ∈ N(fj),

hold true. Here the constant B>0 is independent on the constant M and
the functions uj , and the constants C,C ′, δ depend on M , but not on uj .

2. Proof of Theorem 1.

Lemma 1. Let u be a subharmonic function on C, u(0) = 0, and
its Riesz measure µ satisfies (1). Then there exists a subharmonic and
infinitely differentiable function v on C satisfying the conditions u(λ) 6
6 v(λ) 6 u(λ) +M, ∆v(λ) 6 c, λ ∈ C, where the constant c > 0.

Proof. Let α(t) ∈ C∞(R); α(t) = 0, t /∈ (0; 1); α(t) > 0, t ∈ (0; 1); and

1∫
0

tα(t) dt =
1

2π
.
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If α(λ) = α(|λ|), λ ∈ C, and dm is the planar Lebesgue measure, then

v(λ) :=

∫
C

α(λ− w)u(w)dm(w) =

∫
C

α(w)u(λ− w)dm(w), λ ∈ C,

is a subharmonic and infinitely differentiable function (see [7, p. 51]). By
definition v(λ) − u(λ) =

∫
C(u(w) − u(λ))α(λ − w)dm(w). Converting to

polar coordinates and using Jensen’s formula, we obtain

v(λ)− u(λ) = 2π

1∫
0

α(t)
( t∫

0

µ(λ,s)

s
ds
)
tdt.

It is obvious that v(λ) > u(λ), λ ∈ C. By condition (1) this implies v(λ)−
- u(λ) 6 M

∫
C α(λ)dm(λ) = M. The first statement of lemma is proved.

Let us estimate ∆v. Considering u as a distribution, we obtain ∆v(λ) =
= π

∫
C α(λ − w)dµ(w). If α = maxt α(t), then in view of (1), we have

∆v(λ) 6 παµ(λ,1) 6 παM. �

Thus, we can prove Theorem 1 assuming function u to satisfy condition

∆u(λ) 6M, λ ∈ C. (4)

Let us show that it is enough to prove Theorem 1 for M = 1. In fact,
suppose the following theorem is proved.

Theorem 1′. Let v ∈ C∞ be a subharmonic function on the plane,
v(0) = 0, and ∆v(λ) 6 1, λ ∈ C. Then there exists an entire func-
tion g with simple zeros wn such that for some δ0 ∈ (0; 1) the disks
B(wn, δ0(|wn| + 1)−1) are pairwise disjoint and the function satisfies the
relations

| ln |g(w)| − v(w)| 6 A0 ln(|w|+ 1) + C0 λ /∈
⋃
n

B(wn, δ0(|wn|+ 1)−1),

| ln |g′(λ)| − v(λ)| 6 A0 ln(|λ|+ 1) + C ′0, λ ∈ N(g).

Here the constants A0, C0, C
′
0 > 0 are independent on the function v.

Let u satisfy (4). If M > 1, then we consider the function v(w) =

= u
( w
M

)
. Since µv(z,t) = µ

( z
M
,
t

M

)
, then µv(z,t) 6 t for t < 1.

By Theorem 1′, there exists a function g that satisfies the appropriate
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estimates. Let us take the function f(λ) = g(Mλ) with simple zeros

λn =
1

M
wn. Under the mapping w −→ w

M
the pairwise disjoint disks

B(wn, cδ0(|wn|+1)−1) are mapped to the disjoint disks B
(
λn,

δ0
M

(M |λn|+
+ 1)−1

)
, and outside these disks the estimate

| ln |f(λ)| − u(λ)| 6 A0 ln(|λ|+ 1) +A0 lnM + C0 (5)

holds true. Since

δ0
M2

(|λn|+ 1)−1 6 rn :=
δ0
M

(M |λn|+ 1)−1 6
δ0
M

(|λn|+ 1)−1,

the disks B
(
λn,

δ0
M2

(|λn| + 1)−1
)
are also pairwise disjoint. We extend

estimate (6) outside these disks. LetH be the minimal harmonic majorant
of u on B(λn, rn); then, by Green’s formula and by condition (4) for
λ ∈ B(λn, rn), we have

0 6 H(λ)− u(λ) =

∫
B(λn,rn)

G(λ, z)dµ(z) =

=
1

π

∫
B(λn,rn)

G(λ, z)∆u(z)dm(z) 6
M

π

∫
B(λn,rn)

G(λ, z)dm(z),

where G(λ, z) is Green’s function of the Dirichlet problem for B(λn, rn).
Taking into account that for the function A(λ) = |λ − λn|2 the relation
∆A(λ) ≡ 4 holds true and the minimal harmonic majorant of A is iden-
tically equal to r2

n, we obtain the estimate

0 6 H(λ)− u(λ) =
M

4
max

z∈B(λn,rn)
(r2
n − |λn − z|2) 6

1

4M
, λ ∈ B(λn, rn).

(6)
By the maximum principle and by (6) for λ ∈ B(λn, rn) we have∣∣∣H(λ)−

(
ln |f(λ)| − ln

|λ− λn|
rn

)∣∣∣ 6 max
|z−λn|=rn

∣∣u(z)− ln |f(z)|
∣∣ 6

6 A0 ln(|λn|+rn+1)+A0 lnM +C0 6 A0 ln(|λn|+1)+A0 ln(2M)+C0.
(7)
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If
δ0
M2

(
|λn|+ 1

)−1
6 |λ− λn| 6 rn 6

δ0
M

(
M |λn|+ 1

)−1
,

then
∣∣∣ ln ∣∣λ− λn

rn

∣∣∣∣∣ 6 lnM and therefore

|H(λ)− ln |f(λ)|| 6 A0 ln(|λ|+ 1) + (A0 + 1) ln(2M) + C0,

where λ ∈ B(λn, rn) \ B
(
λn, d

δ0
M2 (|λn| + 1

)−1
). This together with (6)

implies the required estimate for the function f

|u(λ)− ln |f(λ)|| 6 A0 ln(|λ|+ 1) + (A0 + 1) ln(2M) + C0 +
1

4M
,

where λ /∈ B
(
λn,

δ0
M2

(
|λn|+ 1

)−1
)
. Passing to the limit as λ→ λn in (7)

and applying (6), we obtain the required estimate for f ′(λn):

|u(λn)− ln |f ′(λn)|| 6 A0 ln(|λn|+ 1) + C ′0 +
1

4M
+ lnM, n ∈ N.

To prove Theorem 1′, one more lemma is needed.

Lemma 2. Let u be a smooth subharmonic function, and ∆u satisfy
(4) with M = 1. Denote the square centered at the origin with sides of
length 3n and parallel to the axes by Qn, n ∈ N ∪ {0}. Then

Qn+1 \Qn =

8⋃
j=1

Qn,j , n ∈ N ∪ {0},

where Qn,j are the squares obtained by shifting the square Qn by the
vectors (±3n,0), (0,± 3n), (±3n,±3n) and enumerated counterclockwise,
starting from the square which intersects with the positive ray of the real
axe. There exists a subharmonic function ũ with the Riesz measure µ̃
such that

1) inside the squares Qn,j the function ũ is smooth and estimate (4)
holds true;

2) µ̃(Qn,j) is a non-negative integer;

3) the estimate |u(λ)− ũ(λ)| 6 45 ln(|λ|+ e) + 142, λ ∈ C, holds true.
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Proof. Let µ(Qn,j) := mn,j + qn,j , j = 1, 2, . . . , 8, n ∈ N, where qn,j =
= {µ(Qn,j)} ∈ [0; 1) is the fractional part of µ(Qn,j). Let q+

n =
∑
j qn,j ∈

∈ [0; 8), q−n =
∑
j(qn,j − 1) ∈ [−8; 0). Define the sequence qn as follows:

let q0 = {µ(Q0)}; if qj are defined for j 6 k − 1, then, as
∑
j6k−1 qj > 0,

let qk := q−k ; qk := q+
k otherwise. Thus,

∑n
k=0 qk ∈ (−8; 8), n ∈ N. Then

define the sequence of natural numbers N0, Nn,j , j = 1, . . . , 8, n ∈ N. Let
N0 = [µ(Q0)]; if qn = q−n , then Nn,j = µ(Qn,j)−(qn,j−1); and if qn = q+

n ,
then Nn,j = µ(Qn,j)− qn,j . Thus, either Nn,j = mn,j + 1 or Nn,j = mn,j .
The restriction of the measure µ to the square Qn,j is denoted by µn,j ,

µ0 = µ |Q0
Let µ̃0 =

N0

µ(Q0)
µ0, if µ(Q0) 6= 0, and

µ̃n,j =
Nn,j

µ(Qn,j)
µn,j , j = 1, . . . , 8, n ∈ N,

if µ(Qn,j) 6= 0. If µ(Q0) = 0, then µ̃0 = 0. And if µ(Qn,j) = 0, then
µ̃n,j = 0. Then µ̃n,j(C) = Nn,j are non-negative integers. Let ν0 =
= µ0 − µ̃0, νn,j = µn,j − µ̃n,j ; then

νn,j(C) ∈ (−1; 1),
( 8∑
j=1

νn,j

)
(C) ∈ (−8; 8). (8)

Let

ν = ν0 +

∞∑
n=1

8∑
j=1

νn,j , ν
+ = ν0 +

∑
qn=q+n

8∑
j=1

νn,j , ν
− = −

∑
qn=q−n

8∑
j=1

νn,j ,

then ν± are non-negative measures and ν = ν+ − ν−. At that,

ν±
( 8⋃
j=1

Qn,j

)
= q±n ∈ (−8; 8).

Let us prove that

π(λ) :=

∫
C

ln
∣∣1− λ

w

∣∣dν(w) 6 45 ln(|λ|+ e) + 142, λ ∈ C. (9)

Then Lemma 2 holds true for the function ũ(λ) = u(λ)− π(λ).



On entire functions with given asymptotic behavior 19

Choose λ ∈ Qn+1 \Qn. If w ∈ Qm+1 \Qm, then 3m

2 6 |w| 6
1√
2
3m+1

and | ln(|ζ|+ 1)| 6 2|ζ| for |ζ| 6 1
2 ; therefore∣∣∣ ∫

C\Qn+2

ln
∣∣1− λ

w

∣∣dν(w)
∣∣∣ 6 ∞∑

m=2

∣∣∣ ∫
Qn+m+1\Qn+m

ln
∣∣1− λ

w

∣∣dν(w)
∣∣∣ 6

6
32|λ|
3n

∞∑
m=2

1

3m
6 8
√

2. (10)

Similarly, we have∣∣∣ ∫
Qn−1

ln
∣∣∣1− w

λ

∣∣∣ dν(w)
∣∣∣ 6 2

|λ|

(
8

n−1∑
m=1

3n−m√
2

+

√
2

2

)
6 10

√
2. (11)

Let us prove that

|ν(t)| = |ν(B(0,t))| 6 17, t > 0. (12)

Indeed, if t < 3√
2
, then B(0,t) ⊂ Q2 therefore

|ν(t)| 6 |ν(Q1)|+
8∑
j=1

|ν1,j(C)| 6 9.

For t >
3√
2

we denote the maximal natural number, for which
3n√

2
6 t

by n. Then Qn ⊂ B(0,t) and

3n+2

2
=

3√
2

3n+1

√
2
>

3√
2
t > t.

Hence, Qn+2 ⊃ B(0,t). Thus, in view of (8), we obtain

|ν(t)| 6 |ν(Qn)|+
n+1∑
i=n

∣∣ 8∑
j=1

νi,j(C)
∣∣ 6 17.

Let ν̃n be the restriction of the measure µ to the square Qn. Then

∣∣∣ ∫
Qn−1

ln
|λ|
|w|

dν(w)
∣∣∣ 6 ln

|λ|
3n
|ν(Qn−1)|+

∣∣∣ 3n∫
0

ν̃n−1(t)

t
dt
∣∣∣.
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By condition (4) with M = 1, in view of (12), we have

∣∣∣ 3n∫
0

ν̃n−1(t)

t
dt
∣∣∣ 6 ∫ 1

0

µ(t)

t
dt+

3n∫
1

17dt

t
6 1 + 17 ln(|λ|+ e).

Hence, ∣∣∣ ∫
Qn−1

ln
|λ|
|w|

dν(w)
∣∣∣ 6 18 + 17 ln(|λ|+ e),

and using (11), we obtain∣∣∣ ∫
Qn−1

ln

∣∣∣∣1− λ

w

∣∣∣∣ dν(w)
∣∣∣ 6 17 ln(|λ|+ e) + 33. (13)

If w ∈ Qn+2 \ Qn−1, then |w| ∈ [ 3n−1

2 ; 1√
2
3n+2] and |λ| ∈ [ 3n

2 ; 1√
2
3n+1];

Therefore, for w /∈ B(λ,1) the estimate
√

2

9
· 3−n 6

∣∣∣∣λ− ww
∣∣∣∣ 6 51,

holds true. Hence,
∣∣ ln ∣∣1− λ

w

∣∣∣∣ 6 ln(|λ|+ e) + 4. Consequently,∣∣∣ ∫
(Qn+2\Qn−1)\B(λ,1)

ln
∣∣1− λ

w

∣∣dν(w)
∣∣∣ 6 24 ln(|λ|+ e) + 96. (14)

It remains to estimate the integral over the disk B(λ,1). The measure ν
is a part of the measure µ by construction, so it satisfies (1) with M = 1.
Taking this into account and integrating by parts, we obtain∣∣∣ ∫

B(λ,1)

ln |λ− w|dν(w)
∣∣∣ 6 1,

∣∣∣ ∫
B(λ,1)

ln |w|dν(w)
∣∣∣ 6 π ln(|λ|+ e).

Hence, ∫
B(λ,1)

∣∣∣ ln ∣∣1− λ

w

∣∣∣∣∣dν(w) 6 π ln(|λ|+ e) + 1.

This, together with (10), (13) and (14), implies (9). �

Lemma 3. There exist measures µn, µn(C) = 1, and rectangles Pn,
n ∈ N, such that
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1)
∑
n µn = µ̃;

2) interiors of convex hulls of supports of the measures µn are pairwise
disjoint;

3) support of the measure µn is located in Pn, n ∈ N;
4) sides of the rectangles Pn are parallel to the axes and the ratio of

length of the sides for rectangles Pn lies in the interval [3−1; 3];
5) each point of the plane belongs to at most four rectangles Pn;
6) if Fn is convex hull of support of the measure µn, then

diam Fn 6 2
√

2 min
λ∈Fn

|λ|+
√

2.

Proof. Let us apply theorem 1 from [8] to restrictions of the measure
µ̃ on the squares Qn,j . After renumbering, we obtain a set of unit mea-
sures satisfying properties 1 – 5 of Lemma 3. Property 6 follows from the
corresponding property of the squares Qn,j . �

Let us continue the proof of Theorem 1′. Centres of mass of the unit
measures µn constructed in Lemma 3 are denoted by λn:∫

C

w dµn(w) = λn, n ∈ N.

By µ̃n we denote the restriction of the measure µ̃ to the square Qn, and
let πn be the potential of this measure

πn(λ) =

∫
C

ln
∣∣∣1− λ

w

∣∣∣dµ̃n(λ).

Then the measure µ̃n satisfies the conditions of theorem 3 from [8]. In the
terminology of this paper, each point λ ∈ C for each s = s(λ) ∈ (0; 1] is
(π, s)-normal with respect to the measure µ̃, by (4). Hence, this theorem
shows that for the polynomial

Pn(λ) =
∏

λk∈Qn

(
1− λ

λk

)
the relation |πn(λ)− ln |Pn(λ)|| 6 A ln(|λ|+ 1) +B ln(s(λ) + 1) +C holds
true outside the set of discs Bk(s) = B(λk, s(λk)), λk ∈ Qn. Here con-
stants A,B,C are independent on µ and n. Thanks to the latter fact, we



22 K.P. Isaev

can justify the passage to the limit in the usual way. As a result, we see
that there exists an entire function f with simple zeros at the points λn
satisfying the condition

|ũ(λ)− ln |f(λ)|| 6 A ln(|λ|+ 1) +B ln(s(λ) + 1) +C, λ /∈
⋃
n

Bn(s). (15)

We need to show that for sufficiently small δ > 0, the discs Bn = Bn(λn,
δ(|λn|+ 1)−1) are pairwise disjoint. Let us estimate the distance dn from
the point λn to the boundary of convex hull Fn of support of the measure
µn. Let wn be a point where this distance is attained:

|λn − wn| = inf{|λn − w|, w /∈ Fn}.

Let wn − λn = eiϕn |λn − wn| and z = Tw = e−ϕn(λn − w). Under such
transformation, the image F ∗ of the hull Fn is located in the half-plane
{Re z 6 dn} and the image of the measure dµ∗(z) = dµn(λn − eiϕnz)
satisfies the conditions∫

C

dµ∗(z) = 1,

∫
C

zdµ∗(z) = 0,

dµ∗(z) =
1

π
χn(z)∆ũ(λn − eiϕnz)dm(z),

where χn(z) is the characteristic function of the set F ∗. Let

δ(x) =
1

π

+∞∫
−∞

χn(x+ iy)∆ũ(λn − eiϕn(x+ iy))dy.

Then δ(x) is a compactly supported function on the segment [a; dn] and
by statements 6 in Lemma 3, 0 6 δ(x) 6 3π(|λn| + 1) := Mn. Moreover,
it follows from the properties of µ∗ that

dn∫
a

δ(x)dx = 1,

dn∫
a

xδ(x)dx = 0.

The next lemma is proved in [2] (see [2, Proposition 2]).
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Lemma 4. [2] Let δ(x) be a non-negative continuous compactly sup-
ported function satisfying the conditions

1) conv supp δ = [a; d], 2) sup
x
δ(x) 6M0 <∞,

3)

d∫
a

δ(x) dx = 1, 4)

d∫
a

xδ(x) dx = 0.

Then d >
1

6M0
.

Lemma 4 implies that dn > 1
18π (1 + |λn|)−1, n ∈ N. By the property

2 in Lemma 3, the disks Bn = B(λn, δ(1 + |λn|)−1), δ < 1
18π , are pairwise

disjoint. In particular, each point λ outside these disks is (π,(1+ |λn|)−1)-
normal with respect to the measures µ̃ and ν =

∑
k δ(λk), here δ(w) is

a unit mass concentrated at the point w. By relation (15), the estimate
|ũ(λ) − ln |f(λ)|| 6 A ln(|λ| + 1) + C, λ /∈

⋃
nBn, holds true outside the

disks Bn. By usual tricks and by Cauchy’s formula 1
f ′(λn) = 1

2πi

∫
∂Bn

dz
f(z) ,

one can obtain the necessary estimates for the derivatives at the points λn.
3. Proof of Theorem 2.
By Theorem 1, for each of the functions uj there exists an entire

function fj satisfying the estimates

| ln |fj(λ)|−uj(λ)| 6 A ln(|λ|+1)+C, λ /∈
⋃

λ∈N(fj)

B(λ, δ(|λ|+1)−1), (16)

| ln |f ′j(λ)| − uj(λ)| 6 A ln(|λ|+ 1) + C ′, λ ∈ N(fj).

At that, the disks Bδ(λ) = B(λ, δ(|λ| + 1)−1), λ ∈ N(fj), are pairwise
disjoint for each of j = 1, 2 separately. Let ν2 be the Riesz measure of
ln |f2|. Let us formulate the properties of the measures µ2 and ν2 in the
next lemma.

Lemma 5.

1) µ2(t) = o(t), ν2(t) = o(t), t −→∞, (17)

2) if λ /∈
⋃

z∈N(f2)

Bδ(z), then

1
2∫

0

ν2(λ, τ)dτ

τ
6 2A ln(1 + |λ|) + C ′′.
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Proof. The first assertion of the lemma is an immediate consequence of
condition (3). To prove the second assertion, we use Jensen’s formula for
the function v(z) = u2(z)− ln |f2(z)| with the Riesz measure ν = µ2− ν2:

1

2π

2π∫
0

v(λ+ reiϕ)dϕ = v(λ) +

r∫
0

ν(λ, τ)dτ

τ
.

By (17), there exists R > 2 such that µ2(t) 6 t
4 for every t > R. We

take |λ| > R and we let r(w) = δ(1 + |w|)−1. The disk B(wk,r(wk)) can
intersect with the circles C(λ,r), r ∈ [ 1

2 ; 1), only if the center wk lies in
B(λ, 1 + δ). For these disks r(wk) 6 2r(λ), therefore,∑

wk∈B(λ,1+δ)

r(wk) 6 2r(λ)µ2(1 + δ + |λ|) < 1

2
.

Hence, there exists a number r ∈ [ 1
2 ; 1) such that the circle C(λ,r) does

not intersect with the exceptional set. By construction, the inequality
|v(z)| = |u2(z) − ln |f2(z)|| 6 A ln(1 + |z|) + C holds true on this circle.
The same inequality holds true at the point λ. By Jensen’s formula, we
obtain ∣∣∣ r∫

0

µ2(t)− ν2(t)

t
dt
∣∣∣ 6 2A ln(1 + |z|) + C1.

This, together with (2), implies the second assertion of Lemma (5). �

Next we prove a lemma on exceptional sets.

Lemma 6. If estimate (5) holds true for u2 and δ, then estimate (5)
holds true for u2 and each δ′ ∈ (0; δ) outside the discs B(λ, δ′(|λ|+ 1)−1),
λ ∈ N(f2), possibly with another constant C depending on δ′.

Proof. In fact, let us take an arbitrary λ /∈ E′ :=
⋃
z∈N(f2)B(z, δ′(|z| +

+ 1)−1). If, in addition, λ /∈ E :=
⋃
z∈N(f2)B(z, δ(|z| + 1)−1), then the

estimates hold true by the hypothesis of the lemma. If λ ∈ E, then there
exists a number n such that r′ := δ′(1 + |λn|)−1 6 |λ − λn| < r :=
δ(1 + |λn|)−1. Let G(λ,w) be Green’s function for the disk B(λn, r), then
there are representations

u2(λ) = h(λ)−
∫

B(λn,r)

G(λ,w)dµ2(w), ln |f2(λ)| = h0(λ)−G(λ,λn),
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where the functions h, h0 are the harmonic majorants of u2 and ln |f2|
respectively on the disk B(λn,r). The difference |h(λ)−h0(λ)| is estimated
by the maximum principle for harmonic functions. For some constant C1

|h0(λ)− h(λ)| 6 A ln(1 + |λ|) + C1.

We estimate the potential of the measure µ2 using (2). Let h1 be the
harmonic majorant of u2 on the disk B(λ, 2r). Then for δ < 1

2∫
B(λn,r)

G(λ,w) dµ2(w) = h(λ)− u2(λ) 6

6 h1(λ)− u2(λ) =

2r∫
0

µ2(λ, t) dt

t
6 2Mr 6M.

And finally G(λ, λn) = ln r
|λn−λ| 6 ln r

r′ = ln
(
δ
δ′

)
, λ /∈ B(λn, r

′). Thus,
|u2(λ)− ln |f2(λ)|| 6 A ln(1 + |λ|) +C1 +M + ln

(
δ
δ′

)
for λ /∈ B(λn, r

′). �

Let z ∈ N(f1). Then there are no other zeros of the function f1

in the disk B δ
2
(z) and there can be only one zero of the function f2 in

this disk. If w ∈ N(f2)
⋂
B δ

2
(z), then we move this point to the nearest

point w′ on the boundary of the disk B δ
4
(z). Let N(f2) = {wk}∞k=1. We

denote by w̃k the point wk if wk does not belong to the union of the disks
B δ

2
(λ), λ ∈ N(f1), and the point w′k if the point wk belongs to one of

these disks. Also, we denote by Ñ the set of points w̃k. Obviously, the
disks B δ

8
(λ), λ ∈ N(f1)

⋃
Ñ , are pairwise disjoint.

Lemma 7. Let

π2(λ) =

∞∑
k=1

ln

∣∣∣∣1− λ

wk

∣∣∣∣ , π̃(λ) =

∞∑
k=1

ln

∣∣∣∣1− λ

w̃k

∣∣∣∣ , λ ∈ C. (18)

Then outside the set of pairwise disjoint disks E :=
⋃
w∈N(f2)

⋃
Ñ B δ

8
(w)

for each ε > 0 and for some constant C the estimate

|π2(λ)− π̃(λ)| 6 ε ln(1 + |λ|) + C

holds true.
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Proof. The convergence of the series in (18) follows from (3). Since
supλ/∈E

∑
k6n

∣∣∣ ln ∣∣1 − λ
wk

∣∣ − ln
∣∣∣1 − λ

w̃k

∣∣∣∣∣∣ 6 C(n), for each n ∈ N, then
without loss of generality one can consider only wk with sufficiently large
absolute value. Thus, let us assume that |wk| > 25. Since for |z − w| 6 1
and |z| > 25

23

24
6

1 + |z|
1 + |w|

6
25

24
, (19)

then we can assume that |wk− w̃k| 6 δ
3 (1+ |wk|)−1 and, so,

∣∣∣wk−w̃kwk

∣∣∣ 6 1
2 .

Then, taking into account the simple inequality | ln |1 − ζ|| 6 2|ζ| for
|ζ| 6 1

2 , we have∣∣∣ ln ∣∣1− wk − w̃k
wk

∣∣∣∣∣ 6 2|wk − w̃k|
|wk|

6
δ

|wk|(1 + |wk|)
.

By (17), we obtain
∞∑
k=1

∣∣∣ ln ∣∣ w̃k
wk

∣∣∣∣∣ =

∞∑
k=1

∣∣∣ ln ∣∣1− w̃k − wk
wk

∣∣∣∣∣ 6 ∞∑
k=1

δ

|wk|(1 + |wk|)
=

=

∞∫
1

δ dν2(w)

|w|(1 + |w|)
6

∞∫
1

δ dν2(t)

t2
= 2δ

∞∫
1

ν2(t)dt

t3
:= C1. (20)

Fix the point λ. Let I1(λ) be the set of indexes k such that |wk| > 2|λ|,
let I2(λ) be the set of indexes k such that |wk| 6 |λ|2 , and let I3(λ) be the
set of indexes k such that |λ|2 < |wk| < 2|λ|. We denote by J1(λ) the set
of indexes k ∈ I3(λ) such that |λ− wk| > 1

2 . Let for some p > 1 J2(λ) be
the set of indexes k ∈ I3(λ) such that 1

2 > |λ − wk| > pδ(1 + |λ|)−1, and
let J3(λ) be all other indexes k ∈ I3(λ).

Let k ∈ I1(λ), then |λ| 6 |wk|/2 and |λ − wk| > |wk|/2; therefore∣∣∣wk−w̃kλ−wk

∣∣∣ 6 1
2 . Hence,∣∣∣∣ln ∣∣∣∣λ− w̃kλ− wk

∣∣∣∣∣∣∣∣ =

∣∣∣∣ln ∣∣∣∣1− w̃k − wk
λ− wk

∣∣∣∣∣∣∣∣ 6 2δ

|wk|(1 + |wk|)
,

and ∣∣∣∣∣∑
k∈I1

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6

∞∫
2|λ|

2δdν2(w)

|w|(1 + |w|)
6

∞∫
2|λ|

2δdν2(t)

t(1 + t)
6 C2. (21)
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Let k ∈ I2(λ), then |λ−wk| > |λ|/2; therefore
∣∣∣wk−w̃kλ−wk

∣∣∣ 6 1
2 for |λ| > 1.

Hence, ∣∣∣ ln ∣∣λ− w̃k
λ− wk

∣∣∣∣∣ =
∣∣∣ ln ∣∣1− w̃k − wk

λ− wk
∣∣∣∣∣ 6 2δ

|λ|(1 + |wk|)
,

and ∣∣∣∣∣∑
k∈I2

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6

|λ|/2∫
1

2δdν2(w)

|λ|(1 + |w|)
6

|λ|/2∫
1

2δdν2(t)

|λ|(1 + t)
6 C3. (22)

Let k ∈ J1(λ). Then∣∣∣∣wk − w̃kλ− wk

∣∣∣∣ 6 2δ

3(1 + |wk|)
6

1

2
,

and by (17), we have

∣∣∣∣∣∑
k∈J1

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6

2|λ|∫
|λ|/2

4δdν2(t)

3(1 + t)
6

2|λ|∫
|λ|/2

8δdν2(t)

3(|λ|+ 2)
6 C4. (23)

It remains to estimate the difference of potentials for k, such that
|λ− wk| 6 1

2 . For k ∈ J2(λ), due to the choice of p, we still have∣∣∣∣wk − w̃kλ− wk

∣∣∣∣ 6 1

2
.

Therefore, by (19), for r = pδ(1 + |λ|)−1 we have

∣∣∣∣∣∑
k∈J2

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6 2δ

3

∑
k∈J2

∣∣∣∣ 1

(λ− wk)(1 + |wk|)

∣∣∣∣ 6 δ

1 + |λ|

1
2∫
r

dν2(λ, t)

t
.

Hence, ∣∣∣ ∑
k∈J2

ln
∣∣λ− w̃k
λ− wk

∣∣∣∣∣ 6 2δν2(λ, 12 )

1 + |λ|
+

δ

1 + |λ|

1
2∫
r

ν2(λ, t)dt

t2
. (24)



28 K.P. Isaev

By assertion 2 of Lemma 5, we have ν2(λ,t) 6 2A ln(1 + |λ|) + C, hence,
δν2(λ, 12 )

1 + |λ|
6 C5 and

δ

1 + |λ|

1
2∫
r

ν2(λ, t)dt

t2
6

δ

(1 + |λ|)r

1
2∫
r

ν2(λ, t)dt

t
6

2A

p
ln(1 + |λ|) + C6.

By the last two estimates and by (8), we obtain∣∣∣∣∣∑
k∈J2

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6 2A

p
ln(1 + |λ|) + C7. (25)

The number of indexes k ∈ J3(λ) is finite and bounded by some absolute
constant N . Thus,

∣∣∣ln ∣∣∣λ−w̃kλ−wk

∣∣∣∣∣∣ 6 Const , λ /∈ E, k ∈ J3(λ). Hence,∣∣∣∣∣∑
k∈J3

ln

∣∣∣∣λ− w̃kλ− wk

∣∣∣∣
∣∣∣∣∣ 6 C8. (26)

Since

|π2(λ)− π̃(λ)| 6
∑
k

∣∣∣∣ln ∣∣wkw̃k ∣∣
∣∣∣∣+
∑
k

∣∣∣∣ln ∣∣∣∣1− λ− w̃k
λ− wk

∣∣∣∣∣∣∣∣ ,
then by (20)–(7), (5)–(9), the assertion of Lemma 7 follows. �

Let us now complete the proof of Theorem 2. By condition (3), we
have the representation f2(λ) = eg(λ)

∏
k

(
1 − λ

wk

)
, λ ∈ C, where g is an

entire function. Let f̃(λ) = eg(λ)
∏
k

(
1− λ

w̃k

)
, λ ∈ C. Then by Lemma 7

for each ε > 0, we have

| ln |f2(λ)| − ln |f̃(λ)|| = |π2(λ)− π̃(λ)| 6

6 ε ln(1 + |λ|) + C, λ /∈ E =
⋃

w∈N(f2)
⋃
Ñ

B δ
8
(w).

By Lemma 6, outside the set E, we have an estimate with some constant
C and an arbitrary ε > 0
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|u2(λ)− ln |f̃(λ)|| 6 |u2(λ)− ln |f2(λ)||+ |π2(λ)− π̃(λ)| 6

6 (A+ ε) ln(1 + |λ|) + C, λ /∈ E =
⋃

w∈N(f2)
⋃
Ñ

B δ
8
(w). (27)

We extend this estimate to the union of sets
⋃
k(B δ

8
(wk) \B δ

8
(w̃k)). The

union of B δ
8
(wk)

⋃
B δ

8
(w̃k) is a subset of the disk B 11δ

24
(w̃k) ⊂ B 14δ

24
(wk) ⊂

⊂ Bδ(wk). Thus, the estimate (27) is satisfied outside the pairwise disjoint
discs B 11δ

24
(w̃k). By Lemma 6, it is also satisfied outside the discs B δ

8
(w̃k).
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