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Sophisticated deception refers to the deception of others based on inferences of their mental 
states (e.g., answering honestly when inferring that the other will not believe their answer). 
Studying the brain mechanism of sophisticated deception in junior middle school students 
can provide physiological evidence for deception detection and deceptive ability measurement. 
Sixteen junior middle school students were asked to engage in different trial types (i.e., 
instructed truth/lie and chosen truth/lie), during which we recorded their response times (RT) 
along with electroencephalographic data to calculate event-related potentials (ERPs). 
We observed significant differences in amplitude [N2, P3, N450, and medial frontal negativity 
(MFN)] between chosen reactions (sophisticated deception and simple deception) and 
instructed reactions (instructed truth and instructed lie) in both the stimulus presentation and 
feedback stages. In the former, the task scores of participants in the chosen condition were 
significantly and positively correlated with the N2 amplitude over the central brain area during 
sophisticated deception. In the latter, the task scores of participants in the chosen condition 
were negatively correlated with the MFN amplitude over the left frontal and left frontocentral 
regions. Overall, deception intention, rather than simply making counterfactual statements, 
appears to underlie the increased demand for cognitive control in deceivers. This can 
be attributed to deceivers’ need to strongly consider their opponent’s mental state—the 
better the deceivers’ deceptive ability, the more they will make conjectures about the mental 
state of their opponent with sophisticated deception and monitor conflict; the less conflict 
they experience while answering honestly with the intention to deceive, the more conflict 
may arise when the results of their deception are inconsistent with these conjectures.

Keywords: deception, sophisticated deception, cognitive control, ERP, MFN

INTRODUCTION

Deception refers to the behavior of intentionallymisleading others. Deceptive behavior is important 
for social communication and is not necessarily an inherently negative event—while some 
instances of deception are antisocial and selfish in nature, others are prosocial and altruistic 
in nature, such as jokes or white lies (DePaulo et  al., 2003).

Humans use many ways to deceive others: they may intentionally hide information; provide 
incorrect information; or even tell the truth to others who are predisposed to not believe 
them, which is called “double bluffing” (Happé, 1994) or sophisticated deception (Sutter, 2009; 
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Volz et  al., 2015) or “second-order lying” (Ding et  al., 2014; 
Sai et  al., 2018a,b). Sophisticated deception is the higher order 
behavior of simple deception (statement of counterfactual 
information). It involves guessing the mental states of others—
that is, determining whether the others believe in them—and 
then choosing appropriate strategies to deceive. When deceivers 
guess that the other person does not believe in them, they 
may state the truth in order to successfully deceive. Conversely, 
when the other person believes in them, they may offer 
misleading or counterfactual information (commonly known 
as lying) to achieve their goal.

Thus, when deceiving others, individuals must control both 
their own and others’ mental states. Lying is considered more 
cognitively demanding than truth telling (DePaulo et  al., 2003; 
Vrij et  al., 2011; Suchotzki et  al., 2015). Indeed, event-related 
potential (ERP) and neuroimaging studies have shown that simple 
deception requires greater demand for cognitive control than 
truthful responses; individuals must allocate mental resources to 
task-related information, inhibit their predominant responses, and 
resolve response conflict (Botvinick et  al., 2001). Lie responses, 
compared with truthful ones, are associated with increased activation 
in several prefrontal regions [e.g., dorsolateral prefrontal cortex 
(PFC) and anterior cingulate cortex (ACC)] linked to cognitive 
control (Ganis et  al., 2003; Nuñez et  al., 2005; Abe et  al., 2007).

In the past, researchers studied deception using the instructed 
deception paradigm, whereby participants responded honestly or 
deceptively based on the instructions they received (Spence et al., 
2001; Yokota et  al., 2013). However, this paradigm differs from 
deceptive behavior in real life, meaning that it has low ecological 
validity. This is because it compels participants to be  passive in 
their deception, rather than to be  active. Lewis et  al. (1989) 
used “temptation resistance paradigm” to study deception, which 
was higher in ecological validity. Some researchers have focused 
on active deception (Johnson et  al., 2003, 2004, 2005; Sun et  al., 
2011; Ding et al., 2017) and sophisticated deception (Sutter, 2009; 
Carrión et  al., 2010; Ding et  al., 2014; Volz et  al., 2015; Sai 
et  al., 2018a,b). Some researchers believed that the mere act of 
suppressing honest responses and making counterfactual statements 
led to this increased demand for cognitive control (Spence et al., 
2001; Ganis et  al., 2003; Kozel et  al., 2004; Johnson et  al., 2005; 
Nuñez et  al., 2005; Abe et  al., 2007). Carrión et  al. (2010) found 
that deception intention was the key to the increased demand 
for cognitive control in deception, using an innovative experimental 
paradigm. They examined the brain mechanisms of sophisticated 
deception using a face-to-face interpersonal interaction situation 
between a “deceiver” and an opponent. The experiment was 
divided into instructed and chosen conditions: In the former, 
deceivers had to deceive or respond honestly in response to 
instructions provided by the computer. In the latter, the deceiver 
was free to choose whether to respond honestly or deceptively. 
Polak and Harris (1999) noted that the better a child’s theory 
of mind (also referred to as “mentalizing”), the more likely they 
were to engage in deceptive behavior after making a mistake. 
Therefore, theory of mind likely played an important role in 
deception (Hala and Russell, 2001). However, Carrión et al. (2010) 
found that people with better mentalizing ability were less able 
to deceive. They theorized that the reason for this was that 

participants with better mentalizing ability experienced more 
conflict when attempting to deceive. Such conflict in turn interfered 
with their ability to deceive, such as hindering their ability to 
control their facial expressions; this meant that they were more 
likely to expose their true feelings in front of opponents, leading 
to a lower success rate in deception. This result was counterintuitive, 
meaning that their results needed to be  explored in more depth. 
This paradigm has its advantages. However, it may also increase 
the psychological burden of deceiving, particularly if applied in 
certain cultures—for example, in China, only relatively close 
individuals can engage in eye contact for extended periods. For 
this reason, we improved on Carrión et al.’s experimental paradigm 
to alleviate the psychological burden placed on participants while 
preserving the paradigm’s ecological validity. Furthermore, to 
explore their counterintuitive results, we  analyzed the feedback 
stage of their experiment as well.

Researchers used “faux pas recognition” to measure the level 
of theory of mind of 7- to 11-year-old children, and found 
that this paradigm could effectively measure their level of theory 
of mind. If people spoke in an embarrassing and offensive way, 
or even hurt others, and the speaker did not realize what 
he  should not say, which created faux pas situation (Baron-
Cohen et  al., 1999). In our research, the Faux Pas Recognition 
task is also used to measure the level of theory of mind of 
junior middle school students. Some researchers believed that 
children’s deception occurred before the age of four (Lewis et al., 
1989; Hala et  al., 1991), and some other researchers believed 
that such deception occurred after this age. Only children with 
theory of mind demonstrated deceptive behavior and had the 
ability to deceive (Lewis et  al., 1990; Sodian et  al., 1991; Polak 
and Harris, 1999). Social and cognitive factors might play an 
important role in children’s lie-telling abilities (Talwar and Lee, 
2008). Children could tell second-order lies by the age of four 
(Sai et  al., 2018a). In the past, there were more studies on 
children and less on middle school students. Middle school 
students aged 13–15 are at the second peak period of their 
physical development, the psychological “weaning period,” and 
are undergoing the second leap period of self-consciousness. 
Therefore, it is of great significance to investigate the characteristics 
of theory of mind among middle school students aged 13–15 
(puberty) and their relationship with deception.

MATERIALS AND METHODS

Participants
Participants were recruited from a junior middle school in 
Dalian. A total of 20 junior middle school students were randomly 
selected, including 9 males and 11 females. One participant 
was ultimately excluded because of her low accuracy in the 
instructed condition, two participants were excluded because 
they made false responses in the feedback stage, and one 
participant was excluded because of excessive artifacts in his 
electroencephalography (EEG) data. Therefore, 16 participants 
were included in the analysis (aged 12–14  years, M  =  13  years, 
standard deviation  =  5  months; 5 boys). All the participants 
were right-handed, had no history of physical or mental illness, 
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and had normal or corrected visual acuity. None of the participants 
had participated in a similar experiment before. Their parents/
legal guardians signed informed consent before the experiment.

Procedure
We based our experimental procedure on the paradigm of Carrión 
et al. (2010). First, all participants were assigned to the “deceiving 
group.” They faced one opponent (a research assistant) throughout 
the experiment. The participants sat face-to-face with the opponent; 
they were obscured from each other’s vision by a set of curtains 
placed directly between them (made of an ordinary, opaque 
material with no pattern). The participants were told that they 
would play a game with their opponent to see who would win 
and that the higher their scores, the greater their reward.

Both the deceivers and the opponent sat at a desk with a 
computer in front of them, on which the experimental material 
was presented (using E-Prime 2.0). The participants sat about 
60  cm away from the screen, with their eyes fixed on its 
center. They were asked to limit their blinking and movement 
as much as possible.

In the instructed condition, both the deceiver and opponent 
were simultaneously presented with a fixation cross (“+”) for 
500 ms. Then, the deceiver’s experimental procedure began. They 
were simultaneously presented with indicative signals asking them 
to be  honest or deceptive coupled with original graphics (“△” 
or “□”). This information remained on the screen for 5,000  ms. 
These stimuli were visible only to the deceiver. The goal of the 
deceiver was to deceive the opponent as much as possible during 
the game, while the opponent’s task was to guess what the original 
graphics were; in other words, the deceiver had to prevent the 
opponent from guessing what the graphics were. The deceiver 
then pressed a key representing each original graphic (“F”  =  □ 
and “J”  =  △) depending on the indicative signal they received. 
For example, when the participant was given a “deceptive” indicative 
signal and an original graphic of “△,” he  pressed the key 
corresponding to the “□” graphic (F). The participant had to 
respond within 5  s. In order to prevent the participant from 
forgetting what “F” and “J” represented, the graphs of square 
and triangle were respectively presented in the lower left and 
lower right of the original graphic. After the participant pressed 
the key, a voice would state his chosen graphic to the opponent 
via a headset. The vocal response lasted for about 2,000  ms. 
After 2,000  ms, the opponent could respond, and the words 
“waiting for reply” appeared on the participant’s screen. For 
example, if the participant pressed the square key (F), the opponent 
heard “square” through their headset. The opponent needed to 
judge whether the deceiver told them the correct answer, guessed 
the correct answer and pressed the corresponding key. The 
opponent’s response was subsequently presented (in the form of 
graphic) on the deceiver’s computer screen for 2,000  ms. The 
deceiver then indicated whether the opponent was correct or 
not by pressing the right key “F” or the wrong key “J.” To 
prevent the participants from forgetting the original graphics, 
they were presented on the screen when participants made the 
judgment. If the opponent guessed correctly, they won the match 
and the deceiver lost three points. However, if the opponent 
guessed incorrectly, the deceiver gained three points. The current 

score and running total score were presented to the deceiver 
and opponent for 1,500  ms after the feedback.

The instructed condition contained two blocks. Each block 
comprised 30 trials, for a total of 60. See Figure 1 for the 
specific experimental procedure.

The procedure of the chosen condition was the same as that 
of the instructed condition. The only difference was that the 
deceiver was initially presented with the word “select” (instead 
of the instruction on whether to deceive or be honest), prompting 
the deceiver to choose whether to deceive or respond honestly. 
Because the opponent would not know how the deceiver responded 
(i.e., honestly or deceptively), the deceiver had to adopt a strategy 
in deciding whether to deceive or respond honestly. Again, their 
goal was to make the opponent guess incorrectly. For example, 
after successfully deceiving an opponent for the first time, the 
deceiver might believe that the opponent would not choose to 
believe the deceiver. Accordingly, the deceiver could deliberately 
not deceive the opponent so that the opponent again made the 
wrong decision. The chosen condition contained 3 blocks, each 
comprising 34 trials (for a total of 102 trials). To ensure that 
the participants answered carefully, participants were given a 
gift that was aligned with their final score. The participants 
first completed the experiment of the instructed condition and 
then completed the experiment of the chosen condition. All 
the participants faced the same opponent.

Following the experiment, we used the Faux Pas Recognition 
task and eyes task (Bai, 2011) to measure the level of theory 
of mind of middle school students. The Faux Pas Recognition 
task came from Baron-Cohen et  al. (1999), and there were 
two tasks. Each task has been translated and modified in detail 
according to the Chinese cultural background, and the task 
context was adapted for the understanding and measurement 
of middle school students in China. Baron-Cohen designed 
and revised the eyes task (Baron-Cohen et  al., 1997; Baron-
Cohen et  al., 2001), which involved pairing mental states with 
emotional expressions. Bai (2011) translated it into Chinese.

Statistical Analysis
An electrode cap (Brain Products GmbH) was used to collect 
the EEG data. The cap covered 64 scalp sites with tin electrodes, 
using a sampling frequency of 500  Hz (impedance <5 kΩ). 
Vertical electrooculograms (VEOG) were recorded simultaneously 
to monitor eye movements. The ERP waveforms were then 
re-referenced offline to the average of the left and right mastoids. 
We  averaged the ERPs of each condition and applied digital 
filtering with a low-pass, half-power cut-off frequency of 30 Hz. 
For  each trial, channels were marked as artifacts if the signal 
variation exceeded ±100 μV. In the stimulus presentation stage, 
we  examined two ERP components—the N2 (time window = 
240–320  ms) and N450 (time window  =  400–500  ms)—at 
electrode sites F7, F5, F3, F1, Fz, F2, F4, F6, F8, C5, C3, C1, 
Cz, C2, C4, C6, Fc1, Fc2, Fc3, Fcz, Fc4, Fc5, and Fc6. Furthermore, 
we  identified the P3 component (time window  =  320–400  ms) 
at electrode sites CP5, CP3, CP1, CPz, CP2, CP4, CP6, P7, 
P5, P3, P1, Pz, P2, P4, P6, and P8. The analysis schedule was 
conducted to stimulate the pictures from before 200 to 1,000 ms 
after the stimulus pictures appeared, to stimulate the pictures 
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before 200 ms as a baseline. In the feedback stage, we identified 
the medial frontal negativity (MFN) component (time 
window  =  240–340  ms) at electrode sites F7, F5, F3, F1, Fz, 
F2, F4, F6, F8, C5, C3, C1, Cz, C2, C4, C6, Fc1, Fc2, Fc3, 
Fcz, Fc4, Fc5, and Fc6. We  also identified the P3 component 
(time window  =  340–500  ms) at electrode sites CP5, CP3, 
CP1, CPz, CP2, CP4, CP6, P7, P5, P3, P1, Pz, P2, P4, P6, 
and P8. The mean amplitude method was used for statistical 
analysis. For the analyses of variance (ANOVAs), p were corrected 
via the Greenhouse-Geisser method.

RESULTS

Behavioral Results
Two participants were excluded because they pressed the buttons 
at random during the feedback stage of the experiment. The 
accuracy rate of the participants who were involved in the 
statistical analysis in the instructed condition was over 88%, 
whereas the accuracy rate of one participant was 65%; this 
suggested distraction, and thus they were excluded from the 
experiment. The mean reaction time and standard deviation of 
the participants in the four conditions are shown in Table 1.

The mean reaction times for the four experimental types 
were analyzed via two-way repeated measures analysis of variance 
[2 (condition: instructed, chosen)  ×  2 (strategy: truth, lie)]. 
The results revealed that the main effect of condition was not 
significant [F(1,15)  =  0.296, p  =  0.594, and hp

2   =  0.105], and 

neither was the main effect of strategy [F(1,15)  =  3.852, 
p  =  0.069, and hp

2   =  0.204]. However, the interaction between 
condition and strategy was significant [F(1,15)  =  12.066, 
p  =  0.003  <  0.05, and hp

2   =  0.446]. Further tests revealed 
that the reaction time for instructed truth was significantly 
lower than that for instructed lie [t(15) = −3.735 and p = 0.002], 
but there was no significant difference between chosen truth 
and chosen lie [t(15)  =  −0.251 and p  >  0.05].

Under the chosen condition, the average number of times 
of chosen truth by the participants was 44.312 (SD  =  5.186), 
and the average number of times of chosen lie was 57.687 
(SD  =  5.186). The paired sample t-test revealed that there was 
a significant difference between the number of times of chosen 
truth and chosen lie [t(15)  =  −5.158 and p  <  0.001]. The 
number of times of chosen lie was more than that of chosen 
truth. Under the chosen condition, the average scoring rate 
(percentage of scoring times) selected by the participants was 
0.529 (SD  =  0.044). We  used the scoring rate to reflect the 
participant’s ability to cheat. The average score of the Faux 

TABLE 1 | Mean reaction time and standard deviation (ms) of participants 
in the four conditions.

Trial type M SD

Instructed truth 1360.774 60.632
Instructed lie 1530.427 90.417
Chosen truth 1510.372 115.807
Chosen lie 1497.785 116.214

FIGURE 1 | Experimental flowchart.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Leng et al. Deception Intention Increases Cognitive Control

Frontiers in Psychology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 2675

Pas Recognition task was 18.625 (SD = 5.301), and the average 
score of the eyes task was 8.500 (SD  =  2.251).

Correlation analyses revealed that there was no significant 
correlation between the scores in the Faux Pas Recognition 
task and the scoring rate (r  =  0.194 and p  >  0.05) and the 
number of times of chosen truth (r  =  0.052 and p  >  0.05). 
Correlation analyses showed that there was no significant 
correlation between the scores on the eyes task and the scoring 
rate (r  =  0.052 and p  >  0.05) and the number of times of 
chosen truth (r  =  0.178 and p  >  0.05). There were significant 
positive correlations between the scores of the Faux Pas 
Recognition task and the eyes task (r  =  0.600 and p  <  0.05).

ERP Results
ERP Waveform Analysis in the Stimulus 
Presentation Stage
The analysis of ERP waveforms after stimulus presentation 
showed that the N2 (240–320  ms) component appeared over 
the frontal, frontocentral, and central regions in both the 
instructed and chosen conditions; the P3 (320–400 ms) appeared 
over the parietal and centroparietal regions in the instructed 
condition; and the N450 (400–500  ms) appeared over the 
frontal, frontocentral, and central regions in the chosen condition. 
The grand-average ERPs of the four experimental types at 
electrode sites Fz and FCz are shown in Figure 2.

We then analyzed the average amplitude of the N2 using 
a three-way repeated measures ANOVA [4 (trial type: instructed 
truth, instructed lie, chosen truth, chosen lie)  ×  3 (laterality: 
left, midline, right)  ×  3 (brain area: frontal, frontocentral, 
central)]. The results revealed a significant main effect of trial 
type [F(3,45)  =  14.703, p  <  0.001, and hp

2   =  0.495] but 
non-significant main effects of laterality [F(2,30)  =  0.924, 
p  =  0.362, and hp

2   =  0.058] and brain area [F(2,30)  =  1.319, 
p  =  0.273, and hp

2   =  0.081]. The interaction between trial 
type and laterality was significant [F(6,90)  =  4.283, p  <  0.01, 
and hp

2   =  0.222], while the interaction between trial type and 
brain area was not significant [F(6,90)  =  1.773, p  =  0.163, 

and hp
2   =  0.106]. The interaction between laterality and brain 

area was not significant [F(4,60)  =  2.272, p  =  0.072, and 
hp

2  = 0.132]. Finally, the interaction between the experimental 
type, brain area, and laterality was significant [F(12,180) = 2.559, 
p  <  0.05, and hp

2   =  0.146]. Further tests indicated that the 
chosen truth and chosen lie induced a more negative N2 
compared to the instructed lie and instructed truth. There 
was no significant difference in N2 amplitude between chosen 
truth and chosen lie or between instructed lie and instructed 
truth. Correlation analyses between participants’ scores and 
the N2 amplitude found that there were significant positive 
correlations between the score and the N2 amplitude over the 
midline region in the chosen truth condition [r(Fz)  =  0.500, 
r(Fcz)  =  0.523, r(Cz)  =  0.524, and p  <  0.05].

We then subjected the average amplitude of the P3 to a 
three-way repeated measures ANOVA [2 (trial type: instructed 
truth, instructed lie)  ×  3 (laterality: left, midline, right)  ×  2 
(brain area: parietal, centroparietal)]. None of the main effects 
or interactions was significant; that is, there was no significant 
difference in P3 amplitude in instructed truth and instructed 
lie over the parietal and centroparietal scalps. A similar analysis 
of the N450 using a three-way repeated measures ANOVA 
[(trial type: chosen truth, chosen lie) × 3 (laterality: left, midline, 
right)  ×  3 (brain area: frontal, frontocentral, central)] also 
revealed no significant main effects or interactions—the N450 
amplitude did not differ between chosen truth and chosen lie 
over the frontal, frontocentral, and central scalp regions.

ERP Waveform Analysis in the Feedback Stage
The EEG analysis during the feedback stage (when the feedback 
keys were presented) revealed the MFN (240–340  ms) over 
the frontal, frontocentral, and central scalp regions and the 
P3(340–500  ms) over the parietal and centroparietal scalp 
regions. The feedback results could be  divided into four types 
based on scoring: instructed loss, instructed gain, chosen loss, 
and chosen gain. The grand-average ERPs of the four scoring 
types at electrode sites Fz and Pz are shown in Figure 3.

FIGURE 2 | Grand-average ERPs of the four trial types at electrode sites Fz and FCz.
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The average amplitude of the MFN was subjected to a three-way 
repeated measures ANOVA [4(scoring type: instructed loss, 
instructed gain, chosen loss, and chosen gain)  ×  3 (laterality: 
left, midline, right)  ×  3 (brain area: frontal, frontocentral, and 
central)]. The results revealed non-significant main effects of 
scoring type [F(3,45)  =  1.529, p  =  0.236, and hp

2   =  0.092] and 
laterality [F(2,30)  =  0.891, p  =  0.421, and hp

2   =  0.056], but a 
significant main effect of brain area [F(2,30) = 64.031, p < 0.001, 
and hp

2   =  0.810]. The interaction between scoring type and 
laterality was also significant [F(6,90)  =  14.390, p  <  0.001, and 
hp

2   =  0.490]. However, the interaction between scoring type 
and brain area was not significant [F(6,90)  =  0.787, p  =  0.499, 
and hp

2   =  0.050] nor was the interaction of laterality and brain 
area [F(4,60) = 1.309, p = 0.285, and hp

2  = 0.080]. The three-way 
interaction of scoring type, brain area, and laterality was significant 
[F(12,180)  =  5.112, p  <  0.01, and hp

2   =  0.254]. Further tests 
revealed that in the left hemisphere, the MFN amplitude was 
more negative for the instructed gain type than for the instructed 
loss type, for the chosen gain type than for the chosen loss 
type, and for the chosen gain type than for the instructed loss 
type. Furthermore, in the right hemisphere, the amplitude was 
more negative for the instructed loss type than for the instructed 
gain type, for the chosen loss type than for the chosen gain 
type, and for the chosen loss type than for the instructed gain 
type. Correlation analyses showed that there was a significant 
negative correlation between the score in the chosen condition 
and the MFN amplitude over the left side of the frontal scalp 
region (r  =  −0.595 and p  <  0.05) and the MFN amplitude over 
the left side of the frontocentral scalp for the chosen loss type 
(r  =  −0.545, p  <  0.05).

The P3 amplitude was also subjected to a three-way repeated 
measures ANOVA [4 (scoring type: instructed loss, instructed 
gain, chosen loss, chosen gain)  ×  3 (laterality: left, midline, 
right)  ×  2 (brain area: parietal, centroparietal)]. We  found a 
non-significant main effect of scoring type [F(3,45)  =  2.801, 
p  =  0.073, and hp

2   =  0.157], but a significant main effect of 
laterality [F(2,30)  =  3.694, p  <  0.05, and hp

2   =  0.198]. The 
main effect of brain area was not significant [F(1,15)  =  1.535, 
p  =  0.234, and hp

2   =  0.093]. The interaction between scoring 

type and laterality was also significant [F(6,90) = 3.668, p < 0.01, 
and hp

2   =  0.196], while the interactions between scoring type 
and brain area [F(3,45)  =  1.877, p  =  0.147, and hp

2   =  0.111] 
and between laterality and brain area were not significant 
[F(2,30)  =  0.903, p  =  0.416, and hp

2   =  0.057]. The three-way 
interaction between scoring type, brain area, and laterality was 
not significant [F(6,90)  =  2.413, p  =  0.076, and hp

2   =  0.140]. 
Further tests revealed that in the left hemisphere, the P3 
amplitude was more positive for the instructed loss type than 
for the instructed gain type and for the instructed loss type than 
for the chosen gain type. In the right hemisphere, the P3 amplitude 
was more positive for the instructed gain type than for the 
chosen gain type and for the instructed gain type than for the 
chosen loss type.

DISCUSSION

We found that in the instructed condition, it took longer to 
engage in lying than in telling the truth, whereas in the chosen 
condition, there was no significant difference in response time 
(RT) between telling a lie or a truth. These findings were 
consistent with previous studies (Spence et  al., 2004; Carrión 
et al., 2010). An instructed lie required a counterfactual statement, 
which naturally made it take longer than an instructed truth. 
The lack of RT difference in the chosen condition was likely 
because the chosen response required the deceiver to consider 
the mental state of the opponent, regardless of whether it 
involved a contrary statement or not.

For successful deception, a major requirement is mentalizing 
(Frith and Frith, 2003, 2006; Sip et  al., 2008). Lie responses 
are associated with increased activation in several prefrontal 
regions (Ganis et  al., 2003; Nuñez et  al., 2005; Abe et  al., 
2007). Inhibition of the anterior PFC can improve deceptive 
behavior (Karim et  al., 2009). Reasoning about others’ mental 
states mainly activates the ACC, PFC, and the temporoparietal 
junction (TPJ) (Krippl and Karim, 2011; Corradi-Dell’Acqua, 
2013; Daltrozzo et  al., 2016). Two brain systems (the mirror 
and the mentalizing systems) are thought to be  involved in 

FIGURE 3 | Grand-average ERPs of the four scoring types at electrode sites Fz and Pz.
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the processing of understanding intention (Ciaramidaro et  al., 
2014). Khalil et al. (2018) suggested a multilayer neural network 
model including the mirror neuron system (MNS) on a first 
layer and transforming this information to a higher layer 
network responsible for reasoning. ERP studies of intention 
are quite limited. Carrión et  al. (2010) found that the N450 
was related to deception intention and people with better 
mentalizing ability were less able to deceive. Our results are 
different from Carrión et al.’s, there was no significant correlation 
between the mentalizing ability and the ability to cheat and 
the tendency of chosen truth. We  think that it is probably 
because sophisticated deception is more difficult, and the 
mentalizing ability of middle school students is also developing.

In the stimulus presentation stage, a more negative N2 was 
induced for chosen truth or lie compared to instructed lie or 
truth. Both the amplitude and latency of the N2 related to 
the state of the individual performing the task, and the N2 
generally arose in conflict control tasks. When individuals could 
quickly identify conflicting information and began the correct 
processing pathway, the latency of the N2 was generally short 
and the amplitude was small. By contrast, when individuals 
had to deal with complex tasks, the N2 amplitude became 
more negative and the latency lengthened, leading to greater 
brain activity (Azizian et  al., 2006; Folstein and Van Petten, 
2008). In the instructed condition, participants only had to 
press the indicated button, rather than deciding on their own, 
so it was easier for them to deal with conflicting information 
than in the chosen condition. First, participants made an 
inference about the opponent’s mental state, and then decided 
whether the next stimulus was honest or lying reaction. Honest 
or lying reaction is not decided by participants, and the 
instructions are given by the computer. It may or may not 
be  consistent with the idea of the participants. The final score 
was unrelated to the participants, because this is not the active 
behavior of the participants, but the points lost and scored 
as a result of computer manipulation. The participants were 
not responsible for losing points and scoring points. Later, 
the participants no longer considered the mental state of the 
opponent, and they simply followed the instructions of the 
computer to respond. In other words, the instructed condition 
required less cognitive control and conflict processing resources 
than when engaging in deception (whether sophisticated or 
simple) in the chosen condition. Thus, the chosen condition 
naturally induced a more negative N2. In the future, we  will 
use more participants to verify the stability of our results.

Some researchers have also found that instructed or voluntary 
deception induced a more negative N2 than honesty (Wu et al., 
2009; Hu et  al., 2011, 2013, 2015; Suchotzki et  al., 2015; Ganis 
et  al., 2016). However, a notable difference in our study was 
that the chosen truth and chosen lie conditions did not differ 
in terms of N2 amplitude. Similarly, there was no significant 
difference in N2 amplitude between the instructed lie and truth 
conditions. This suggested that a deception intention is the key 
to increasing cognitive control needs, rather than merely making 
counterfactual statements. The chosen truth and chosen lie had 
similar intentions and cognitive control processing, which likely 
explained why there was no difference in N2 amplitude between 

these conditions. In the instructed condition, even if counterfactual 
statements were required, participants may not have a strong 
desire to participate. By contrast, in the chosen condition, 
whether they chose to be  honest or deceive, they likely had 
an intention to deceive (given that it is essential to completing 
the task). Sai et  al. (2018b) also found that telling a lie or a 
truth to deceive elicited a larger N200 than honest responses, 
it is the deceptive intention that elicits response conflict. 
Participants’ scoring was also significantly and positively correlated 
with the N2 amplitude over the central brain area in the chosen 
truth condition (i.e., sophisticated deception). That is, the better 
the deceptive ability of the participants was, the less conflict 
they experienced while speculating about the mental state of 
their opponent to engage in sophisticated deception.

We found that the instructed condition induced the P3, 
while the chosen condition induced the N450. Furthermore, 
there was no significant difference in P3 amplitude between 
the instructed truth and instructed lie conditions, and no 
difference in N450 amplitude between the chosen truth and 
chosen lie conditions. The N450 was sensitive to cognitive 
control needs and conflict processing and was mainly distributed 
across the ACC and dorsolateral PFC, the former of which 
was located on the inner surface of the frontal region (West 
et  al., 2004, 2005). During the chosen condition, participants 
must speculate about the mental state of their opponent, while 
in the instructed condition, they needed only distinguish between 
the different instructions to react; these different qualities likely 
explained why the instructed condition induced the P3 and 
the chosen condition induced the N450. Carrión et  al. (2010) 
also studied the brain mechanisms of the intention underlying 
sophisticated deception using a combination of instructed and 
chosen conditions. They found that the chosen truth or lie 
and the instructed lie induced a more negative N450 than 
did the instructed truth, and we  agreed with their explanation 
of this finding as that the N450 was sensitive to deceptive 
intention. However, their study utilized a face-to-face situation, 
where deception in the instructed condition would be influenced 
by the face of the other person, instructed lie generated cognitive 
conflict much like that of real (i.e., chosen) deception. Although 
participants faced a real opponent in this study, the opponent 
was kept out of sight by a curtain, so the instructed lie became 
a counterfactual statement only as a result of the instructions. 
Nevertheless, both the instructed lie and instructed truth had 
less deceptive intention than the chosen truth and lie.

In the feedback stage, both the instructed and chosen loss 
types induced a more negative MFN over the right hemisphere 
than did the instructed and chosen gain types, respectively. 
In the left hemisphere, the opposite pattern was observed. 
Gehring and Willoughby (2002) named the negative wave that 
occurred about 200  ms after presenting feedback information 
in a gambling task the MFN, which corresponded to our results. 
Furthermore, a loss in their study led to a more negative 
MFN than did a gain, and the magnitude was positively 
correlated with gambling risk. In this study, participants’ score 
was significantly and negatively correlated with the amplitude 
of the MFN over the left hemisphere of the frontal and central 
frontal scalp regions in the chosen loss type. These results 
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