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Using classification to identify biomarkers for various brain disorders has become a
common practice among the functional MR imaging community. Typical classification
pipeline includes taking the time series, extracting features from them, and using
them to classify a set of patients and healthy controls. The most informative features
are then presented as novel biomarkers. In this paper, we compared the results
of single and double cross validation schemes on a cohort of 170 subjects with
schizophrenia and healthy control subjects. We used graph theoretic measures as
our features, comparing the use of functional and anatomical atlases to define nodes
and the effect of prewhitening to remove autocorrelation trends. We found that
double cross validation resulted in a 20% decrease in classification performance
compared to single cross validation. The anatomical atlas resulted in higher classification
results. Prewhitening resulted in a 10% boost in classification performance. Overall, a
classification performance of 80% was obtained with a double-cross validation scheme
using prewhitened time series and an anatomical brain atlas. However, reproducibility
of classification within subjects across scans was surprisingly low and comparable to
across subject classification rates, indicating that subject state during the short scan
significantly influences the estimated features and classification performance.

Keywords: resting-state fMRI, classification, network measures, double cross validation, prewhitening,
schizophrenia

INTRODUCTION

Schizophrenia is a debilitating disease that affects between 0.25 and 0.64% of the adult US
population according to (The National Institute of Mental Health, 2018). One hypothesis about
the cause of schizophrenia is the “disconnectivity hypothesis” (Friston, 1998) which posits that the
normal pattern of connectivity between distinct regions of the brain is affected. This hypothesis
has been studied extensively over the past decade using Functional Magnetic Resonance Imaging
(fMRI). fMRI provides a unique means to study schizophrenia because it is non-invasive and unlike
Electroencephalography (EEG) can image deep brain structures, such as the thalamus. A reliable
biomarker of the disease could help clinicians with diagnosis, measure efficacy of a therapy, and
identify prodromal state. Biomarkers may also provide insight into the mechanism of the disease
and could guide researchers to developing novel therapeutic interventions.
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Finding biomarkers that are replicable across different studies
and patient populations has been challenging (Pettersson-Yeo
et al., 2011). Different studies have found abnormal patterns of
connectivity in different regions of the brain. For example, the
thalamus is often implicated, but some studies have reported
hyperconnectivity between thalamus and other brain areas (Wolf
et al., 2009; Skudlarski et al., 2010; Zhang et al., 2012; Atluri et al.,
2015) while others have found hypoconnectivity (Andreasen
et al., 1996; Zhou et al., 2007; Tu et al., 2010).

There are several approaches to generating features from
fMRI to identify biomarkers: (1) a univariate approach, which
quantifies characteristics of each brain region separately and
compares that across the patient and healthy groups (Shi et al.,
2007; Bassett et al., 2012), (2) a bivariate approach, which
quantifies interaction between each pair of regions in the brain
and searches for region pairs that are discriminating across
patient and healthy groups (Lynall et al., 2010; Bassett et al., 2012;
Tang et al., 2012; Su et al., 2013; Guo et al., 2013; Arbabshirani
et al., 2014a; Kim et al., 2016), and (3) a multivariate approach,
which quantifies more complex interactions between all regions,
typically using graph theoretic measures (Lynall et al., 2010; van
den Heuvel et al., 2010, 2013; Bassett et al., 2012; Anderson
and Cohen, 2013; Fekete et al., 2013; Singh and Bagler, 2016).
The univariate approach, while simpler and less computationally
demanding, does not capture anomalies in interactions between
different regions. The bivariate approach captures pairwise
interactions between different brain regions but is not capable of
mining more complex structures resulting from those pairwise
interactions. Furthermore, the bivariate approach results in a
high dimensional feature space to choose from, making the
problem of finding robust biomarkers computationally more
challenging. The multivariate approach while capturing regional
interactions, reduces the feature set to a set of measures
that capture complex patterns of interactions between regions
without the need to analyze each pairwise interaction separately.
Moreover, recent studies have demonstrated that the multivariate
approaches have more discriminating power (Venkataraman
et al., 2010; Atluri et al., 2013).

The discriminating power of a classifier can be quantified
either by using statistical tests (e.g., Lynall et al., 2010; van den
Heuvel et al., 2010, 2013) or by classification accuracy (e.g., Castro
et al., 2011; Bassett et al., 2012; Anderson and Cohen, 2013;
Arbabshirani et al., 2013; Singh and Bagler, 2016). Statistical tests
measure the distance of means between the two groups. If it is a
parametric test, this distance is measured in the standard error
of the means of the two groups. Statistical significance depends
on the number of subjects, as increasing the number of subjects
can increase the power to detect subtle differences in their means.
On the other hand, classification performance measures the
accuracy of the classifier. Significant statistical difference between
two groups can be measured but may still have nearly random
classification performance. Moreover, statistical tests rely on the
difference between means of the two groups, and are therefore
sensitive to small changes in the means caused by outlier data
points. Classifiers such as support vector machines (SVM) on the
other hand are more robust to outliers (Vapnik, 1995; Bishop,
2006). Therefore, classification accuracy is a better measure of the

value of a classifier in a clinical setting. Furthermore, classifiers
provide a model that can be directly used to make predictions
about new datasets.

The divergent, and sometimes inconsistent, biomarkers
proposed for schizophrenia can be attributed to multiple factors.
First, typical sample size are low (average 38 subjects based on
sample sizes reported in Pettersson-Yeo et al., 2011). Second,
different studies use different pre-processing steps. Third,
tests that identify biomarkers that are statistically significantly
different vs. those that use classification performance put
different values on the performance of the features. Fourth,
biomarker validation is different across studies and some findings
may be more robust and generalize better than others. Finally,
there is the issue of heterogeneity of the studied disorder.

In this study we examined predictive power of several
multivariate biomarkers, but also explored how such predictive
power can be affected by pre-processing steps and the biomarker
discovery method. This work extends previous work in four
important ways. First, we used a large sample (170 subjects).
Second, we used a purely data driven approach to identifying
biomarkers. We used a comprehensive set of multivariate graph
theoretic measures and used data driven algorithms to find
which ones have more discriminating power. Third, we used
an alternative pre-processing pipeline where functional activity
was prewhitened to remove spurious cross correlation between
voxels. Moreover, we compared predictive power of two methods
of defining brain regions: extracting definition of brain regions
based on functional activity of the subjects themselves, compared
to using a conventional anatomical atlas. And fourth, we used a
rigorous double cross-validation method to discover biomarkers
and report their prediction accuracies to improve generalization
across different patient populations.

In this study 6 min of resting state fMRI data from
subjects with schizophrenia and healthy control subjects were
analyzed. All time series were first prewhitened, then used to
construct a functional atlas. Regions of the functional atlas
as well as an anatomical atlas commonly known as the AAL
atlas (Tzourio-Mazoyer et al., 2002) were used to construct
unweighted graphs for each subject, and several multivariate
graph theoretic measures were calculated. The measures were
then used to classify patients from healthy controls using SVMs.
Most informative features were identified and used to report
classification performance in a double cross-validation scheme
where separate sets of subjects were used for feature selection and
classification respectively.

MATERIALS AND METHODS

Participants
A total of 170 subjects participated in this study: 52 chronic
(17 female, age: M = 37.0, SD = 10.8) and 30 first episode (8
female, age: M = 25.7, SD = 7.1) subjects with schizophrenia.
Since the patient group had different age distribution, two
groups of healthy control subjects were recruited, where each
healthy control group matched demographics of one of the
patient groups: 55 control subjects (18 female, age: M = 38.0,
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SD = 11.9) to match the chronic group and 33 control subjects
(9 female, age: M = 25.5, SD = 6.9) to match the first episode
group (see Table 1 for detailed information on participants).
All participants gave informed consent and were compensated
for their participation. Schizophrenia patients were assessed for
negative and positive symptoms using the Scale for Assessment of
Negative Symptoms (SANS) and Scale for Assessment of Positive
Symptoms (SAPS) (Andreasen and Olsen, 1982). All procedures
were done in accordance with a University of Minnesota IRB
approved protocol.

For classification, chronic and first episode schizophrenic
patients were collectively labeled as the schizophrenic group.
Similarly, the two healthy control subjects populations were
grouped into a single population labeled “healthy.”

Imaging Data Acquisition and
Pre-processing
Resting state fMRI was collected for 6 min from each participant
as detailed in (Camchong et al., 2011; Atluri et al., 2015).
Participants were instructed to remain as still as possible, stay
awake and keep their eyes closed. Images were acquired using
a Siemens Trio 3T scanner (Erlangen, Germany). Sequence
parameters used in this study are as follows: gradient-echo echo-
planar imaging (EPI) 180 volumes, repetition time (TR) 2 s, echo
time (TE) 30 ms, flip angle 90

◦

, 34 contiguous AC-PC aligned
axial slices, voxel size 3.4 × 3.4 × 4.0 mm, matrix 64 × 64 × 34
totalling 139,264 voxels.

Participants were asked at the end of the scan whether or
not they stayed awake during the scan. For the one patient that
fell asleep during the scan the scan was repeated under awake
conditions. Also, a T1-weighted anatomical image was acquired
using a magnetization prepared rapid gradient-echo sequence.
In addition, a field map was acquired and used to correct
for geometric distortions introduced by field inhomogeneities:
TR = 300 ms, TE = 1.91 ms/4.37 ms, flip angle = 55

◦

, voxels
size = 3.4× 3.4× 4.0 mm.

To remove recording artifacts and noise, register the data,
and downsample to a manageable size, the raw fMRI data
was preprocessed using FEAT and MELODIC from the FSL
software package as follows. First, the first three volumes were
excluded from each subject scan to account for magnetization
stabilization. The subsequent scans were then motion corrected,
B0 field map unwarped, and corrected for slice scan time.
Non-brain portions of the images were removed and a spatial
smoothing kernel was applied to the dataset (6 mm full-
width half-maximum). The images were then grand mean

and intensity normalized and temporally filtered between
0.01 and 0.08 Hz. All images were then registered to the
MNI152 space. To remove noise introduced by head motion,
respiration, cardiac pulsation, and scanner artifacts, probabilistic
independent component analysis (PICA) (Beckman and Smith,
2004) was used. Spatial and temporal characteristics of noise
components are described in MELODIC manual1 and previous
methodological reports (Kelly et al., 2010; Xu et al., 2014). The
dataset was then resampled to 3 × 3 × 3 mm, resulting in
47640 voxels per volume. Time series for each voxel consisted
of 177 time points, separated by 2 s, lasting 5.9 min in
duration.

Functional Parcellation
Functional parcellation is the process of grouping voxels with
similar functional activity together to form regions using data-
driven algorithms. Functional parcellation uses cross-correlation
between the voxel time series to identify voxels with similar
functional activity. Cross-correlation metrics are influenced by
both the correlation between the two data sets as well as the
autocorrelation within each data set. Therefore, to isolate the
interactions with the cross-correlation, it should be applied to
time series that are stationary and have no autocorrelation,
characteristics of white noise. However, BOLD time series are
typically non-stationary and are highly autocorrelated leading
to spuriously high cross-correlations (Christova et al., 2011).
For accurate functional maps it is important to remove these
factors that lead to spuriously high correlation values. One
approach to removing non-stationary and autocorrelated trends
from the time series is “prewhitening” (Christova et al., 2011).
This approach has previously been used to find biomarkers
for Post Traumatic Stress Disorder (PTSD) and shown to
enhance classification performance of the biomarkers (Christova
et al., 2015). Therefore, we prewhitened all time series prior
to constructing the functional atlas. To prewhiten the time
series from voxel i xi(t), the Fourier transform of the time
series, Xi(f), was calculated and divided by the absolute value
of the spectrum (Equation 1), so that similar to white noise,
the amount of power in each frequency band was equal
and the power spectrum became flat. Autocorrelation of the
whitened signal is calculated as inverse Fourier transform
of the resultant flat spectrum which is an impulse. Fourier
transform of each time series was calculated as its 177

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

TABLE 1 | Characteristics of study participants.

Age SANS SAPS Medication

Chronic Schizophrenia Patients (N = 52) 37.0(10.8) 33.0(14.3) 23.5(17.3) 1 Typical 38 Atypical 5 Both 4 No meds 4 N/A

Chronic Healthy Controls (N = 55) 38.0(11.9) N/A N/A N/A

First Episode Schizophrenia Patients (N = 30) 25.7(7.1) 30.1(17.4) 25.3(16.9) 0 Typical 21 Atypical 0 Both 3 No meds 6 N/A

First Episode Healthy Controls (N = 33) 25.5(6.9) N/A N/A N/A

Mean (and SD) Demographic and Diagnostic Characteristics of participants. SANS, Scale for Assessment of Negative Symptoms; SAPS, Scale for Assessment of Positive
Symptoms.
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FIGURE 1 | Construction of the group functional atlas. (A) In order to combine datasets from individual subjects, time series from all control subjects were
concatenated for each voxel. Each individual dataset consisted of 47640 voxels and 177 time points. (B) A toy example illustrating how the adjacency matrix is
constructed from pairwise cross correlations between the time series of all pairs of N voxels. The ith row and jth column equals cross correlation between the ith and
jth voxels. Lighter and darker colors correspond to higher correlation and lower correlation values respectively. For our dataset, this was a 47640 × 47640
symmetric matrix which was used to calculate pairwise correlation distance between all voxels. (C) Dendrogram illustrating cluster distances. A dendrogram contains
all the information about membership of each datapoint at each stage of hierarchical clustering. At the bottom of the dendrogram, each single data point constitutes
a single cluster. At each stage of the hierarchy, the pair of clusters that are most similar as evaluated by the linkage criterion are merged to form bigger clusters.
Eventually, at the top of the hierarchy all data points are merged to form a single cluster. (D) Segmentation based on dendrogram. After cutting the dendrogram at
the selected scale, i.e., the desired number of clusters or regions, a parcellation of the brain is produced based on which voxels belongs to the same cluster. This
parcellation is used as the functional atlas for the rest of our analyses.

point Discrete Fourier transform (DFT) using MATLAB’s fft()
function.

xi(t)←→ Xi(f )

XW
i(f ) = Xi(f )/|Xi(f )| ←→ xW

i(t) (1)

The resultant spectrum, XW
i(f), was then transformed back

into the time domain xW
i(t) to make a prewhitened data set.

While this approach uses an a-causal approach to prewhitening,
unlike fitting an ARMA model, it is highly efficient and when only
the zero time lag correlation is measured, this approach can be
used for undirected similarity measures.

The functional atlas was constructed at group level by
combining scans from the control subjects. To combine
individual scans, we concatenated time series from all the
subjects, to obtain a single time series per voxel (Figure 1A).
We then calculated the correlation adjacency matrix between
the voxels (Equation 2), where XW is the time series matrix,
with each column corresponding to one time series and each
row corresponding to the BOLD signals across voxels at a single
time point. For a dataset consisting of N voxels, the correlation
adjacency matrix is an N × N symmetric matrix where value of
the ith row and jth column is the Pearson correlation coefficient

(Altman, 2006) between time series of voxels i and j (Figure 1B).
Pairwise correlation values were then used to calculate pairwise
correlation distance between voxels, which is equal to 1 minus the
correlation coefficient between the pair, and ranges from 0 to 2.

6 = XT
W .XW (2)

C = (diag(6))−1/2.6.(diag(6))−1/2

To construct the atlas, we used the agglomerative hierarchical
clustering algorithm, with Ward’s minimum variance method
as the linkage criterion (Ward, 1963; Tan et al., 2006). In this
algorithm, at first each voxel is treated as a single region or
cluster. Then, the pair of clusters with minimum within cluster
distance among all the pairs are grouped together to form bigger
clusters. This process is repeated until all the voxels are merged
into a single cluster. A dendrogram can be generated that shows
arrangement of the clusters at each stage of hierarchical clustering
(Figure 1C). The final cluster assignments for each data point
is then obtained by ‘cutting’ the dendrogram at a desired scale,
for example 90 regions (Figure 1D). To obtain contiguous
regions, a spatial constraint was enforced when constructing
the dendrogram that allowed two clusters to be merged only if
they contained spatially neighboring voxels, and therefore their

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2018 | Volume 12 | Article 71

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00071 October 29, 2018 Time: 16:10 # 5

Moghimi et al. Schizophrenia Classification Using Network Measures

FIGURE 2 | Network level model of the brain. After applying the atlas to each
individual dataset, time series of voxels within each region were averaged
resulting in a single time series per region. These regions were used as nodes
of the graph, where the link between each pair of nodes was weighted by the
correlation coefficient between the nodes. A set of measures that capture
network characteristics were then calculated for each subject.

merger would result in a contiguous region. Our choice of the
Ward’s linkage method was based on an exploratory analysis
of different parcellation methods described in detail elsewhere
(Moghimi et al., 2017).

To compare classification accuracy with an anatomical atlas,
we constructed a functional group atlas with 90 regions to
compare to the commonly used Automated Anatomical Labeling
(AAL) atlas, which also has 90 regions excluding cerebellum
(Tzourio-Mazoyer et al., 2002). Number of regions for the
functional atlas was chosen to be similar to that of the AAL to
make a direct comparison between the two atlases. Distribution
of size of regions was also similar across the two atlases (Moghimi
et al., 2017). Borders between the two regions do not align,
however, and regions of the functional atlas are not anatomically
meaningful since they were constructed using functional activity.
The location of each region in the functional atlas can be reported
in terms of the AAL regions it overlaps with.

Network Model
After constructing the functional atlas, a graph model of the brain
was constructed for each subject by first applying the atlas to
the individual datasets. Time series of all voxels within a single
region were averaged to obtain a single time series per region.
Pairwise Pearson correlation coefficient between the regions was
then calculated and used to construct a weighted undirected
graph, where each region constituted one node and the links
were weighted by the correlation coefficient value between nodes

(Figure 2). Calculation of the network measures requires all
the weights to be non-negative, so negative weights were set to
zero. There is currently no general consensus over the cause
of negative correlation coefficients (Chen et al., 2011) and we
observed that only 2± 3% of all cross correlations were negative.
Several measures are specific to binary graphs (Supplementary
Table 1). In order to construct a binary graph, weights that
were below a threshold were set to zero and weights above
the threshold were set to one. The threshold was chosen to
obtain a binary graph with 30% connection density (Lynall et al.,
2010). In addition, some measures required the graph to be
divided into communities (Supplementary Table 1) and the
information about the community membership was required
for their calculation. To divide the graph into communities,
the Louvain method for community detection (Reichardt and
Bornholdt, 2006; Ronhovde and Nussinov, 2009) was used. After
constructing the weighted and binary graphs, several graph
theoretic measures (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010b) were calculated (see Figure 2 and Supplementary
Table 1 for a list of the measures), using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010a,b). Some measures that
required specification of extra parameters, as summarized in
Supplementary Table 1.

Graph theoretic measures can capture characteristics of each
node (producing one value per node), each pair of nodes
(producing one value per node-pair), or the entire network
as a whole (producing one value per network). In addition,
for each measure, its average and standard deviation across
all regions were also used as separate measures. As a result,
each node measure produced 90 + 2 features (one feature
per node plus mean and standard deviation across all nodes).
Similarly, measures that captured characteristics of node pairs
each produced 4005 + 2 features since there are 4005 node
pairs in a graph with 90 nodes. Global network measures each
produced a single feature. If for any particular measure, the
values for some nodes or pairs of nodes were not calculable
due to structure of the graph, those values were excluded from
the feature set. With 10 node measures, 6 node-pair measures,
and 9 global measures, we computed a total of 19000+ network
measures.

Classification
To classify control subjects from schizophrenia subjects we used
SVM (Vapnik, 1995; Bishop, 2006). SVMs are robust to presence
of noisy data points because they maximize the classification
margin (Figure 3A). There are two free parameters for an SVM
that need to be set by the experimenter: box constraint (C value)
and kernel. We used a C value equal to 1, and a linear kernel.
We also tried C values equal to [0.1, 10] and radial basis function
(RBF) (sigma = 1), quadratic, and polynomial (degree = 3)
kernels.

The 19000+ graph theoretic measures were used as features
for classification of 170 subjects into either control or
schizophrenic. Using this feature set for classification of a
data set poses two challenges for classification. The first
challenge is that the feature set is orders of magnitude larger
than the number of subjects (a problem called ‘the curse of
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FIGURE 3 | Classification. (A) Support vector machine is a supervised learning classifier that maximizes the margin between the separating hyperplane (continuous
black line) and data points. Data points closest to the hyperplane are the support vectors. In this toy example, the data consists of two features. Our dataset consists
of 170 data points, in a 19000+ dimensional space. The hyperplane is characterized by a set of weights (W) and constant (b) and projects the dataset onto a single
dimension. (B) Double cross validation divides the subjects into three subsets. The training and validation subsets were used for optimizing the feature set, and the
test subset is used for calculating classification performance. Different subsets are determined in a 5-fold cross validation division scheme, where the entire dataset
is divided into 5 equal size subsets and each subset is used once as the test subset. In this toy example, subjects 9 and 10 are used as the test set, while the rest of
the subjects are used for feature selection. For feature selection a 4-fold cross validation scheme is used, where the subjects are partitioned into 4 equal size groups
and each group is used once as the validation subset. 4 SVM models are trained for each train subset, and performance of each set of features is averaged across
the 4 classifiers. Features that perform better on average are then chosen to be tested on the test set. (C) Sequential forward selection (SFS) algorithm is
demonstrated in a toy example. First, performance of every single feature is calculated by training a SVM using that feature only on the train subset and applying the
weights on the validation subset. The single feature with the highest performance is picked (feature B in this example, left column). Subsequently, performance of
combination of feature B with all the remaining features is calculated, by training an SVM using each feature pair separately on the train subset and applying the
weights to the validation subset. Feature pair with the highest performance is then selected [features (B, E) in this example, middle column]. The selected feature pair
is then combined with all the remaining features to form feature triplets, performance of each is then calculated through the same cross validation procedure. The
feature triplet with the highest performance is then picked (features (B, E, A) in this example, right column).

dimensionality’) (Jain et al., 2000). This forces the classifier
to pick up patterns that are specific to the subjects that
are used for its training and therefore are not generalizable
to other subjects, a phenomenon called ‘overfitting’ (Clarke
et al., 2008). The second challenge is that not all features
are equally informative to the classifier (Guyon and Elisseeff,
2003). We need to know which features are contributing
more to the classification process in order to extract effective
biomarkers. Therefore, we need to reduce dimensionality of
the data by selecting an optimal or sub-optimal subset of
features for classification. Here we used SVM for both feature
selection and classification. To ensure the optimized feature
set is generalizable across subjects, we used a double cross

validation scheme (Filzmoser et al., 2009; Sundermann et al.,
2014).

To perform double cross validation, the subject set was
randomly partitioned into three separate subsets: train,
validation, and test subsets (illustrated in Figure 3B). The train
subset was used to train an SVM model. The model performance
was then validated on the validation subset. The training and
validation subsets were used to iteratively optimize feature
selection and SVM parameters. This ensures that the final
performance is not influenced by the optimization, and reflects
performance of the features more robustly than a single cross
validation scheme, which uses the optimal SVM model to classify
the validation subset itself.
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The subject set (170 subjects) was divided into five randomly
chosen subsets of equal size (34 subject each) and used in a 5-
fold cross validation (Efron and Gong, 1983; Efron, 1983). One
fold was left out to be used as the test subset and the rest were
used for the SVM model optimization. For the feature selection,
the training and validation folds were shuffled 4 times and used
iteratively to select features that performed best on the validation
set (Figure 3B). This performance is reported as the single cross
validation performance. Once the features were selected the SVM
was trained using both the train and validation folds and then
applied to the test fold to obtain the final classification accuracy,
((TP+ TN)/T), where TP is number of true positives, i.e., patients
classified correctly, TN is number of true negatives, i.e., controls
classified correctly, and T is the total number of subjects. This
approach is similar to the leave one out cross validation (LOOCV)
scheme, except that instead of leaving out a single subject, we
leave out a single fold. In addition to classification accuracy,
sensitivity (TP/P) and specificity (TN/N) (Fawcett, 2006) were
also reported (P is the total number of patients and N is the total
number of controls).

With 10 random partitions (Nperm), each subject is used in
the test subset 10 times. We calculated the proportion of times
each subject was misclassified (M), a measure we term the
“misclassification rate,” MR = M/ Nperm. Correlation between
misclassification rate (MR) and severity of symptoms for the
patient population was calculated.

In order to see if choice of classification algorithm affects the
classification performance, we compared performance of SVM to
SVM with Adaboost (short for Adaptive Boosting) (Freund and
Schapire, 1997; Yoav and Schapire, 1999) with a linear SVM (C
value equal to 1), and 10 weak classifiers were trained.

To calculate classification accuracy due to chance, we repeated
the classification process 10 times with randomly shuffled labels.

All analyses were implemented in MATLAB 2016b.

Feature Selection
With 19000+ features, only a fraction are informative for
classification and the others dilute classification power by causing
the classifier to overfit. Therefore, it is beneficial to choose the
subset of features that are the most informative. These were
determined using a data driven greedy search procedure, called
sequential forward selection (SFS) (Guyon and Elisseeff, 2003)
(Figure 3C). First, the classification accuracy of each single
feature alone was measured using SVM, cross validating across
the train and validation subsets. Only features with prediction
accuracy above 60% were used for the subsequent stages of the
optimization, resulting in 1618 features on average. Then, the
feature with the top performance was progressively combined
with other features, selecting the combinations with highest
accuracies, until a set of 40 features were selected. This method
of feature selection is computationally expensive but it is more
robust than simply selecting 40 features that independently have
the highest performance. Many of the top features alone may
have redundant information. This algorithm accounts for the
combinatory effect of features. Moreover, while a feature might
have low classification performance on its own, in combination
with other features it can improve performance (Guyon and

Elisseeff, 2003). The SFS algorithm is not guaranteed to find the
globally optimal set of features that would maximize classification
accuracy, but it is guaranteed to find a local optimum (Liu and
Motoda, 2007).

The random partitioning into the 5-folds was performed 10
times resulting in 50 optimized feature sets, of 40 features each,
and 50 prediction accuracies. To determine if inclusion of any
feature in the feature set occurs more often than expected by
chance, we calculated the probability of each feature appearing
n times out of 50. The probability of each feature appearing
once in each selected set is equal to the probability of drawing
40 random samples from a set of F items without replacement,
which can be calculated with the hypergeometric distribution
PSelect,S = h(1| F, S, P) where F is the total number of features
used (F = 1618) (see feature selection section), S is the number
of samples (S = 40), and P is the number with the desired
property (P = 1). Given the probability of sampling each feature
at random, we can then calculate the number of times that
feature is expected to appear with Nfold independent draws using
a binomial distribution Pr(n) = B(Nfold, PSelect,S ). Features that
appeared more frequently than predicted by chance were further
analyzed.

To see if our feature selection algorithm improves
classification accuracy for our dataset, we compared the
accuracy achieved by the SFS algorithm to that of the best 40
features (independent feature selection) and top 40 features
selected using Fisher’s linear discriminant analysis, also known
as the Linear Discriminant Analysis (LDA) (Fisher, 1936; Bishop,
2006). LDA transforms the data into a space where the linear
separation between the two classes is maximized. Calculation of
weights for the linear transformation involves matrix inversion,
which is not possible if the within-class scatter matrix is singular,
depending on structure of the dataset. Therefore, Moore-Penrose
pseudo-inverse of the matrix was calculated (Campbell and
Meyer, 2008).

RESULTS

Two atlases, the anatomical AAL atlas and a functional atlas
constructed using time series from the control group, were used
as region definitions for construction of brain networks. The
functional activity in each region of the atlas was averaged and
zero-lag cross correlation between the regions were used to
construct undirected weighted graphs for each subject. Several
graph theoretic measures were then calculated for each network
and used as features for classification. This resulted in 19,000
features. To reduce the number of features, we selected features
whose classification accuracy using linear SVM achieved was
greater than 60% accuracy, reducing the total number of features
used in optimization of combinations of features to, on average,
1618 features. A distribution of the single feature classification
accuracy using the functional atlas and the AAL atlas is shown in
Figure 4A.

The set of 1618 features is an order of magnitude larger than
number of subjects (N = 170). In this high dimensional space,
the classifier picks up on subtle variations that are specific to
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FIGURE 4 | Classification performance. (A) Distribution of classification
accuracy of single features, when used independently for classification, for the
functional and AAL atlases. Dashed vertical lines mark the 60% accuracy
threshold and 50% chance level. Features with less than 60% accuracy were
not considered in the feature selection process. (B) Single and double cross
validation classification performance as a function of number of features, using
the functional atlas to define nodes of the network. The star marks
classification accuracy when the most frequent four features were used to
classify the entire subject set. The circle marks chance level performance for
the same features. (C) Single and double cross validation classification
performance as a function of number of features, using AAL atlas to define
nodes of the network. The star marks classification accuracy when the most
frequent single feature was used to classify the entire subject set. The circle
marks chance level performance for the same feature.

the subject set used for training the classifier, which generalizes
poorly to unseen data. This phenomenon is called the curse of
dimensionality (Jain et al., 2000). For robustness it is necessary
to reduce dimensionality of the dataset before classification.

FIGURE 5 | Most informative features. (A) Number of features (y-axis) vs.
frequency of single features appearing in the 50 selected feature sets (x-axis)
when features are calculated using the functional atlas. The inset is an
expanded view of the most informative features. For example, one feature has
appeared 21 times in the selected feature set. (B) Spatial maps showing
where the most informative regions are for the functional atlas. The + marks
center of the region. Colormap shows number of appearances of the region
as one of the top 40 features. Left: Sagittal view, Middle: Coronal view, Left:
Horizontal view. (C) Spatial maps showing where the most informative regions
are for the AAL atlas. The + marks center of the region. Colormap shows
number of appearances of the region as one of the top 40 features. Left:
Sagittal view, Middle: Coronal view, Left: Horizontal view.

To reduce dimensionality of the dataset, the top performing
features with higher than 60% classification accuracy were
combined through the (SFS) algorithm to find the combination
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that provided the best classification. Classification accuracy was
calculated for single cross validation using features selected
with the training and validation subsets. The final reported
calculated classification accuracy was calculated by double cross
validation where the optimized SVM model and features were
then applied to a final test set not used in the feature selection
optimization. Comparison of the single cross validation and the
double cross validation performances for the functional atlas
are shown in Figure 4B. The single cross validation results
were consistent with previously reported classification rates
with accuracy maximizing at 87% using 14 features, which is
significantly above chance level (p < 0.001, two sample t-test).
The double cross validation maximum accuracy was significantly
lower, dropping to 64% peaking at 4 features, which is still
significantly above chance (p < 0.001, two sample t-test), but
about 20% lower than the single cross validation performance.
However, the double cross validation rate is probably a more
accurate estimate that would generalize to prospective studies.
The high classification rate reported by the single cross validation
can be accounted for by the overfitting using the feature selection
optimization step. Results are also reported based on network
analysis of brain areas using the AAL atlas in Figure 4C. The
single cross validation performance maximized at 85% using 18
features, similar to the functional atlas. Double cross validation
accuracy was 73% using only a single feature.

Through the feature selection process we identified the top
40 most informative features, which was repeated through 5-fold
cross validation 50 times. Therefore, each feature could appear
in the selected feature set from 0 to 50 times. To identify those
features that were selected more often than would be expected if
selected randomly, we calculated the probability of a feature being
selected n times due to chance, with n ranging from 1 to 50 times.
The number of features that were selected n times, as well as the
expected number, for the functional atlas is shown in Figure 5A.
The probability of a feature appearing ten times or more due to
chance is very small. Therefore, we further analyzed all features
that were selected 10 or more times resulting in four features.

We then asked how well we can classify a given dataset using
only the best four features extracted from the functional atlas.
We used the four features to classify our entire 170 subject set
in a single cross validation scheme to produce a better estimate
of classification power of these features. This resulted in a boost
in classification performance from 64 to 78% (Figure 4B and
Table 2), which was significantly above chance (p < 0.001).

The most frequent four features are listed in Table 3 with a
description of the anatomical regions of the nodes involved and
the corresponding network measure. These functional areas do
not necessarily align with anatomical areas, therefore we report
the names of the areas from the AAL atlas that had the highest
overlap and percentage of the region overlap with that anatomical
region. All four features captured the characteristics of pairs of
nodes rather than single nodes or capturing global properties of
the network as a whole. The single cross validation classification
rate of each feature is also reported. While the best single
feature achieved about 70% classification accuracy on its own, by
combining them together the single cross validation performance
was enhanced to 78% (Figure 4B). We then looked at frequency

of each functional region showing up in the top 4 features.
These four features were comprised of five functional regions.
The location of the five nodes that had the highest frequency
of appearing in the top four features are shown in Figure 5B.
These anatomical regions (in order of highest frequency to
lowest) were located in the left temporal lobe, right occipital
lobe, central portion of bilateral thalami, and left frontal/parietal
lobes. These four features included three networks measures:
distance, generalized topological overlap, and matching index.
Distribution of values of the most informative four features is
shown in Supplementary Figure 6A.

Since the AAL atlas showed maximal accuracy with only
a single feature, and adding more features was detrimental to
classification performance for double cross validation, we focused
on that single feature. This feature appeared in the top feature set
47 times out of 50 times, which was significantly above chance.
This top feature was the matching index between left postcentral
gyrus and left thalamus (Table 3). Location of these two regions
is shown in Figure 5C. Distribution of values for this features
is shown in Supplementary Figure 6B. This single feature was
used to classify the entire subject set in a single cross validation
scheme, which resulted in 80% classification accuracy (Figure 4C
and Table 2), that is significantly above chance (p < 0.001).

We observed similar classification performances using both
the functional and AAL atlases with other C values and kernels
(Supplementary Figure 1). We also observed similar or less
impressive results when we used the Adaboost classifier instead
of SVM (Table 2 and Supplementary Figure 2).

We also looked at sensitivity and specificity of our
classification algorithm (Supplementary Figure 3 and Table 2).
Through the double cross validation scheme, sensitivity and
specificity for the functional atlas were 65%. These values were
higher for the AAL atlas with average sensitivity equal to 77% and
specificity equal to 68%. Using the Adaboost classifier increased
specificity and decreased sensitivity in both atlases. Maximum
specificity obtained using the Adaboost was 85 and 80% for
functional and AAL atlases respectively, whereas maximum
sensitivity was 44 and 52% for functional and AAL atlases.

Next, we looked at different methods of dimensionality
reduction (Supplementary Figure 4). We compared accuracy
performance of the SFS algorithm with that of the Linear
Discriminant Analysis (LDA) and independent method. The
dimensionality reduction method did not affect performance
accuracy (Table 2). However, both LDA and independent
methods achieved the same performance using more features
than the SFS algorithm.

We then analyzed the effect of prewhitening on performance
accuracy (Table 2 and Supplementary Figure 5). Two functional
atlases were constructed, one using prewhitened time series, and
the other using the raw time series. These resulting functional
atlases were then used to generate 90 time series from the
prewhitened and raw data, from which graph measures were then
quantified. Classification was then repeated on all four networks
and classification accuracies were compared. We repeated the
same procedure with the AAL atlas, when the atlas was applied
to prewhitened and raw time series to construct the graph used
for classification. We did not observe any difference between
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performance of the two functional atlases. However, classification
performance when the AAL atlas was applied to prewhitened
time series was 10% higher than that of raw time series.

To identify if the misclassification of subjects could be
attributed to disease class, we first calculated the misclassification
rate for each subject for both functional and AAL atlases
(Figure 6A) across all the folds. Misclassification rate for the
functional atlas was fairly uniform. However, misclassification
rate of the subjects using AAL atlas was bimodal. Some
subjects were misclassified correctly more than 60% of the
times, while others were misclassified less than 20% of the
time. To understand the characteristics of the classifiable and
unclassifiable group, we looked at the percentage misclassified
in both the control and schizophrenic group (Figure 6B).
We further looked at misclassification rate for the chronic

and first episode schizophrenic patients groups. No trend for
misclassification was observed in any of these classes, nor for age
and gender (data not shown).

Another possible reason for misclassification of patients may
be attributed to the severity of their symptoms, hypothesizing
that mild subjects may have neural patterns similar to healthy
subjects. To investigate this possibility we correlated the SANS
and SAPS score of the patients with the misclassification
rate (Supplementary Figure 7). We further correlated
misclassification rates with each category of the SANS and
SAPS scores with the misclassification rate. No significant
correlation between any of the scores and misclassification rates
were found.

Another finding we wished to explore more in depth was the
difference in performance between the single and double cross

TABLE 2 | Performance summary.

Dataset

Classifier SVM Adaboost

Dimensionality Reduction SFS LDA Independent SFS

Prewhitened

Functional Acc. = 78% Sen. = 65% Spe. = 65% Acc. = 65% Acc. = 65% Acc. = 63% Sen. = 44% Spe. = 85%

AAL Acc. = 80% Sen. = 77% Spe. = 68% Acc. = 67% Acc. = 73% Acc. = 62% Sen. = 52% Spe. = 80%

Raw

Functional Acc. = 64% Acc. = 63% Acc. = 63%

AAL Acc. = 64% Acc. = 65% Acc. = 61%

Classification accuracy, sensitivity and specificity for different datasets, classifiers, dimensionality reduction methods, and atlases. SFS, Sequential Forward Selection;
LDA, Linear Discriminant Analysis; Independent, Selecting top features based on their independent performance. Since classification performance using raw data was
lower than that of prewhitened data using SFS and LDA feature selection methods, classification performance on raw data using the independent feature selection method
is not reported for either atlas. Bold values represent the highest value obtained for each measure.

TABLE 3 | List of the most informative features.

Rank Frequency of
appearance (out of
50)

Name of network
measure

First Anatomical Region
with the highest overlap (%
overlap)

Second Anatomical Region
with the highest overlap (%
overlap)

d’(p-value) Single feature
classification

Functional atlas

1 21 Distance Left Middle Temporal Gyrus(53),
Left Superior temporal Pole(19)

Right Inferior Occipital
Cortex(39), Right Lingual
Gyrus(17)

0.87(<0.001) 69%

2 12 Generalized Topological
Overlap

Left Middle Temporal Gyrus(53),
Left Superior Temporal Pole(19)

Right Inferior Occipital
Cortex(39), Right Lingual
Gyrus(17)

-0.88(<0.001) 69%

3 10 Matching Index Right Inferior Temporal
Gyrus(50), Right Middle
Temporal Gyrus(48)

Left Thalamus(49), Right
Thalamus(43)

0.74(<0.001) 67%

4 10 Matching Index Left Postcentral Gyrus(72), Left
Precentral Gyrus(10)

Left Thalamus(49), Right
Thalamus(43)

0.72(<0.001) 68%

AAL

1 47 Matching Index Left Postcentral Gyrus Left Thalamus 0.94(<0.001) 73%

From left, column 1: Rank of the feature in terms of frequency of appearing in the selected feature set; column 2: Number of appearances in the selected feature set;
column 3: Name of network measure, all measures characterize relationship between pairs of nodes (regions); column 4: First region corresponding to the measure.
Regions of the functional atlas do not have labels. To indicate their anatomical location, the two anatomical regions from the AAL atlas with the highest overlap are listed.
The number in () shows the percent overlap; column 5: Same as column 2 for the second region corresponding to each region; 6th column: Sensitivity index, also known
as d’and the 2 sample t-test p-value in () comparing distribution of each feature across the control and schizophrenic population. A positive d’ value indicates that feature
values are higher for the patients compared to control subjects; column 7: Performance of each feature on its own.
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FIGURE 6 | Misclassification rate. (A) Distribution of misclassification rate across subjects for the AAL and functional atlases. (B) Percentage of subjects in each
subject group with low and high misclassification rate using the AAL atlas. X-axis: Subjects that are highly classifiable (misclassification rate < 0.6) and unclassifiable
(misclassification rate > 0.6). Y-axis: Percentage of subjects in each subject group.

FIGURE 7 | Performance of the classifier on second scans. Performance of
the classifier when classifier optimization is optimized using the first scan and
tested on second scans for functional (top) and AAL (bottom) atlases.
Horizontal lines mark chance level.

validation. The drop in performance could be due to variability
across subjects, or variability within subjects. Variability across

subjects is caused by individual differences in the structure of
functional networks. Within subject variability can be attributed
to the different active networks observed during the scan
resulting in different structure of the functional networks. To
test how well reconstructed networks generalize within subjects
we reconstructed networks from 42 subjects (24 control, 18
schizophrenic) for which we had two scans, taken 6 months
apart. We used the dataset from the first scan for feature
selection and classifier training. We then used the resultant
classifier and feature set to classify the second dataset from
the same subjects. This procedure tests the cross validation
performance within subjects. Performance of the double cross
validation across datasets is shown in Figure 7. The results
show that variability in network structure constructed within
patients is a significant contributor to poor generalizability of our
classification.

DISCUSSION

In this study we developed and tested a classification pipeline to
discriminate persons with schizophrenia from healthy controls.
We used prewhitened BOLD time series to construct a network
model of the brain, using both the AAL anatomical atlas and
our functional atlas to define nodes of the network. We extracted
multivariate graph theoretic measures and used them as features
for classification of the subjects using linear SVM. Measures
that were most informative to classification were identified
as biomarkers for schizophrenia. We adopted a double cross
validation scheme to identify the most informative features. The
highest classification accuracy was 80% using the AAL atlas with
a single feature: the matching index between left postcentral
gyrus and left thalamus. Adding any other features decreased
accuracy. Comparison of classification accuracy using the double
cross validation scheme to single cross validation revealed that
single cross validation results in inflated performance accuracies.
Moreover, prewhitening of the time series significantly improves
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classification performance in double cross validation. A subset of
the subjects, including both healthy and schizophrenic subjects,
were misclassified more than 80% of the time. However, no
significant correlation was found between misclassification rate
of the patients and the severity of their symptoms.

We compared classification accuracy using AAL and the
functional atlas to define the nodes used to construct the
network model. Classification accuracy did not improve
using a functional atlas over the AAL atlas. This may be
because the duration of resting state activity was not long
enough to robustly capture functional structure of the
brain (Moghimi et al., 2017). Even though we obtained
significantly above chance accuracy, the fairly high false
positive and false negative rates indicates this method
does not approach the necessary performance to be useful
clinically.

Using machine learning techniques for biomarker
identification using fMRI datasets has been extensively explored
(see Zarogianni et al., 2013; Sundermann et al., 2014; Kambeitz
et al., 2015). A summary of previous work in this area is provided
in Supplementary Table 2. Our study builds upon existing work
in the following aspects: (i) we used a large cohort of subjects, (ii)
we performed double cross validation, (iii) we prewhitened the
time series prior to construction of the network.

Machine learning techniques have also been used on other
imaging modalities to identify biomarkers for schizophrenia (see
Zarogianni et al., 2013; Kambeitz et al., 2015 for a review).
Several studies have used structural T1 weighted MR images [e.g.,
(Iwabuchi et al., 2013), 77% accuracy, single cross validation,
(Nieuwenhuis et al., 2012), 70.4%, double cross validation] and
Diffusion Tensor Imaging (DTI) [e.g., (Ingalhalikar et al., 2010),
90.6% accuracy, using single cross validation].

The total number of features was an order of magnitude
bigger than the number of subjects. To avoid the curse of
dimensionality, we used the SFS algorithm (Guyon and
Elisseeff, 2003) to reduce dimensionality of the dataset. We
compared the results to two other dimensionality reduction
methods, LDA and independent selection (Supplementary
Figure 4). Both methods underperformed with respect to
the SFS method. The SFS algorithm is more computationally
expensive than the other two methods, but its major advantage
is that it reduces the redundancy present in the dataset. More
specifically, a fair level of correlation has been observed with
network level characteristics of the brain (Lynall et al., 2010).
Features that have correlation with each other, carry the same
information, and are bound to have similar performances
when used independently. But their combination does
not result in higher performance due to the correlation.
Therefore, the use of more complex feature selection methods,
despite their upfront computational expense, may result
in better classification with less computational effort for
classification.

The considerable degradation of performance from single to
double cross validation demonstrates the importance of testing
the final performance on out of sample data, excluding data
that was used in feature selection using single cross validation
results. Results reported based on single cross validation

are overly optimistic for out of sample data (Sundermann
et al., 2014). In fact, simulations have shown that even when
two classes of data points are generated from the same
distribution (i.e., there is no meaningful difference between
the two classes), single cross validation is biased toward above
chance classification accuracy (Simon et al., 2003). Double
cross validation prevents the classifier from overfitting to
the dataset that is used for biomarker discovery. Double
cross validation has been employed in several classification
studies including schizophrenia using fMRI (see Supplementary
Table 2), schizophrenia using T1 weighted structural images
(Nieuwenhuis et al., 2012; Koutsouleris et al., 2015), major
depressive disorder using fMRI (Rosa et al., 2015), and autism
using fMRI (Anderson et al., 2011). However, the majority
of studies do not report double cross validation results
(Supplementary Table 2), presumably due to limited sample
size (Sundermann et al., 2014). Our results, directly comparing
single and double classification performances, supports our
hypothesis that single cross validation reports overly inflated
accuracy rates. As previously suggested by others in brain
imaging (Sundermann et al., 2014) and genetic (Simon et al.,
2003) biomarker identification fields, we propose adoption of
double cross validation as a standard paradigm for biomarker
discovery using brain imaging datasets.

We also performed double cross validation across datasets
taken from the same subject but at different times (Figure 7).
We found that within subject classification rate was similar
to the between subject classification rate for double cross
validation results. This shows that inherent variability in
fMRI datasets caused by the state of the subject during
the scan poses a serious challenge in generalizability of the
results. An important remedy to this problem is longer
scan durations, or multiple scans across several sessions.
Typical scan duration for classification studies of schizophrenia
has been between 5 and 10 min (Supplementary Table 2)
and may be insufficiently long to fully characterize network
connectivity.

In addition, we explored the effect of the atlas used to define
nodes on the classification performance by comparing the AAL
anatomical atlas with a functional atlas constructed from our
dataset. The functional atlas was constructed using data from
our control subjects only which introduces a bias in structure
of the atlas. However, we excluded the patient group from
construction of the atlas because schizophrenia alters structural
and functional connectivity pattern of the brain (Camchong
et al., 2011). Moreover, group functional atlases such as ours
capture functional organization of the brain shared by all the
subjects in the group and are robust to idiosyncrasies unique
to each subject (Gordon et al., 2014). Despite our hopes that
a functional atlas would boost performance, we found the
classification accuracy using the AAL atlas was higher. This
observation does not necessarily mean that anatomical atlases
are superior to functional atlases. Extensive evaluation of our
functional parcellation algorithm concluded that our dataset
was not long enough for construction of a robust functional
atlas (Moghimi et al., 2017). Previous studies have concluded
that minimum duration of resting state activity required for
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construction of a functional atlas that is replicable across different
datasets from the same group of subjects is approximately 27 min
(Laumann et al., 2015), which is more than four times the
duration we used (6 min) for construction of the functional atlas.
While the use of anatomical atlases for classification remains the
norm, a few studies have used atlases constructed using fMRI
(Arbabshirani et al., 2013, 2014a; Rashid et al., 2016; Singh and
Bagler, 2016) or diffusion tensor imaging (DTI) data (Hu X.
et al., 2013; Wang et al., 2016). One study observed a ∼10%
increase in single cross validation accuracy with a data driven
atlas constructed using DTI data over an anatomical atlas (Wang
et al., 2016). However, we observed a 2% decrease in double
cross validation accuracy using our functional atlas compared
to the anatomical atlas. Several studies have used Independent
Component Analysis (ICA) to produce parcellations from resting
state fMRI activity (Arbabshirani et al., 2013, 2014a; Rashid
et al., 2016; Singh and Bagler, 2016) (Supplementary Table 2).
ICA does not produce contiguous regions, rather functional
networks, comprising multiple regions. A parcellation with
contiguous regions makes it easier to localize the biomarker
to a brain region that is impacted by the disorder. If a single
region within a functional network is implicated in the disease,
the entire network will be implicated using a network based
parcellation, which includes regions that are not affected by the
disease.

We used multivariate network level measures as classification
features in this study, including a mixture of global measures
as well as measures that characterize single regions or pairwise
statistics. The feature set extracted from resting state fMRI for
classification varies widely across studies. One common feature is
the pairwise correlation coefficient between average time series
from different brain regions (Tang et al., 2012; Venkataraman
et al., 2012; Guo et al., 2013; Su et al., 2013; Yu et al., 2013; Shen
et al., 2014; Kim et al., 2016). This bivariate feature, however,
fails to pick up on more sophisticated motifs in the functional
structure of the brain. Network measures, being multivariate, are
capable of identifying more complex patterns in group differences
and have been used in several classification studies (Bassett et al.,
2012; Anderson and Cohen, 2013; Fekete et al., 2013; Singh and
Bagler, 2016). However these studies either use global networks
measures (Bassett et al., 2012; Anderson and Cohen, 2013; Fekete
et al., 2013), or use average and standard deviation of local
measures (Singh and Bagler, 2016), which eliminates spatial
information about the most discriminating regions. Our data
driven greedy feature selection method preserves the identity of
the nodes and links that are most informative for classification.

Our highest classification accuracy was achieved with a single
network measure based on the AAL atlas. As more features
were used for classification, single cross validation accuracy
increased but double cross validation accuracy decreased. This
indicates that the added features did not generalize well across
subjects; their addition to the feature set caused the classifier to
weight on other features, diluting useful information. Using the
functional atlas, we found four features whose appearance in the
selected feature set was statistically meaningful. The reduction
from a 19000+ feature space to a few features, reveals the
tremendous redundancy inherent to the dataset. Similar to our

results, (Fan et al., 2011) obtained a 85% double cross validation
accuracy using seven features. In another study, (Tang et al., 2012)
obtained 93.2% accuracy double cross validation accuracy using
550 features.

Prewhitening of the time series increased classification
performance in this study. A similar observation was made
using fMRI to classify PTSD patients from controls (Christova
et al., 2015). In contrast to our results, (Arbabshirani et al.,
2014b) did not observe any difference between discriminability
of prewhitened and raw time series in a cohort of healthy subjects
and subjects with schizophrenia. However, the (Arbabshirani
et al., 2014b) study compared bivariate measures across the
groups, whereas in our study we used multivariate measures,
which may detect more complex features that distinguish the
groups.

Of the 25 different network measures used to generate
features (listed in the Supplementary Table 1), the five
most informative features came from three measures: distance,
generalized topological overlap, and matching index. All of the
top five features were from pairwise network measures. We
did not find network or nodal metrics that provided significant
classification information. Each measure and the observed trends
associated with them are discussed more in detail.

The single feature that produced maximum classification
accuracy using the AAL atlas was an increase in matching index
between the postcentral gyrus and left thalamus in schizophrenic
patients (Table 3 and Supplementary Figure 6). Matching
index between two nodes quantifies the similarity between their
functional connectivity profiles based on the number of common
neighbors between the two nodes and is applicable to binary
graphs (Rubinov and Sporns, 2010b). Postcentral gyrus has been
implicated in schizophrenia in several other studies (Yang et al.,
2010; Castro et al., 2011; Rashid et al., 2016). Interestingly,
another study reported that functional connectivity between the
left postcentral gyrus and right thalamus was different across the
healthy and schizophrenic group (Kim et al., 2016).

The first feature selected by the functional atlas was the
distance between two regions in the left temporal and right
occipital lobes. Distance between two nodes is the shortest path
between them in a binary graph (Rubinov and Sporns, 2010b). As
reported in Table 3 and Supplementary Figure 6, the distance
between two regions in the right occipital lobe and left temporal
lobe is lower in the control group compared to schizophrenic
patients. Interestingly, the distance between these two nodes
in the majority of control subjects is 1, meaning that the two
regions are connected to each other directly via a single link,
while the distance between these same two nodes is 2 in the
majority of schizophrenic subjects, which means the direct link
between the two nodes is absent in patient group resulting in
hypoconnectivity between these two regions. Changes in volume
of the left middle temporal gyrus in schizophrenic patients has
previously been reported (Onitsuka et al., 2004; Hu M. et al.,
2013). Moreover, the middle temporal gyrus has been implicated
in other fMRI classification studies (Yang et al., 2010; Castro et al.,
2011), albeit bilaterally. Disruption in functional activity of the
right inferior occipital gyrus has been reported in another study
(Castro et al., 2011).
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The second most informative feature generated using the
functional atlas was the generalized topological overlap between
the same two regions (Table 3). Generalized topological overlap
quantifies the extent to which a pair of nodes have similar m-th
step neighbors in binary graphs (Rubinov and Sporns, 2010b).
The m-th step neighbors of a node are all the nodes in the binary
graph that are reachable through a maximum of m steps. We
observed that generalized topological overlap between regions in
the right occipital lobe and left temporal lobe is higher in the
control group compared to patients (Supplementary Figure 6).
This shows that functional connectivity pattern between these
two regions diverges from each other in the patient group.

The third most informative feature using the functional
atlas was the matching index between two regions in the right
temporal lobe and the thalamai (Table 3). We observed increased
matching index between regions in the right temporal gyrus and
bilateral thalami in the schizophrenic group, when compared
to controls (Table 3 and Supplementary Figure 6). The first
region overlapped with the right inferior and middle temporal
gyri. The other region overlapped with the ventral portion of
bilateral thalami. As mentioned earlier, middle temporal gyrus
has been implicated in schizophrenia in other classification
studies (Yang et al., 2010; Castro et al., 2011). Disruption of
functional connectivity of thalamus has also been reported in
several other studies (Skudlarski et al., 2010; Atluri et al., 2015;
Kim et al., 2016).

Increased matching index in the schizophrenic group was
also observed between another pair of regions, the fourth
most informative measure using functional atlas (Table 3 and
Supplementary Figure 6). The first region overlapped with both
postcentral and precentral gyri, and the second region overlapped
with the ventral portion of bilateral thalami. This feature is highly
similar to the most informative feature found in the AAL atlas.
The fact that this feature shows up as a top feature regardless of
the atlas is in some way a validation of the feature.

Several improvements could increase classification
performance necessary to approach clinically useful accuracy.
First, acquiring longer durations of functional activity results in
more robust functional networks that can enhance performance,
especially decreasing the gap between single and double cross
validation results. The second improvement may be to use more
robust brain atlases. Anatomical atlases are based on physical
landmarks of the brain, resulting in brain regions that potentially
encompass several histologically distinct regions with distinct
functional roles. Functional atlases can be constructed at finer
granularity levels. However, our functional atlas was constructed
using 6 min of resting state activity, which might not be enough
to capture functional organization of the brain. Recent effort
to construct brain atlases using multi-modal datasets such as
combining resting and task fMRI with myelin maps (Glasser
et al., 2016) are promising. Third, more robust biomarkers can
be developed by using of multi-modal feature sets, by combining
feature extracted from different modalities such as T1 weighted
images, fMRI, and DTI (e.g., Silva et al., 2014). The feature set
can further be supplemented with non-brain related datasets
such as genetic biomarkers (e.g., Yang et al., 2010). Fourth,
medication load could be a confounding factor that we could not

adequately account for. Unfortunately, the study of unmedicated
schizophrenic patients is very challenging but could provide
useful information.

CONCLUSION

Biomarker identification using classification algorithms requires
double cross validation to increase robustness of the results.
Without proper cross validation, reported classification power is
inflated and the identified biomarkers are poorly generalizable
to new subject groups. Multivariate network measures are a
promising set of features for biomarker identification. Using
these measures, a functional atlas based on the short resting
state recordings did not provide a parcellation that improved
classification over the anatomical atlas. In addition, prewhitening
of the fMRI time series when calculating interactions between
brain areas separates changes in the dynamics of brain areas from
changes in interactions, improving network measures. However,
training on one set of scans and classifying on another set of scans
from the same subjects resulted in classification rates similar to
across subject classification, indicating that subject state during
the short scan may significantly limit classification accuracy.
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