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Background: Linking genotype to phenotype is a major aim of genetics research, yet

the underlying biochemical mechanisms of many complex conditions continue to remain

elusive. Recent research provides evidence that relevant gene-phenotype associations

are discoverable in the study of intellectual disability (ID). Here we expand on that work,

identifying distinctive gene interaction modules with unique enrichment patterns reflective

of associated clinical features in ID.

Methods: Two hundred twelve forms of monogenic ID were curated according to

comorbidities with autism and epilepsy. These groups were further subdivided according

to secondary clinical manifestations of complex vs. simple facial dysmorphia and

neurodegenerative-like features due to their clinical prominence, modest symptom

overlap, and probable etiological divergence. An aggregate gene interaction ID network

for these phenotype subgroups was discovered via a public database of known gene

interactions: protein-protein, genetic, and mRNA coexpression. Additional annotation

resources (Gene Ontology, Human Phenotype Ontology, TRANSFAC/JASPAR, and

KEGG/WikiPathways) were utilized to assess functional and phenotypic enrichment

patterns within subgroups.

Results: Phenotypic analysis revealed high rates of complex facial dysmorphia in ID

with comorbid autism. In contrast, neurodegenerative-like features were overrepresented

in ID with epilepsy. Network analysis subsequently showed that gene groups divided

according to clinical features of interest resulted in distinctive interaction clusters, with

unique functional enrichments according to gene set.

Conclusions: These data suggest that specific comorbid and secondary clinical

features in ID are predictive of underlying genotype. In summary, ID form unique clusters,

which are comprised of individual conditions with remarkable genotypic and phenotypic

overlap.

Keywords: autism spectrum disorder, epilepsy, craniofacial abnormalities, neurodegeneration, infantile

proteopathy, genetic phenotype associations
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BACKGROUND

Phenomics is a new and emerging area of study, underlying
the development of genotype-phenotype mapping and the
identification of different disease interaction networks (1).
Genotype-phenotype mapping involves the delineation of a
relationship between the genetic constitution of an individual
and an observable set of characteristics of interest. While the
relationship between a phenotype and a given genotype is
complex, in the case of rare disorders with high-penetrance
mutations determining such a relationship becomes relatively
easier, although may still require the aid of computational
methods such as those employed in the following study.

Intellectual disability (ID) is a complex and highly
heterogeneous group of disorders despite cognitive and
behavioral overlap. Genotype-phenotype correlations have been
reported within individual ID syndromes and across different
mutations within a given gene, yet only recently have there been
reports of more extensive and generalizable genotype-phenotype
clusters comprising subsets of the condition.

For instance, Casanova et al. (2) produced a manually
curated catalog of 650 ID-associated genes that were grouped
according to the presence of syndromic ID, non-syndromic
ID, and multisystemic disorders. In addition, conditions
were further subdivided according to variations in severity
and mutation penetrance. The team identified a variety of
functional enrichment patterns associated with specific clinical
manifestations, such as MAPK, growth factor, and DNA repair
signaling in conditions exhibiting short stature and ectodermal
anomalies; microcephaly and behavioral features associated with
genes enriched for chromatin-related functions, which regulate
gene availability and expression patterns; and epilepsy and other
neurologic, metabolic, and myopathic abnormalities associated
with mitochondrial dysfunction. Some of these findings overlap
those presented within the present paper, although we have used
alternative methods for phenotype clustering based on our earlier
work.

Previously, we reported associations between autism
and epilepsy comorbidities in monogenic (single-gene) ID
with trends in functional gene enrichment, suggesting these
behavioral/neurological phenotypes represent etiological
divergence at the molecular level in at least some forms of ID
(2). Here we show that additional secondary clinical features are
also prominent, such as multiple congenital anomalies (MCA),
neurodegeneration, brain atrophy, and motor disorders like
upper motor neuron disease (UMND), all of which co-vary to
greater or lesser degrees. Because of the prominence of these
secondary clinical features, we have elected to extend similar
work as Kochinke et al. (3) to perform in depth investigation
into functional and modular enrichment in association with
these clinical features, in the hopes that in using a more general
approach across an array of different disorders we may identify

Abbreviations: ID, Intellectual disability; CFD, complex facial dysmorphisms;

SFD, simple facial dysmorphisms; NLF, neurodegenerative-like features; MCA,

multiple congenital anomalies; UMND, upper motor neuron disease; MMD,

multiple movement disorders; PPI, protein-protein interaction.

previously unseen genotype-phenotype associations. It is our
aim that this approach may allow us to group IDs into subtypes
according to these gene-phenotype relationships, which may
afford better understanding of their inherent biologies, as well
as provide prognostic powers and potential cross-application of
useful treatment paradigms.

In this study, we report multiple unique gene clusters
with specific functional enrichment patterns that coincide with
distinctive clinical phenotypes, indicating ID genes exhibit broad
associations with observable phenotype.

METHODS

Gene-Phenotype Curation
Our gene-ID dataset was curated as described in Casanova et al.
(2). To summarize the curation process, a comprehensive list of
different forms of ID with known molecular origins was accessed
from the Mendelian Inheritance in Man (MIM) database (4).
By selecting conditions with ID, we were able to estimate
genetic penetrance for the autism and epilepsy phenotypes
according to rates of comorbidity. Keywords for initial accession
included: “intellectual disability,” “mental retardation,” “mentally
retarded,” “global developmental delay,” “severe developmental
delay,” and “profound developmental delay.” Any rare conditions
not accessed by these call words were not included in the study
for the sake of consistency. In addition, conditions were removed
if they fulfilled any of the following criteria: (1) the ID was
variably expressed and not considered a primary feature; (2)
onset of ID was later than 3 years of age; (3) the condition
was often lethal in infancy or early childhood; (4) the condition
was considered genetically complex (e.g., deletion/duplication
syndromes), with the exception of chromosome 2p16.3 deletion
syndrome, which contains only the NRXN1 gene; (5) autism
was a defining symptom for diagnosis, as in the case of certain
“susceptibility” genes; (6) the condition had <2 reported cases;
(7) the condition was a chromosomal instability syndrome,
leading to an accumulation of different mutations; and (8) the
condition was demarcated by a “?” indicating an unconfirmed or
potentially spurious mapping.

The larger group was then subdivided according to
comorbidities with autism and epilepsy and their frequencies,
which were verified both through MIM and the larger literature
(see Additional File 2, Tables 2–4 tabs). For this study, only
conditions with high autism and/or epilepsy rates, or without
either comorbidity, were retained.

In addition, all conditions that were not contained within
MIM’s Clinical Synopses were removed, resulting in a
final dataset of 212 different conditions. The autism group
with/without epilepsy (referred to here as the “autism group”)
contained 59 unique conditions; ID with epilepsy but without
autism (referred to as the “epilepsy group”) was composed of
83 unique conditions; and ID without autism or epilepsy (ID
group) was composed of 70 unique conditions. (see Additional
File 2, “Table_1” tab for full list of IDs according to group and
associated genes).

Comorbidity frequencies between ID and autism/epilepsy
were obtained from the literature and described in detail in
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Casanova et al. (2). (In addition, see Additional File 2, Tables 2–4
for citation information). A high cut-off for inclusion within
both the autism and epilepsy groups was≥20% for all conditions
for the sake of relative homogeneity. Only conditions without
any indications of autism or epilepsy comorbidities, including
the exclusion of single case examples, were placed within the
ID group. This curation process culminated in three groups of
conditions with very distinctive clinical and genetic profiles, as
will be discussed in the Results section.

All conditions were annotated using the MIM’s Clinical
Synopses (12/15/2016), which represent common clinical
features of a disorder and are organized anatomically. According
to Amberger et al. (5), features included within Clinical Synopses:

. . . are taken from the literature and incorporated into the

synopsis using a semi-controlled vocabulary. Many features

include modifiers and additional terminology specific to medical

subspecialties that are helpful for delineating overlapping disorders

and distinguishing characteristic features. Among genetically

heterogeneous disorders, care is taken to include only those

features that are present in patients with mutations in the same

causative gene [our emphasis].

Conditions were annotated according to the presence of
congenital anomalies in the following organs/tissues: the facial
suite (face, eyes, ears, nose, mouth, dentition, neck); the cranial
suite (cranial volume, synostoses, other cranial malformations,
e.g., bitemporal narrowing); hands and feet; the limbs; the
viscera and genitals (changes to the latter not otherwise due
to peripubertal hypogonadism, etc.); hair and skin; and the
brain [partial/complete agenesis of the corpus callosum and
malformations of cortical development (MCD), the limbic
system, the midbrain, and the brainstem, all visible via
MRI]. Complex (CFD) and simple facial dysmorphia (SFD)
were annotated according to the number of facial regions
affected, rather than according to the number of specific
dysmorphisms associated with a given condition. Tissue regions
include overall facial shape; the nose; the exterior of the
mouth; the interior mouth such as tongue, dentition, and
jaw shape; the form of the eyes; the midface (cheeks); and
the ears. CFD was defined according to three or more
malformations in distinct tissue regions, while SFD was defined
as 1–2.

Phenotype interactions were analyzed across all congenital
anomalies. Following analysis (see Results), CFDwas selected as a
defining secondary clinical feature for further genetic study, due
both to clinical prominence and predictive ability in the presence
ofMCA syndromes. SFDwere also selected as a secondary feature
of interest for the sake of contrast, although were generally not
predictive of MCA syndromes.

Conditions were also annotated for the presence of:
neurodegeneration (confirmed according to literature search);
brain atrophy; symptoms indicative of UMND, such as spasticity
and hyperreflexia; and the presence of symptoms indicating
the co-occurrence of 2 or more distinct movement disorders
[UMND, lower motor neuron disease [LMND], disorders of the
cerebellum, and disorders of the basal ganglia]. Because brain

atrophy and motor disorders were positively associated with
neurodegeneration (see Results), all of the above clinical features
were collapsed into a single category, “neurodegenerative-like
features (NLF),” for the purposes of further genetic study.
CFD and NLF phenotypes were further substantiated using
the Human Phenotype Ontology (HPO) database, and, when
that was insufficient, the general literature in order to ensure
reliability of MIM’s Clinical Synopsis results for each of the
conditions studied (6).

In order to study the association of the above clinical
phenotypes with autism, epilepsy, and ID groups, conditions
were subdivided according to the overlapping clinical phenotypes
presented in Figure 1. This resulted in 18 unique gene sets,
composed of 216 genes representing 212 different forms of
monogenic ID (Additional File 2, “Table_1” tab).

Extended Gene Interaction Network
The GeneMANIA gene interaction database [genemania.org;
(7)] was queried to discover additional known interactions for
all 216 curated seed genes (Additional File 3, Tables_15-17

tabs). The database provides a report containing several different
interaction types including physical, genetic, pathway, predicted,
co-localization, co-expression, and shared protein domains. All
interactions were obtained from the “networks.data” link, but for
the purpose of this study only genes with physical, genetic, or
co-expression interactions were included in the finalized network
(Additional File 3, Tables 16-17 tabs).

Visualization and analysis of the network was conducted
via Cytoscape (8). The “Network Analysis” Cytoscape app was
used to determine topological parameters including node degree
distribution fit to the power law, centrality, average connectivity,
and clustering co-efficient. The clusterMaker MCL algorithm
(granularity 1.2) in the Cytoscape clusterMaker app was used to
identify highly connected gene clusters in the extended network
(http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.shtml).
The clusterMaker algorithm is a plugin that partitions clusters
into “meta nodes,” allowing interactive exploration of putative
associations.

Kochinke et al. (3) reported that nearly half of all ID genes
physically interact with one another, with more than a third
forming a single large interactive network. Therefore, we tested
if phenotype labels, assigned at the gene curation stage, and
their extended interactions were non-randomly enriched in
MCL gene clusters using the Fisher’s Exact Test (p < 0.001).
Label enrichment was performed on the observed clusters.
Fisher’s test addresses the potential relationship of these clusters
without the need to randomize genes between clusters or
create random networks for label enrichment analysis (see
Additional File 1).

In addition, because there is a portion of genes within the
autism gene group that are not currently contained within
the syndromic category of the SFARI gene database and may
therefore be suspect, we have also assessed nonrandom clustering
of syndromic SFARI seed genes to illustrate that similar clustering
still occurs with more stringent exclusion criteria. Our approach
was identical as in the full network analysis, with the exception
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FIGURE 1 | Major Subgroups. Illustration showing breakdown of the three main groups (autism, epilepsy, and ID only) into smaller clinically-related subgroups.

Subgroups were defined according to the presence of complex facial dysmorphia (CFD), neurodegenerative-like features (NLF), simple facial dysmorphia (SFD), or a

lack of these same features (i.e., “none”). As shown in the lower portion of the image, CFD, and NLF overlapped ∼20% of the time, although analyses indicate no

clear relationship between the two sets of features, suggesting possible genetic pleiotropy when comorbid.

that only seed genes contained within the syndromic SFARI
category were used (9).

Enrichr was used for functional enrichment analysis of
each phenotypically-driven subgroup gene list (N = 570 total
genes) for these annotation categories: Gene Ontology (GO),
KEGG/WikiPathways, TRANSFAC/JASPAR Position Weight
Matrix (PWM), MGI Mammalian Phenotype (MP), and Human
Phenotype Ontology (HPO) (10). The Enrichr platform provides
adjusted p-values using the Enrichr list randomization method,
which is based on the Fisher’s Exact test as well as Z-scores and
combined scores for each annotation and is fully explained in
Chen et al. (11). As a guide of possible collective gene function for
each gene list, we used an adjusted significance p-value threshold
of p < 0.05.

Statistical Analyses
For phenotype analyses, between- and within-group
comparisons were performed using two-sample proportion
Chi-square tests with a false discovery rate p-value adjustment
(R pairwise.prop.test). Odds ratios with sample size adjustments

(12) were computed to examine associations amongst different
congenital anomalies, as well as associations within NLF, the
latter without sample size adjustment.

RESULTS

Clinical Features Common in Monogenic
Intellectual Disability
Congenital anomalies are prominent features within monogenic
forms of ID. In this study, the most common congenital
anomaly reported was CFD, occurring in almost half of the
conditions studied. Less frequent though still prominent
congenital anomalies included (in order of frequency from
most to least): microcephaly; organ malformations; brain
malformations (visible via MRI); craniosynostoses and
other cranial malformations; hand and foot malformations;
skin and hair disturbances; SFD; macrocephaly; and limb
malformations.

Not only was CFD the most common dysmorphism, it
is also strongly associated with other types of dysmorphia
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(z = 0.7813–7.1947, p < 0.001–0.014; OR = 2.19–13.461;
OR CI = 1.261–6.266, 3.805–28.717), with the exception of
specific brain malformations (z = 0.328–2.230, p= 0.055–0.814;
OR= 1.159–1.744; 95% CI = 0.479–1.108, 2.654-4.892;
see Additional File 3, “Table_11” tab for full results). One
primary exception was the strong relationship between
complete/partial agenesis of the corpus callosum (ACC) and
CFD, suggesting significant etiological links (z = 2.993, p
= 0.009; OR = 4.465; 95% CI = 95% CI = 1.762, 15.117).
Microcephaly was also only very weakly predictive of MCA
(aside from brain and cranium; z = 1.113–2.781, p = 0.014–
0.369; OR= 1.393–2.19; 95% CI = 0.734–1.261, 2.498–3.948),
and therefore facial dysmorphia were annotated separately
from deviations in cranial volume in this study, despite the
clinical tradition of grouping all craniofacial malformations
together.

Neurodegeneration was also common occurring in ∼20% of
ID and was an extremely strong predictive factor for the presence
of brain atrophy and various movement disorders, especially
UMND (z = 5.110, p < 0.001; OR = 8.61; 95% CI = 3.77,
19.68; see Additional File 3, “Table_13” tab). Another ∼30% of
conditions displayed either brain atrophy, UMND, or multiple
movement disorders (MMD; or some combination thereof)
but are not currently recognized as classical neurodegenerative
disorders. However, because of their strong interrelationship
suggesting linked etiologies, neurodegeneration, brain atrophy,
UMND, and MMD were combined under a single heading,
“neurodegenerative-like features” or “NLF,” for the purposes
of this study (z = 4.69–8.73, p < 0.001; OR = 4.64–56.53;
95% CI = 2.44–22.86, 8.82–139.82). NLF occurred in 50% of
the conditions studied, overlapping CFD ∼19% of the time.
Despite this large overlap, in the majority of cases these
features did not co-occur and, overall, exhibited no statistically
significant relationship with one another (p = 0.515; OR
= 0.834; 95% CI = 0.483, 1.440). This suggests that while
these phenotypes may co-occur in a large minority of these
conditions, they are nevertheless unique symptom clusters
and may instead reflect genetic pleiotropy (i.e., a single gene
influences 2 or more unrelated traits) when comorbid (see
Figure 1).

Previous results by Casanova et al. (2), utilizing a
near-identical dataset, indicate a divergence in functional
gene enrichment in ID according to autism and
epilepsy comorbidities. Here we report additional clinical
phenotype enrichment that varies according to these
behavioral/neurological comorbidities. Namely, the autism
group was significantly enriched for the presence of CFD (61%
vs. 37–40%), suggesting many rare autism syndromes may be
dysplastic in nature (χ2

= 5.42-6.38, p = 0.03) (13–15) (see
Additional File 3, “Table_12” tab). Meanwhile, the epilepsy
group was similarly enriched for NLF (68% vs. 31–39%),
indicating some form of cell stress may be involved in these IDs
(χ2

= 11.18–19.63, p < 0.001) (16, 17). There are additional
clinical phenotypes that vary according to group, such as
enrichment of neocortical malformations (identified by MRI;
z = 4.4566, p < 0.001, OR = 6.4289; 95% CI = 2.836, 14.573)
and microcephaly (z = 2.8656, p = 0.011, OR = 2.2778; 95%

CI = 1.297–4.000) in the epilepsy group. (For full results, see
Additional File 3, “Table_14” tab).

ID Genes Cluster According to Phenotype
Using a list of 216 seed genes divided according to our
phenotypes of interest, we have identified an additional 354
interacting genes using the GeneMANIA gene interaction
database (genemania.org). This resulted in the formation of 17
unique gene sets composed of a total of 1,195 genes upon which
to perform gene module detection according to all protein-
protein interaction (PPI), genetic interaction, and mRNA co-
expression connections. One of the autism subgroups failed
to show any significant intracluster interactions and therefore
was not included in the cluster and functional enrichment
analyses.

As can be seen in Figure 2A, the seed genes plus PPI,
genetic interacting, and co-expression loci form 17 sets of
relatively non-overlapping gene clusters, constituting tight
interaction/coexpression networks. Thirteen of the 17 gene
sets form particularly tight clusters and are interconnected
via specific hub nodes (Figures 2B–E). (For detailed views
of the full cluster network, see Additional File 1, Figure 1)
Overall network degree distribution modestly fits the power
law distribution (r = 0.776), indicating the network trends
toward scale free behavior (i.e., clustering is non-random and
potentially reflects a real gene interaction networks). Other
topological parameters of interest include: clustering coefficient
= 0.342; centralization = 0.034; and average connectivity =

5.287. SFARI-only syndromic genes likewise formed similar non-
random clusters (r = 0.687), indicating the robustness of the
autism results overall (Figure 2F). Overall, these results indicate
that our genes of interest form nonrandom interaction clusters
that naturally fall within clusters according to the phenotypes of
interest (CFD, NLF, SFD, etc.), suggesting that these phenotypes
are strong predictors to which gene cluster, if any, a given gene
belongs.

Within the main network, more than half of the gene sets are
interconnected via 10 hub nodes (genes onto which the major
clusters converge; Figures 2B–E). The Rett syndrome-associated
gene, MECP2, for instance, forms a hub connecting half of
the autism-related gene sets, particularly those with secondary
clinical features of CFD, combined CFD/NLF, and pure NLF, as
well as connecting one of the ID group clusters (Figure 2B). In
addition, MECP2 remains an important hub node in the SFARI-
only syndromic network, continuing to link CFD, CFD/NLF, and
NLF autism subgroups. MECP2’s nature as a semi-ubiquitous
repressor of long genes, which typifies many neural genes, places
it in a key position to regulate development of the central nervous
system and thus to potentially interact with many of the genes
presented here (18).

Likewise, the Fragile X syndrome-associated gene, FMR1,
forms amajor hub connecting the same clusters asMECP2within
the main network, although this result is not maintained within
the abbreviated SFARI network (Figures 2B, F). Interestingly,
like MECP2, there is some evidence to suggest that FMRP
specifically targets gene products translated from long genes,
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FIGURE 2 | Gene Interaction Network. (A) Full gene interaction network. (See Supplementary Figure 1 for detailed gene network). (B) Autism-linked MECP2 and

FMR1 hubs. (C) Epilepsy-linked CPSF1 hub. (D) Epilepsy- and autism-linked PPT1 hub. (E) Epilepsy- and autism-linked PRPF8 hub. (F) Syndromic SFARI gene

interaction network. (See Supplementary Figure 2, for detailed gene network).
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suggesting MECP2 and FMRP may regulate different points
along many of the same pathways (19, 20).

Two other major hubs in the main network are involved in
mRNA processing: CPSF1, which is involved in 3′ processing
of mRNA, and PRPF8, which acts as a scaffold for spliceosomal
complexes and snRNA. As shown in Figure 2C, CPSF1 connects
two epilepsy modules with features of NLF; meanwhile, PRPF8
(Figure 2E) connects epilepsy/CFD (EPI/CFD) with autism/CFD
(AUT/CFD). As we shall see in the following section, a number
of the epilepsy clusters are enriched for mRNA processing.
Interestingly, PRPF8 is also essential for sister chromatid
cohesion, making it therefore surprising that it forms a hub with
AUT/CFD rather than AUT/CFD/NLF, as we shall see in the
following section (21).

Finally, the hub, PPT1, whose mutation is responsible for
the neurodegenerative and lethal condition, Neuronal Ceroid
Lipofuscinosis 1, links the EPI/NLF and AUT/CFD/NLFmodules
(Figure 2D). As a glycoprotein involved in catabolism of lipid-
modified proteins and a regulator of heat shock proteins, its
loss results in excessive generation of reactive oxygen species
(ROS) (22, 23). PPT1’s role as a hub linking EPI/NLF and
AUT/CFD/NLF can potentially be viewed in light of the roles
chronic ROS play in the synaptic impairment that ultimately
leads to a host of neurodegenerative disorders (24).

Functional Enrichment Trends in Gene
Subgroups
The genes sets in some phenotype subgroups showed little
obvious trends in functional enrichment, such as EPI/SFD/NLF
and ID/SFD. This may be a reflection of etiological diversity
in these respective modules and/or the inadequacy of current
platforms in estimating disparate functional relationships.

Other groups, however, appeared to show distinctive
functional trends, particularly those associated with CFD. For
instance, the AUT/CFD gene subgroup is strongly enriched
for processes relating to chromatin modification (z = −2.40,
p < 0.001), histone modification (z = −2.39, p < 0.001),
methylation (z = −2.45, p = 0.007), transcription factor
binding (z = −2.16, p = 0.026), and is localized to the
nucleus (nucleolus; z = −2.21, p = 0.002; Figure 3A). All of
these enrichments strongly implicate AUT/CFD genes in the
regulation of gene expression and, ultimately, organ and tissue
development.

More than a third of AUT/CFD genes are also transcriptional
targets for Wilms tumor suppressor 1 (Wt1), a transcription
factor that helps regulate cell development and survival (z =

−1.62, p = 0.036). In addition, almost half of AUT/CFD genes
are transcriptional targets of Lef1, a positive regulator of the
canonical Wnt pathway, which is itself a foundational network
involved in organ and tissue morphogenesis (z = −1.48, p =

0.036) (25).
In contrast, the EPI/CFD gene subgroup, though likewise

relegated to the nucleoplasm (z=−2.16, p < 0.001) and involved
in histone modification (z = −2.39, p < 0.001), is also enriched
for processes involved in mRNA processing (z = −2.37, p =

0.003) and the spliceosomal complex (z = −2.15, p < 0.001).

Similarly, EPI/CFD/NLF was enriched for RNA polyadenylation
(z = −2.66, p <= 0.003). Many of these functions concern
post-transcriptional stages of gene expression regulation, while
enrichments associated with AUT/CFD involve regulation of
transcription itself. ID/CFD meanwhile is enriched in kinase
binding (z = −2.55, p = 0.011) and chromatin binding (z =

−2.45, p = 0.031), while ID/CFD/NLF is enriched for protein
glycosylation (z = −2.34, p < 0.001) and is localized to the Golgi
membrane (z=−2.29, p> 0.001) and the lysosome (z=−2.31, p
> 0.001). All CFD enrichments strongly implicate the role of gene
expression regulators in the pathophysiology of complex facial
dysmorphia.

When comparing the two autism CFD subgroups to one
another, we found that both AUT/CFD and AUT/CFD/NLF are
involved in chromatin binding (z = −2.47, p < 0.001). However,
AUT/CFD/NLF is also strongly enriched for processes involving
the mitotic cell cycle (z = −2.30, p < 0.001) and sister chromatid
cohesion (z = −2.67, p < 0.001), which is entirely missing from
the AUT/CFD gene subgroup (Figure 3B).

In contrast to its CFD counterparts, ID/NLF was enriched
in hydrogen ion membrane transporter activity (z = −2.34, p =

0.003) and was involved in the respiratory chain (z = −2.59, p
< 0.001) within mitochondria. In addition, it displayed pathway
enrichment in relation to Parkinson’s disease (z = −1.77, p
< 0.001), Huntington’s disease (z = −1.85, p = 0.002), and
Alzheimer’s disease (z = −1.72, p = 0.015). The EPI/NLF gene
subgroup, in contrast, was enriched for a variety of terms, such
as myelin sheath (z = −2.89, p < 0.001), mRNA polyadenylation
(p = 0.007, z = −2.71), carboxylic acid biosynthetic process (z
= −2.35, p = 0.007), and protein folding (z = −2.31, p =

0.007), suggesting that despite strong intracluster connectivity,
the etiology of the EPI/NLF subgroup is comparatively diverse.
Meanwhile, AUT/NLF was modestly enriched for membrane
depolarization (z = −2.26, p = 0.005), regulation of postsynaptic
membrane potential (z = −2.09, p = 0.009), and regulation
of synaptic plasticity (z = −2.15, p = 0.027) (Figure 3C).
This indicates that disturbances to synaptic proteins in autism
could be related to symptoms of NLF, an idea that may be
worthy of further exploration in relation to autistic regression
given the role of synaptic impairment in the etiologies of
many neurodegenerative disorders (26). Interestingly, recent
research indicates that autistic individuals with gene disrupting
mutations in postsynaptic density genes are more likely to
experience autistic regression than individuals with mutations
in genes of other functional classes (27) (see Additional File
4, “Table_19” tab for more extensive enrichment results by
subgroup).

DISCUSSION

The present study provides evidence of genotype-phenotype
correlations throughout multiple ID subsets. In particular,
the presence of autism (with or without epilepsy), epilepsy
(without autism), CFD, and NLF appear to be general predictors
of associated gene function. The AUT/CFD gene subgroup,
for instance, is linked with genes localized to the nucleus.
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FIGURE 3 | Enrichment localization according to subgroup. (A) Localized enrichment according to subgroups within the main body of the cell. (B) Subgroup

enrichment within the synapse. (C) Subgroup enrichment at the chromosome and centromere. Intellectual disability with autism and with/without epilepsy (AUT);

intellectual disability with epilepsy and without autism (EPI); intellectual disability without autism or epilepsy (ID); complex facial dysmorphia (CFD);

neurodegenerative-like features (NLF).

These genes are involved in chromatin modifications; histone
modifications; methylation; transcription factor binding; and are
key in regulating embryonic development. In contrast, gene
products of the AUT/CFD/NLF subgroup are likewise localized
to the nucleus and involved in chromatin binding, but are
typically involved in regulation of the cell cycle and sister
chromatid segregation. Nuclear localization appears to be a
strong risk factor in the developments of both autism and
CFD in these subgroups; however, cell cycle involvement may
provide an additional risk for NLF as we see in many classical
neurodegenerative diseases (28).

Nuclear localization, in general, seems to be a strong
predictive factor for the presence of CFD and, more weakly, SFD,
although specific functional enrichments vary with the presence
of autism, epilepsy, and NLF accordingly. AUT/CFD, EPI/CFD,
and ID/CFD all tend to be localized to the nucleus and are
at least modestly enriched in processes relating to chromatin
binding and modifications. The important roles these gene
expression regulators play in organogenesis likely underlie their
associations with complex facial dysmorphia and other physical
features.

We have also identified a number of major hubs within
the clusters analysis, linking otherwise non-overlapping gene
sets. Although functional relevance of some of the hubs is
currently uncertain, several of the autism hubs are already major
foci within the current literature. MECP2, the primary gene
responsible for Rett syndrome, and FMR1, the gene associated
with Fragile X syndrome, have both received considerable

attention and FMR1 in particular has been previously identified
as a major pathway of interest in the pathophysiology of
autism (29–31). From the clinical perspective, both Rett and
Fragile X syndromes share strong associations with autism.
Most girls with Rett’s present with transient autistic features at
a characteristic stage within the prolonged regressive period.
Meanwhile, approximately half of individuals with Fragile X
present with an enduring autism phenotype (32). Despite
their unique clinical phenotypes, our data indicate that both
MECP2 and FMR1 form foundational pathways underlying
autism risk and may overlap in part due to their roles as
major regulators of neuronal gene expression and protein
translation.

Finally, we have shown that specific secondary clinical
phenotypes exhibit strong association with ID according to
comorbidities with autism and epilepsy. For instance, the high
rates of CFD and MCA in rare autism syndromes are strongly
suggestive of a common biology despite genotypic variation.
Despite the dearth of obvious brain malformations reported in
our autism dataset, the high prevalence of microscopic dysplastic
foci in idiopathic autism tends to validate this point (13, 15, 33,
34).

Our results have also shown that close to half of the
conditions studied here exhibit features reminiscent of
neurodegeneration, although only about a fifth are officially
recognized as “neurodegenerative disorders.” The occurrence
of NLF is particularly prominent in the epilepsy group,
although functional enrichment of the ID/NLF subgroup is
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more aligned with processes of classic neurodegeneration.
However, these data suggest that: (1) postmortem analysis
of neurodegeneration may be understudied in some of
these conditions, and/or (2) proteopathies with obvious
inclusions may comprise only a subset of a broader range of
neurodegenerative-like disorders, which have subtler, more
complex etiologies with progressions that differ from the
typical dementias that occur in later life. In support of this,
Sarnat and Flores-Sarnat (35) have recently addressed such
concepts within the context of “infantile tauopathies,” such as
tuberous sclerosis and focal cortical dysplasia 2. At present,
recognized infantile proteopathies include only those conditions
resultant from MTOR overexpression, a known mechanism of
neurodegeneration (36). However, given the range of inclusion
bodies associated with adult forms of neurodegeneration and
senile dementias, the list of infantile proteopathies is likely
to expand in future and may eventually be recognized as a
major cause of some developmental and intellectual disabilities
(35, 37).

Current Limitations and Future Research
Given the nature of the MIM database, whose purpose is
intended to summarize genetic and syndromic disease states,
research procedures have varied across individual studies that
compose the MIM. The state of the MIM is also potentially
incomplete, leading to gaps in our dataset. For these reasons,
our results must be extrapolated cautiously, requiring further
investigations at the clinical and molecular levels. However,
although the MIM data may be incomplete, we feel the current
dataset provides an excellent overview of the major gene-
phenotype trends that are currently available for data mining.
In addition, in order to limit the extent of Type I errors,
we have elected to study clinical phenotypes whose medical
evaluations are standardized across health fields, ensuring
that the clinical data reported here may be relatively reliable
(38, 39).

One major exception to this is the field of autism diagnostics,
which has changed significantly over the past 25 years. A
majority (59%) of seed genes used in this analysis is included
within the syndromic category of the SFARI Gene Database,
supporting their diagnostic reliability in this study. While we
are unable to directly address diagnostic reliability of the
remainder of autism genes, we instead assessed robustness
of non-random clustering of this subset of syndromic SFARI
genes, which like the larger autism gene group exhibited
similar clustering. This supports our general findings as well
as potential risk status of non-SFARI genes included in this
study.

Another limitation of the study is the question of its
applicability to a broader range of conditions. The study
of severely affected individuals with rare genetic syndromes
is a common approach to investigating human illness in
order to better understand complex conditions. However, such
assumptions are based on symptom similarity rather than
biological evidence. As such, our results may not apply to
forms of ID, autism, and epilepsy that lack strong genetic
roots. However, recent work by Rossi et al. (40) suggest

that even those patients with autism but without obvious
syndromes often harbor potentially deleterious variants in many
of the same genes studied here. Further lines of research will
continue to address potential cross-applicability of the data
presented here. In the meantime, we believe the subgroups we’ve
described can provide a platform for the further elucidation of
common denominator pathways and the regulatory networks
underlying these complex conditions, leading to the subtyping of
disorders.

CONCLUSIONS

The present study provides strong evidence that ID-
associated phenotypes cluster according to related gene
function. Specifically, gene modules form according to
autism, epilepsy, CFD, and NLF comorbidities. Future
research will help to delineate these subgroups in
greater detail, as well as determine whether additional
genotype-phenotype correlations exist in these and related
datasets.
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