
Cell Physiol Biochem 2018;51:501-512
DOI: 10.1159/000495272
Published online: 20 November 2018 501

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Fink et al.: Taurolidine-Induced Eryptosis

Original Paper

Accepted: 12 November 2018

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution 
for commercial purposes as well as any distribution of modified material requires written permission.

DOI: 10.1159/000495272
Published online: 20 November 2018

© 2018 The Author(s) 
Published by S. Karger AG, Basel
www.karger.com/cpb

© 2018 The Author(s)
Published by S. Karger AG, Basel

Taurolidine Sensitivity of Eryptosis, the 
Suicidal Erythrocyte Death
Madeline Finka    Abdulla Al Mamun Bhuyana    Nefeli Zacharopouloub    
Florian Langb

aDepartment of a Cardiology, Eberhard-Karls-University, Tuebingen, bDepartment of Cardiovascular 
Medicine and Physiology, Eberhard-Karls-University, Tuebingen, Germany

Key Words
Phosphatidylserine • Cell volume • Eryptosis • Calcium

Abstract
Background/Aims: The taurine derivative Taurolidine is effective against diverse bacteria and 
tumor growth. In the treatment of cancer, the substance is effective in part by triggering 
suicidal death or apoptosis of tumor cells. The Taurolidine-induced apoptosis involves 
mitochondria. Erythrocytes lack mitochondria but are nevertheless able to enter suicidal 
erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane 
scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of 
eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. 
The present study explores, whether Taurolidine induces eryptosis and, if so, which cellular 
mechanisms are involved. Methods: Phosphatidylserine exposure at the cell surface was 
estimated using annexin-V-binding, cell volume using forward scatter, [Ca2+]i using Fluo3-
fluorescence, reactive oxygen species (ROS) formation using 2’,7’-dichlorodihydrofluorescein 
(DCF)-dependent fluorescence, and ceramide abundance using specific antibodies. Results: A 
48 hours exposure of human erythrocytes to Taurolidine (60 µg/ml) significantly enhanced the 
percentage of annexin-V-binding cells, significantly decreased forward scatter and significantly 
increased Fluo3-fluorescence and ceramide abundance, but not DCF-fluorescence. The effect 
of Taurolidine on annexin-V-binding was virtually abrogated by removal of extracellular 
Ca2+. Conclusion: Taurolidine triggers cell shrinkage and phospholipid scrambling of the 
erythrocyte cell membrane, an effect at least in part due to Ca2+ entry and paralleled by 
increase of ceramide abundance.
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Introduction

Taurolidine is an effective antibacterial substance [1-8] utilized to counteract catheter-
related infections [9-24]. The substance is further effective against malignancy both, in vivo 
and in vitro [25-29]. Taurolidine curtails tumor blood supply by suppressing angiogenesis 
[29, 30]. Most importantly Taurolidine triggers suicidal tumor cell death or apoptosis [28-30], 
an effect involving mitochondria [29, 30]. Moreover, it generates oxidative stress specifically 
in tumor cells [28]. Side effects of taurolidine include liver injury [31] and stimulation of 
nociception [32].

Erythrocytes lack mitochondria, but may, in analogy to apoptosis, enter suicidal death 
of erythrocytes or eryptosis [33-35], which is characterized by cell shrinkage [36] and 
cell membrane scrambling with phosphatidylserine translocation to the cell surface [33]. 
Cellular mechanisms orchestrating eryptosis include increase of cytosolic Ca2+ activity 
([Ca2+]i) [33], ceramide [33], caspases [33, 37, 38], G-protein Galphai2 [39], casein kinase 1α 
[33], Janus-activated kinase JAK3 [33], protein kinase C [33], and p38 kinase [33]. Eryptosis 
is suppressed by AMP activated kinase AMPK [33], cGMP-dependent protein kinase [33], 
mitogen and stress activated kinase MSK1/2 [40], and PAK2 kinase [33]. Eryptosis may 
be triggered by hyperosmotic shock [33], oxidative stress [33], energy depletion [33], 
radiation [41, 42], and a wide variety of small molecules [33, 40, 43-87]. Several inbitors of 
eryptosis have been identified [88-91]. Eryptosis is enhanced in several clinical conditions 
including iron deficiency [33], dehydration [33], hyperphosphatemia [33], vitamin D excess 
[33], chronic kidney disease (CKD) [92-97], hemolytic-uremic syndrome [98], autoimmune 
hemolytic anemia [99], diabetes [33], hypertension and dyslipidemia [100], hepatic failure 
[101], malignancy [102-104], arteritis [105], systemic lupus erythematosus [106], sepsis 
[107, 108], malaria [33, 109, 110], sickle-cell disease [33], beta-thalassemia [33], Hb-C and 
G6PD-deficiency [33], Wilsons disease [107], as well as advanced age [33]. Eryptosis is 
fostered by storage for transfusion [41, 42, 58, 111]. Erythrocytes from newborns rapidly 
undergo eryptosis following exposure to oxidative stress [33, 112].

The present study explored, whether Taurolidine stimulates eryptosis. To this end human 
erythrocytes from healthy volunteers were exposed to Taurolidine and phosphatidylserine 
surface abundance, cell volume, [Ca2+]i, ROS formation, and ceramide abundance determined 
by flow cytometry.

Materials and Methods

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the University 

of Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003 V). The 
blood was centrifuged at 120 g for 20 min at 21 °C and the platelets and leukocytes-containing supernatant was 
disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 
125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; pH 7.4), 5 glucose, 
1 CaCl2, at 37°C for 48 hours. Where indicated, erythrocytes were exposed for 48 hours to Taurolidine (Sigma 
Aldrich, Hamburg, Germany).

Annexin-V-binding and forward scatter
After incubation under the respective experimental condition, a 150 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. The annexin-V-
abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, Heidelberg, 
Germany). Annexin-V-binding was measured with an excitation wavelength of 488 nm and an emission 
wavelength of 530 nm. A marker (M1) was placed to set an arbitrary threshold between annexin-V-binding 
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cells and control cells. The same threshold was used for untreated and Taurolidine treated erythrocytes. 
A dot plot of forward scatter (FSC) vs. side scatter (SSC) was set to linear scale for both parameters. The 
threshold of forward scatter was set at the default value of “52” [113].

Intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and loaded with Fluo-3/AM (Biotium, 
Hayward, USA) in Ringer solution containing 5 µM Fluo-3/AM. The cells were incubated at 37°C for 30 
min. Ca2+-dependent fluorescence intensity was measured with an excitation wavelength of 488 nm and an 
emission wavelength of 530 nm on a FACS Calibur.

Reactive oxidant species (ROS)
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein (DCF) diacetate. After 

incubation, a 150 µl suspension of erythrocytes was washed in Ringer solution and stained with DCF 
diacetate (Sigma, Schnelldorf, Germany) in Ringer solution containing DCF diacetate at a final concentration 
of 10 µM. Erythrocytes were incubated at 37°C for 30 min in the dark and washed two times in Ringer 
solution. The DCF-loaded erythrocytes were resuspended in 200 µl Ringer solution and ROS-dependent 
fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur (BD).

Ceramide abundance
For the determination of ceramide, a monoclonal antibody-based assay was used. To this end, cells were 

stained for 1 hour at 37°C with 1 µg anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, Germany) 
in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:10. The samples were washed twice 
with PBS-BSA. The cells were stained for 30 minutes with polyclonal fluorescein isothiocyanate (FITC) 
conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, Germany) diluted 1:50 in 
PBS-BSA. Unbound secondary antibody was removed by repeated washing with PBS-BSA. The samples were 
analyzed by flow cytometric analysis with an excitation wavelength of 488 nm and an emission wavelength 
of 530 nm. As a control, secondary antibody alone was used.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was 

made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of different 
erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments are 
differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control and 
experimental conditions.

Results

The present study elucidated whether Taurolidine is capable to stimulate eryptosis, 
the suicidal erythrocyte death. In a first step, the effect of Taurolidine on cell membrane 
scrambling with phosphatidylserine translocation to the cell surface was determined. 
Phosphatidylserine exposing erythrocytes were identified from annexin-V-binding which 
was quantified by flow cytometry. Prior to measurements, the erythrocytes were incubated 
for 48 hours in Ringer solution without or with Taurolidine (15 – 60 µg/ml). As shown 
in Fig. 1, a 48 hours exposure to Taurolidine significantly increased the percentage of 
phosphatidylserine exposing erythrocytes at all Taurolidine concentrations tested.

A second hallmark of eryptosis is cell shrinkage. Erythrocyte volume was thus estimated 
from forward scatter which was quantified with flow cytometry. Prior to measurements, 
the erythrocytes were again incubated for 48 hours in Ringer solution without or with 
Taurolidine (15 – 60 µg/ml). As illustrated in Fig. 2, Taurolidine (60 µg/ml) significantly 
decreased the average erythrocytes forward scatter at all Taurolidine concentrations tested.

Fluo3-fluorescence was determined as a measure of cytosolic Ca2+ activity ([Ca2+]i). As 
shown in Fig, 3, a 48 hours incubation with 15 - 60 µg/ml Taurolidine significantly increased 
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Fig. 3. Effect of Taurolidine 
on cytosolic Ca2+. A. Original 
histogram of Fluo3-
fluorescence reflecting 
cytosolic Ca2+ activity of 
erythrocytes following 
exposure for 48 hours to 
Ringer solution without 
(grey area) and with (black 
line) presence of 60 µg/ml 
Taurolidine. B. Arithmetic 
means ± SEM (n = 15) of 
Fluo3-fluorescence reflecting 
cytosolic Ca2+ activity of 
erythrocytes following incubation for 48 hours to Ringer solution without (white bar) or with (black bars) 
Taurolidine (15, 30, 60 µg/ml). For comparison, the effect of the solvent DMSO (grey bar). ***(p<0.001) 
indicates significant difference from the absence of Taurolidine (ANOVA).
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Fig. 2. Effect of Taurolidine 
on erythrocyte forward 
scatter. A. Original histogram 
of forward scatter of 
erythrocytes following 
exposure for 48 hours to 
Ringer solution without 
(grey area) and with (black 
line) presence of 60 µg/ml 
Taurolidine. B. Arithmetic 
means ± SEM (n = 15) of the 
erythrocyte forward scatter 
(FSC) following incubation 
for 48 hours to Ringer 
solution without (white bar) or with (black bars) Taurolidine (15, 30, 60 µg/ml). **(p<0.01) ***(p<0.001) 
indicates significant difference from the absence of Taurolidine (ANOVA).

BA

Fig. 2

Contro
l 15 30 60

DMSO
0

200

400

600

****** ***

Taurolidine(µg/ml)

Fo
rw

ar
d 

Sc
at

te
r (

FS
C

)
 (a

rb
. u

ni
ts

)

Forward Scatter (rel.units)

N
um

be
r o

f c
el

ls

Fig. 1. Effect of Taurolidine 
on phosphatidylserine 
exposure. A. Original 
histogram of annexin-V-
binding of erythrocytes 
following exposure for 48 
hours to Ringer solution 
without (grey area) and 
with (black line) presence 
of 60 µg/ml Taurolidine. B. 
Arithmetic means ± SEM 
(n = 15) of erythrocyte 
annexin-V-binding following 
incubation for 48 hours to 
Ringer solution without 
(white bar) or with (black 
bars) Taurolidine (15, 30, 60 µg/ml). For comparison, the effect of the solvent DMSO (grey bar). *(p<0.05) 
***(p<0.001) indicates significant difference from the absence of Taurolidine (ANOVA).
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the Fluo3-fluorescence 
at all Taurolidine 
concentrations tested.

A next series of 
experiments explored 
whether the Taurolidine-
induced translocation 
of phosphatidylserine 
required entry of 
extracellular Ca2+. To this 
end, erythrocytes were 
incubated for 48 hours in 
the absence or presence 
of 60 µg/ml Taurolidine in 
the presence or nominal 
absence of extracellular 
Ca2+. As illustrated in Fig. 
4, removal of extracellular 
Ca2+ significantly blunted 
the effect of taurolidine on 
annexin-V-binding. In the 
absence of extracellular 
Ca2+, Taurolidine tended to increase the percentage of annexin-V-binding erythrocytes, an 
effect, however, not reaching statistical significance (Fig. 4). Thus, Taurolidine-induced cell 
membrane scrambling was in large part triggered by entry of extracellular Ca2+.

Fig. 4. Ca2+ 
sensitivity of 
T a u r o l i d i n e 
- i n d u c e d 
phosphatidylserine 
exposure. A,B. 
Original histogram 
of annexin-
V-binding of 
e r y t h r o c y t e s 
following exposure 
for 48 hours to 
Ringer solution 
without (grey 
areas) and with 
(black lines) 
Taurolidine (60 µg/
ml) in the presence 
(A) and absence (B) 
of extracellular Ca2+. 
C. Arithmetic means 
± SEM (n = 11) of annexin-V-binding of erythrocytes after a 48 hours treatment with Ringer solution without 
(white bars) or with Taurolidine (60 µg/ml) in the presence (left bars, + Ca2+) and absence (right bars, - 
Ca2+) of Ca2+. ***(p<0.001) indicates significant difference from the absence of Taurolidine, ###(p<0.001) 
indicates significant difference from the presence of Ca2+ (ANOVA).
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Fig. 5. Effect of Taurolidine on reactive oxygen species (ROS). A. Original 
histogram of 2′,7′-dichlorodihydrofluorescein (DCF) fluorescence 
reflecting ROS of erythrocytes following exposure for 48 hours to Ringer 
solution without (grey area) and with (black line) presence of 60 µg/ml 
Taurolidine. B. Arithmetic means ± SEM (n = 15) of DCF fluorescence in 
erythrocytes following incubation for 48 hours to Ringer solution without 
(white bar) or with (black bars) Taurolidine (60 µg/ml). For comparison, 
the effect of the solvent DMSO (grey bar).
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Ca2+ entry and eryptosis are known to be stimulated by oxidative stress. Reactive oxygen 
species (ROS) was thus quantified utilizing 2′,7′-dichlorodihydrofluorescein (DCF) diacetate. 
As a result, DCF fluorescence was similar after 48 hours incubation without and with 60 µg/
ml Taurolidine (Fig. 5).

A further known stimulator of eryptosis is ceramide. Ceramide abundance at the 
erythrocyte surface was thus quantified utilizing specific antibodies. As shown in Fig. 6, a 
48 hours exposure to 60 µg/ml Taurolidine significantly increased the ceramide abundance.

Discussion

The present observations uncover a novel effect of Taurolidine, i.e. the stimulation of 
eryptosis, the suicidal erythrocyte death. Treatment of erythrocytes with Taurolidine was 
followed by cell membrane scrambling with phosphatidylserine translocation to the 
erythrocyte surface. Taurolidine further triggered cell shrinkage, another hallmark of eryptosis 
[58]. The concentration required for stimulation of eryptosis was similar to those required to 
trigger apoptosis of tumor cells [114-117] and to those achieved in patients [118].

The effect of Taurolidine on cell membrane scrambling and cell shrinkage was paralleled 
by a significant increase of Fluo3-fluorescence reflecting cytosolic Ca2+ activity. The effect of 
Taurolidine on cell membrane scrambling was in large part dependent on Ca2+ entry from the 
extracellular space. Accordingly, removal of extracellular Ca2+ virtually abrogated the Taurolidine 
induced eryptosis. Taurolidine-induced cell shrinkage could result from Ca2+ entry, activation of 
Ca2+ sensitive K+ channels, K+ exit, cell membrane hyperpolarization, Cl- exit and thus cellular 
loss of KCl with water [58].

Taurolidine-induced cell membrane scrambling and cell shrinkage were paralleled by 
increased abundance of ceramide which is known to sensitize erythrocytes for the scrambling 
effect of Ca2+ [58]. Apparently, Taurolidine has only little effect on oxidative stress.

Eryptotic erythrocytes are rapidly cleared from circulating blood [33] and the physiological 
function of eryptosis is the removal of defective erythrocytes prior to hemolysis with release of 
hemoglobin, which passes the renal glomerular filter and precipitates in the acidic lumen 
of renal tubules thus occluding the affected nephrons with subsequent renal failure [119]. 
Hemoglobin could further affect microcirculation [120].

The loss of erythrocytes following clearance of phosphatidylserine exposing erythrocytes 
from circulating blood may, however, surpass the formation of new erythrocytes by 
erythropoiesis and thus lead to anaemia [33]. Phosphatidylserine exposing erythrocytes 
may further adhere to endothelial cells of the vascular wall [121], stimulate blood clotting 
and trigger thrombosis [122-124], thus impairing microcirculation [122, 125-129].

Fig. 6. Effect of Taurolidine 
on ceramide abundance. A. 
Original histogram of ceramide 
abundance in erythrocytes 
following exposure for 48 
hours to Ringer solution with 
solvent DMSO (grey area) and 
with presence of Taurolidine 
(60 µg/ml) (black line). B. 
Arithmetic means ± SEM (n 
= 5) of ceramide abundance 
in erythrocytes following 
incubation for 24 hours to 
Ringer solution without (white 
bar) or with (black bars) presence of Taurolidine (60 µg/ml). ***(p<0.001) indicates significant difference 
from the absence of Taurolidine (ANOVA).

BA

Fig. 6

0

5

10

15

20

Control
Taurolidine 60 µg/ml

***

C
er

am
id

e 
de

p.
 fl

uo
re

sc
en

ce
 (a

rb
. u

ni
ts

)

Ceramide dependent fluorescence 
(rel.units)

N
um

be
r o

f c
el

ls

http://dx.doi.org/10.1159%2F000495272


Cell Physiol Biochem 2018;51:501-512
DOI: 10.1159/000495272
Published online: 20 November 2018 507

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Fink et al.: Taurolidine-Induced Eryptosis

Conclusion

In conclusion, Taurolidine stimulates eryptosis with cell membrane scrambling and cell 
shrinkage, an effect paralleled by and in large part due to Ca2+ entry and ceramide.
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