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The field of neuroanatomy has progressed considerably in recent decades, thanks to
the emergence of novel methods which provide new insights into the organization of
the nervous system. These new methods have produced a wealth of data that needs
to be analyzed, shifting the bottleneck from the acquisition to the analysis of data.
In other disciplines, such as in many engineering areas, scientists and engineers are
dealing with increasingly complex systems, using hierarchical decompositions, graphical
models and simplified schematic diagrams for analysis and design processes. This
approach makes it possible for users to simultaneously combine global system views
and very detailed representations of specific areas of interest, by selecting appropriate
representations for each of these views. In this way, users can concentrate on specific
details while also maintaining a general system overview — a capability that is essential
for understanding structure and function whenever complexity is an issue. Following
this approach, this paper focuses on a graphical tool designed to help neuroanatomists
to better understand and detect morphological characteristics of neuronal cells. The
method presented here, based on a symbolic representation that can be tailored to
enhance a particular range of features of a neuron or neuron set, has proven to be
useful for highlighting particular geometries that may be hidden due to the complexity of
the analysis tasks and the richness of neuronal morphologies. A software tool has been
developed to generate graphical representations of neurons from 3D computer-aided
reconstruction files.

Keywords: symbolic representations, schematic representation of neurons, neuron morphological and
functional data visualization, pyramidal neurons, neuroscience information visualization, neuron functional data
visualization

INTRODUCTION

It is essential to provide the scientific community with tools that make it easier for researchers to
understand the acquired data and perform their associated analysis tasks faster and more effectively
(Towns et al., 2012; Offerdahl et al., 2017).

In the particular case of the study of neuronal morphology, recent decades have seen continuous
improvements in laboratory equipment and techniques. As a direct consequence, the size of the
data sets that have become available has grown exponentially, up to a point where large collections
of neurons are available (Ascoli et al., 2007; Staining, 2015). Researchers often must go through
large numbers of cells, either to review, compare or characterize them — or to select samples for
specific purposes such as cell models for setting up a computer simulation. Also, researchers often

Frontiers in Neuroanatomy | www.frontiersin.org 1 December 2018 | Volume 12 | Article 106

https://www.frontiersin.org/journals/neuroanatomy/
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2018.00106
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnana.2018.00106
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2018.00106&domain=pdf&date_stamp=2018-12-18
https://www.frontiersin.org/articles/10.3389/fnana.2018.00106/full
http://loop.frontiersin.org/people/606316/overview
http://loop.frontiersin.org/people/79669/overview
http://loop.frontiersin.org/people/27665/overview
http://loop.frontiersin.org/people/5/overview
http://loop.frontiersin.org/people/450122/overview
https://www.frontiersin.org/journals/neuroanatomy/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-12-00106 December 14, 2018 Time: 14:38 # 2

Aliaga Maraver et al. Symbolic Representation of Neurons

need to simplify operations such as analyzing diverse items,
searching/recovering data similar to a particular one used as a
template, etc. Clearly, any help for tasks such as discovering
trends or singularities or establishing theories would be very
welcome (Morales et al., 2011; Al-Awami et al., 2014; Toharia
et al., 2016). The availability of a common representation system
would certainly facilitate performing these operations in an
unambiguous way, while also highlighting their most relevant
features for each specific study.

Regarding the representation of neurons, currently available
commercial software (Glaser and Glaser, 1990; Bitplane, 2012;
MBF Bioscience, 2018) facilitates the generation of detailed
representations of 3D neurons that can then be used for
anatomical studies. These digital representations allow the
automatic computation of quantitative measures such as
dendritic length, number of nodes (points where the dendritic
tree divides into two branches), number of terminations, etc.
Although these numerical values can characterize neurons
according to a pre-specified set of variables, there are certain
aspects that are not easily captured by them, such as
arborization patterns, spatial relationships, element distribution,
etc. Approaching this from a different angle, strategies for
data visualization provide a useful resource for the analysis
and exploration of complex data (Lempert, 2002; Unwin and
Chun-houh, 2008; Bankman, 2009; Ward, 2015); consequently,
several techniques have been proposed for the visualization
of detailed neuronal morphologies (Lasserre et al., 2012; Brito
et al., 2013; Garcia-Cantero et al., 2017). However, even though
visualizing cells helps researchers acquire an overall idea of
each neuron’s morphology, the 3D structure of these neuronal
representations means that the final images are highly dependent
on the subjective interpretation of the user, who will chose the
direction of projection. Neurons have an intricate geometry,
and 3D visualizations commonly present perspective artifacts.
These two characteristics make it difficult to discern geometrical
details and to distinguish certain morphological features. Again,
the availability of accessible representations would simplify the
analysis task, especially in the case of large datasets.

This paper presents a novel representation framework for the
visualization of neurons from anatomical 3D reconstructions,
facilitating the visual exploration and analysis of cells.
Specifically, the proposed approach presents the following
advantages:

• It provides unambiguous 2D neuron representations,
eliminating the occlusions that occur in Z projection
images, while still capturing the whole 3D anatomy of the
cell.
• It defines visual abstractions for neurons, based on circular

dendrograms, where the selected morphological features
are depicted in a symbolic way. This allows the emphasis of
the most significant information for a specific task, placing
less importance on less relevant features (or even hiding
them completely).
• It can be interactively parameterized in order to represent

different variables, thereby also facilitating sorting and
filtering operations according to different characteristics.

The proposed representation methodology provides a new
resource for communicating information or performing visual
analysis of morphological features for large populations of
neurons. Although this method has been conceived specifically
for the description of individual neuron morphologies, it can
be integrated into more powerful combined morphological
and physiological representations within a multiresolution
framework. This tool is publicly available at https://piziadas.com/
hugo.

The following sections include a brief description of the state
of the art, a summary of the design principles and main features
of the proposed method, as well as an analysis of how this method
can help to perform different analysis tasks. Finally, the main
conclusions are presented, along with proposals for future work.

STATE OF THE ART

There are many ways to define a representation; according to
Marr and Nishihara (1978), “a representation is a formal system
for making explicit certain entities or types of information,
together with a specification of how the system does this”.
Other definitions stress the idea that representations provide
images or concepts that help us to build a mental model of any
object. Representation systems, therefore, have been used for two
main purposes: providing means for transmitting information,
on one hand, and for systematizing ideas and facilitating the
development of mental visualizations of objects or concepts, on
the other. Both of these have been fundamental contributors
toward human progress, especially for the development of science
and technology (Evagorou et al., 2015).

Historically, humans have been developing graphical
representations for many different purposes for at least
73,000 years (Callaway, 2012; Pike et al., 2012; Henshilwood
et al., 2018; Hoffmann et al., 2018), first in caves and on rocks
in a wide diversity of geographical areas. Later, virtually every
civilization produced different artistic or religious paintings
and engravings as distinctive cultural features. More related to
the subject of this paper, drawings have also been customarily
used in many branches of science, such as medicine and
biology, where detailed illustrations have been widely used to
document new findings. Figure 1 presents some examples of
representations —from very different time periods— which
have been used for different purposes, and include symbolic and
realistic representations, as well as actual images or pictograms.
Each representation conveys some information in its own
particular way.

The case of schematic representations in computer
architecture is very relevant to design or representation
methods in neuroscience, given the similarities between the two
cases regarding issues such as system complexity and the need to
provide users with simultaneous access to fine details, long-range
interaction and system-level information. The solutions devised
in computer architecture were based on defining hierarchies of
description levels associated to synthetic representations for each
level; Tanenbaum and Goodman (1998) structure a computer as
a series of abstractions, each one built upon the ones below it.
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FIGURE 1 | Examples of graphical representations from different historical periods. (Left) Hieroglyph inscribed on one of the walls of the temple of Dendara (Egypt),
dedicated to the goddess Hathor. (Right) Leonardo da Vinci, Quaderni d’anatomia (1490): the central nervous system and cranial nerves. The main drawing shows
the layers covering the brain compared to the layers of an onion cut in half (on the left of the image). At the bottom of the drawing, the ventricles viewed from above
are illustrated, including the optic and auditory nerves entering the anterior ventricle.

The lowest level is the digital logic level and it deals with gates
that are usually represented by symbols that hide their internal
structure. The highest level consist of the so-called high-level
languages used by application programmers to solve specific
problems. This allowed engineers to focus on specific features at
the most appropriate level of detail for each task, working only
with the information that was relevant at any given moment.
The availability of these abstraction levels and their associated
representations were essential for the purpose of designing,
developing and analyzing modern high-performance computers.

In the field of neuroscience, realistic drawings and images
have been the most common way of documenting scientific
discoveries. For example, Cajal’s beautiful drawings and diagrams
of single cells or simple circuits are well known (DeFelipe
and Jones, 2013; DeFelipe, 2014), and were essential for the
documentation and dissemination of his findings. Indeed, many
of the illustrations by Cajal and other scientists at that time
were composite drawings that synthetically showed the complex
texture of a given region of the nervous system. This is because,
for example, using the method of Golgi (the most common
method at the time), they could visualize relatively few cells in
a given histological preparation [this can be seen when a section
is stained with this method and counterstained with the method
of Nissl (Figure 2, upper panel, left column)]. Thus, as dealt
with in DeFelipe (2017), in order to generate a circuit diagram as
shown in the middle column of the upper panel of Figure 2, Cajal
had to interpret several microscopic preparations and highlight
the key features of the structure being studied. In other words,
these circuit diagrams were produced from interpretative skills
based on sparse neuroanatomical data. As discussed in DeFelipe
(2017), Cajal proposed that, in general, neurons could be divided
into three functionally distinct regions: a receptor apparatus

(dendrites and soma), an emission apparatus (axon) and a
distribution apparatus (terminal axonal arborization), and the
early neuroanatomists used arrows in their diagrams to indicate
the direction of the nervous currents. Thanks to the theory of
dynamic polarization, it was possible for Cajal and others to trace
and interpret the flow of information in complex microcircuits of
the nervous system. For example, this is how his pupil Lorente de
Nó described the complex connectivity of CA3 in 1934 (Figure 2,
upper panel, right column):

Arrows indicate the direction of transmission of the impulses
according to Cajal’s law of axonal polarization. If this law is not
accomplished [. . .] the interpretation of the diagram would be
quite different.

With the improvement of microscopy and physiological
techniques, the complexity of the acquired data has been steadily
increasing. In this context, non-realistic representations have
been used for a variety of purposes, such as describing individual
features of single cells and circuits as well as functionality.
For example, networks inspired by neural architectures helped
to develop silicon technology (Figure 2, bottom panel). In
these cases, there is a trend toward using simplified, schematic
representations to enhance the specific aspects that are most
relevant for dissemination depending on the particular research
findings in question. Still, many of the representations used are
only capable of providing partial views of different aspects, and
have not been conceived as tools to facilitate systematic analysis
operations.

Regarding this point, the main goal of the techniques proposed
in this paper is the design of a representation system for neurons
that provides unambiguous 2D representations of their 3D
structure. This method has been primarily designed to facilitate
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FIGURE 2 | (Upper) Left column: preparation of mouse cerebral cortex stained with the Golgi method and counterstained with the method of Nissl. With the
method of Golgi, only the cell body and its processes are stained in black, whereas with the method of Nissl, only the cell bodies are stained in blue (arrows indicate
some stained cells). Note that with the Golgi method, only a small proportion of the cells are stained. In, interneuron; Py, pyramidal cell. Scale bar: 100 mm. Middle
and right column: theoretical direction of transmission of impulses in cortical circuits published by Cajal in 1894 (middle column) and Lorente de Nó in 1934 (right
column). The diagrams stem from the neuron doctrine and the law of dynamic polarization of nerve cells (and are based on sparse anatomical data). Taken from
DeFelipe (2014). (Lower) Networks inspired by neural architecture (TrueNorth architecture). (A) Neurosynaptic core inspired by a canonical cortical microcircuit. (B)
Network of neurosynaptic cores inspired by the cortex’s two-dimensional sheet. (C) Multichip network inspired by the long-range connections between cortical
regions. (D) Structure of a neurosynaptic core. (E,F) Multicore networks. (G) Functional view of core. (H) Functional chip architecture. (I) Routing network across
chip boundaries. (J) Physical layout of core in 28-nm CMOS. (K) Chip layout of 64-by-64 core array, wafer, and chip package. (L) Chip periphery to support
multichip networks. Taken from Merolla et al. (2014).
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the visual analysis of neuron morphology, as well as to evaluate
how different sets of computed features vary in terms of their
constitutive elements.

MATERIALS AND METHODS

The first step of the method presented here is to depict the
3D cells’ structure using a 2D representation that encodes the
morphology of the dendritic and axonal trees unambiguously.
This structure will then act as the underlying canvas over which
other additional information will be mapped, whenever that
information is relevant for a specific task. It should be noted
that, in this work, only morphological features have been used.
Nevertheless, the methods presented here can be easily applied to
the mapping of functional/molecular information or features.

Four key issues have guided the design of the representation
system proposed here:

• Which neuronal elements and characteristics are
represented
• Which visual resources are used for neuronal

representation
• How this information is represented
• How users interact with the data and representations

The way in which these issues are dealt with is necessarily
dependent on user goals and expectations.

Regarding neuronal elements and characteristics, the
representations proposed here include diameters; lengths;
number of endings and nodes; surface areas; volumes; and angles
between branches.

The set of graphical resources to be used within these
representations has been selected to be easily interpretable,
facilitating the automatic mapping of information from the
computed features onto the representations. For this process, the
system is initially based on 3D computer-aided reconstruction
files stored following Neurolucida file format (.dat, .asc) or
neuromorpho file format (.swc). Visual characteristics such as
color, size and line width can then be used to represent the
morphological characteristics, and are easily computed from the
cell descriptions, yielding a straightforward mapping between
variables and visual representations. Finally, the spatial and
geometrical distribution of some of the representation elements
can also be modified according to the values of some pre-specified
features. How this information is represented and how users
interact with the data will be described in detail in the following
sections.

The input data used in this work consist of 3D reconstructed
apical and basal arbors from 17 human and mouse pyramidal
neurons (5 and 12, respectively) that were intracellularly injected
with Lucifer Yellow (LY). Human tissue samples were obtained
from layer III of the human cingulate and temporal cortex and the
CA1 region of the hippocampal formation (see Garey, 1994) of 3
human cases obtained at autopsy (2–3 h post-mortem; 2 males
aged 40 and 45, 1 female aged 53; kindly supplied by I. Ferrer,
Instituto de Neuropatología Servicio de Anatomía Patológica,

IDIBELL-Hospital Universitario de Bellvitge, Barcelona, Spain
and Dr. Ricardo Insausti, UCLM, Albacete, Spain).

Mouse tissue samples were obtained from the primary
somatosensory cortex [layers II–VI; (Franklin and Paxinos,
2004)] of C57BL/6 adult (8-week-old) male mice that were
overdosed by intraperitoneal injection of sodium pentobarbitone
and perfused intracardially with 4% paraformaldehyde.
Vibratome sections (300 µm for human tissue and 200 µm
for mouse tissue) were obtained in the coronal plane. Sections
were then labeled with 4,6 diamino-2-phenylindole (DAPI;
Sigma, St. Louis, MO, United States) to identify cell bodies.
Pyramidal cells were then individually injected with LY (8%
in 0.1 M Tris buffer, pH 7.4) in the corresponding brain
regions described above. LY was applied to each injected cell by
continuous current until the distal tips of each cell fluoresced
brightly, indicating that the dendrites were completely filled
and ensuring that the fluorescence did not diminish at a
distance from the soma. Following the intracellular injection of
pyramidal neurons sections were immunostained for LY using
rabbit antisera against LY (1:400 000; generated at the Cajal
Institute) diluted in stock solution (2% bovine serum albumin,
1% Triton X-100, and 5% sucrose in PB). The sections were
then incubated in biotinylated donkey anti-rabbit IgG (1:100;
Amersham, Buckinghamshire, United Kingdom) and Alexa
fluor 488 streptavidin-conjugated (1:1000; Molecular Probes,
Eugene, OR, United States). Finally, sections were mounted
in 50% glycerol in PB. Further information regarding tissue
preparation, injection methodology and immunohistochemistry
processing is outlined in Benavides-Piccione et al. (2013). The
injected cells were fully imaged at high magnification using tile
scan mode in a Leica TCS 4D confocal scanning laser attached
to a Leitz DMIRB fluorescence microscope. Fluorescent labeling
profiles were imaged, using an excitation wavelength of 491 nm
to visualize Alexa fluor 488. Consecutive stacks of images at high
magnification (×63) were acquired to capture dendrites along
the apical and basal dendritic arbors. Neuron morphologies
were extracted in 3D using Neurolucida Confocal package
(MicroBrightField). We used additional digital reconstructions
that were obtained from Neuromorpho.org (Ascoli et al.,
2007).

CIRCULAR DENDROGRAMS FOR
NEURONAL DESCRIPTION

Neurons can be represented in 2D by projecting their 3D shape
onto planes — a process that preserves more or less geometric
details depending on which projection plane has been chosen.
However, 2D projections present some problems: first, moving
from R3 to R2 leads to loss of information; recovering the original
3D shape requires at least a second projection over a different
plane. Also, projections from 3D to 2D can produce additional
distortions (Figure 3), since the projections of the points that lay
in the same projection ray overlap in the 2D plane, giving rise to
topological singularities that can greatly modify the appearance of
the cell (Sharma, 2010). Lastly, in order to compute a projection,
it is necessary to select which plane will give the best projection
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FIGURE 3 | Computing 2D projections of neurons. (A) The projection of a space curve may result in curves with singularity points, such as cusps (B) If two points of
the curve are aligned along a projection line, the projected curve will have multiple points. (C) A bounding box can be generated around a neuron to find the direction
of projection that provides a projection with maximum area.

for the actual data and operator goals. This is strongly related
to the data acquisition process, which is commonly achieved by
starting with a stack of microscopy images and producing a series
of tracing points located in a set of parallel planes (Z coordinates
can be systematically grouped).

The most common projection used for computing the
neuronal representations is a cylindrical orthogonal projection
in the XY plane — a process that can generate singularity points
(Figures 3A,B).

The projection direction for these cylindrical projections is
usually selected by the operator, although whether this is the
case or not will very much depend on his or her experience, and
also on whether the projection is aimed at acquiring the whole
neuronal structure or only a part of it. In any case, this step
can be further optimized by selecting the projection plane that
captures the greatest area of the cell. Bounding box computation
(O’Rourke, 1985; Swart, 1985; Barber et al., 1996; Avis et al., 1997;
Verleysen and Vleeschouwer, 2016) can facilitate this process
(Figure 3C).

The morphology of a neuron can be schematically represented
by a graph that shows the morphological tracing points
corresponding to neurite bifurcations, connected following the
digitized dendritic and axonal trajectories. Assuming, without
loss of generality, that branches always bifurcate into just two
sub-branches, dendrites and axons can be represented by binary
unbalanced trees. Geometric detail can be easily reduced by
eliminating neurite curvature, replacing real trajectories with
the line segments that result from straightening each of the
neurite fragments comprised between subsequent bifurcations,

or between a bifurcation and either the soma or its ending point
(Van Pelt et al., 2001).

This simplification, combined with the substitution of
bifurcation points with small orthogonal segments, gives
rise to the classical dendrogram representation of neurons
as binary trees (Figure 4B). This abstraction is helpful for
constructing a conceptual scheme for the overall cell structure,
facilitating the perception of aspects such as level of subdivision
or branching order. However, neurons with a large number
of neurites or a high branch order result in huge trees with a
complex structure covering large areas within the representation

FIGURE 4 | (A) A real neurite fragment. (B) A classical dendrogram
representation of the same neurite. (C) The binary tree in B has been modified
by laterally displacing each of the secondary branches. Here the neurite
bifurcation nodes can be identified as the segments orthogonal to the neurite
main axis. The circular dendrogram presented in (D) is obtained by
repositioning the branches radially where bifurcation nodes are represented by
circular arcs. (E) This model can still be simplified by substituting its branching
pattern with a symbol that encodes a specific morphological feature (in this
case, the number of branch endings).
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space. This drawback can be alleviated by aligning the main
branches and displacing all the secondary branches laterally
such that they point in the same direction (Figure 4C). This
modification produces clearer, crisper representations that
require less representation space. This spatial arrangement can
be further optimized by distributing the branches following
a circular pattern (Figure 4D). This modification gives
rise to the so called circular dendrograms, which provide
2D representations of neuronal morphology that can be
unambiguously interpreted, and are also independent from the
operator that generated the representations or the projection
plane/direction. Additionally, circular dendrograms provide
representations that are closer to real neuronal morphologies,
facilitating their interpretation. Lastly, this model uses the
available space optimally, assigning larger areas to distal neurite
segments, which present larger numbers of branches, as is the

case in real neurons, where distal branches typically spread over
larger regions.

Regarding dendrograms, it should be noted that losing the
actual curved trajectories for the different neurite fragments is
not disadvantageous for many tasks. Indeed, simplifying neurite
shape provides a schematic, abstract view of the cell morphology
that is much easier for a human observer to interpret. In any
case, combining circular dendrograms with real 2D projections
or 3D representations provides users with complete and clear
information.

Figure 5 illustrates other basic elements of this representation
model, such as the symbols used for representing somas, nodes,
etc. The starting points of different neurites can be color-coded to
facilitate visual analysis tasks.

Figure 6 shows a real pyramidal neuron, its representation
using a classical dendrogram, and the proposed circular

FIGURE 5 | Basic elements of the proposed representation model (A). The soma is idealized as a circumference from which dendrites and axons originate. The
starting points of the different neurites can be highlighted with a dot (Red: axon; Blue: apical; Cyan: basal). Straight segments connect two bifurcation nodes (yellow)
or a bifurcation node and an ending point (green). An arc is placed at each bifurcation point in order to connect the main branch with the secondary one. (B) Shows
a detailed view of the first order dendrites and axon, representing two basal dendrites (cyan), one apical dendrite (dark blue) and the axon (red). Proximal nodes help
identify the number of first order branches.

FIGURE 6 | A human cortical pyramidal neuron and two dendrogram representations. (A) presents a standard 2D projection of the real neuronal morphology, while
(B) and (C) show two different dendrograms for the same cell (B presents a classical dendrogram and C the proposed circular dendrogram). Corresponding neurites
on each representation are coded with the same color to facilitate their identification in the different representations.
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dendrogram. The radial distribution in circular dendrograms
results in a compact depiction, which resembles the original
orientation of the main dendrites and makes it easier for users
to mentally visualize the match between real and dendrogram
neurites.

The 2D circular dendrograms presented in Figures 5, 6
are the basis of the representation system proposed in
this paper. They provide a visual abstraction of neuronal
anatomy which is obtained via an evolution of the widely
known binary tree representation. It should be noted that
these circular dendrograms can be automatically computed
from raw morphological tracings, presenting details in a way
that facilitates human understanding of different features.
Furthermore, the visual characteristics of these diagrams and the
spatial distribution of their elements can be modified in order
to encode different data, as will be explored in the following
sections. Please note that radial distributions have often been
used in the field of information visualization (Draper et al.,
2009).

CIRCULAR DENDROGRAMS FOR
NEURONAL MORPHOLOGICAL
ANALYSIS

Symbolic representations can be designed and modified to meet
precise requirements, such as those needed for a particular
analysis job. This kind of representation can be customized
for almost any purpose; designers have quite a large degree of
freedom to decide which aspects of the representation will be
over- or underemphasized, since they are freed from the need
to accurately display the actual features from the data being
represented. Consequently, displaying the structure of neurons in
a schematic, easy-to-grasp way is not the only advantage offered
by circular dendrograms; each basic diagram can be modified
to emphasize those aspects which are most relevant, in order to
facilitate the visual analysis operations related to a specific task.
Also, different variables can be mapped onto these diagrams using
different visual resources. In this way, this kind of schematic
representation can be adapted to present additional information
at the request of the user.

The circular dendrograms presented here have been developed
within an exploratory analysis framework, conceived with
the analysis of neuronal morphology in mind, although this
framework has already also been extended to deal with
functional data (Galindo et al., 2016; Toharia et al., 2016;
NeuroLOTs, 2018). In this framework, operators can use a
number of tools to carry out procedures such as cluster
analysis, search by content, analysis of the spatial variation of
specific features, etc. Several other operations are performed
routinely, such as cell or neurite selection and filtering, navigation
through populations of acquired neurons or within neuronal
morphologies.

Circular dendrograms are useful in this context, providing
views that can highlight different features depending on their
relevance for a particular purpose. This section presents a
number of representations that can facilitate the perception

of certain cell features through the variation of aspects such
as segment length; angular arrangements; and line width and
color.

Segment Length in Circular
Dendrograms
Segment length in circular dendrograms can be made
proportional to real neurite segment lengths; we call this
representation mode Real Length Mode (RLM). This facilitates,
for instance, performing detailed studies of morphological
aspects related to the actual size of the neurites. In addition,
using real lengths in the representations allows the mapping of
other features over the neurites (for example, the actual location
or density of dendritic spines), which gives users an accurate
impression of the variation of these features across dendritic and
axonal trees (see section “Other Resources”).

The length of the segments in the dendrogram can also
represent the radial distance from node to soma. This can
be used to perform Sholl’s analysis (Sholl, 1953). We call this
representation mode Radial Mode (RM). Also, in a fourth mode,
called Length Mapping Mode (LMM), the length of each segment
of the representation can represent a different variable — for
instance, mean diameter of the segment, side-area, etc.

Segment length can also be given less prominence whenever
other features are being considered and segment length is not
relevant. For example, using equal lengths between nodes can
allow users to better perceive neurite arborization patterns.
We call this representation mode Unitary Model (UM).
Figures 7A–D shows a comparison between some of these
options for a real pyramidal cell. The number of dendrites, the
complexity of their arborization patterns and the number of
branch levels and endings are easier to grasp when uniform
lengths are used.

Angular Arrangements
Users can modify the way the different dendrogram elements
are angularly arranged within the diagram. This distribution
is governed by four degrees of freedom that define the final
representation:

• Angular sector covered by each primary branch
• Angular sector covered by each individual neurite ending
• Ordering criteria for the different neurites
• Ordering criteria for the different neurite branches and branch

endings

These options will be studied here, grouped into two cases:
angular sectors and ordering criteria.

Angular Sector Distribution
The width of the circular sector assigned to each neurite or
neurite branch can be adjusted. This allows the emphasizing
or de-emphasizing of neurites (or the information they convey)
within the whole dendrogram. In the End-Node Distribution
Mode (ENDM), the angular distance between each terminal
node of the neuron is kept constant. In the Neurite Distribution
Mode (NDM), the angular sector allocated to each neurite
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FIGURE 7 | Upper: In RLM and RM, segment lengths in circular dendrograms represent real neurite lengths as measured in morphological tracings or radial node to
soma distances (A,C). In UM, using fixed segment length in dendrograms facilitates other operations where neurite or branch length is irrelevant, such as for the
analysis of arborization patterns (B,D). In UM, L0 is an arbitrary distance to facilitate the visual interpretation of the model. Lower: diagram (E) shows the two different
angles that can be modified in circular dendrograms. The first of them, α, is the angle assigned to each dendritic or axonal arbor. The second one, β, is the angle
assigned to each segment or terminal branch at each bifurcation node. In (F), the dendrogram has been arranged with ENDM (constant angular distribution of
neurite terminals) by using a variable angle α, and keeping β constant. (G) On the other hand, has been obtained with NDM (constant angular distribution of
neurites). In this case, α is constant, with different β angles per neurite arbor.

originating from the soma is constant. The terminal nodes
of each main neurite are distributed by following an ENDM
within that angular sector. Assigning uniform circular sector
angles to neurites in dendrograms —as in NDM— facilitates user
perception of the total number of neurites within a cell as well as
its high-level neurite structure.

Additionally, in the Weighted Distribution Mode (WDM),
different correction weights, Cij, can be applied to each
neurite i and branch ending j, resulting in non-uniform
angular distributions. This option allows additional space
to be allocated to certain neurites or branches whenever

users wish to devote additional representation resources
to any neurite or branch in order to highlight specific
features.

With respect to angular sector size (Figure 7E), there are two
families of angles that have to be considered:

• αi: Aperture angle of the circular sector assigned to the ith
neurite arbor.
• βi: Aperture angle of the circular sector between two

segments at a bifurcation node within the ith arbor
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(equivalent to the angle assigned to each terminal branch,
and ending, within the ith arbor).

Let E be the number of terminal nodes (branch endings), and
let N be the number of trees (neurites) to be represented in
the dendrogram. Then, the two sets of angles αi and βi can be
computed in different ways:

• Assigning constant angles, βi, per branch ending: the
constant value of β assigned to each ending can be
computed as:

β = K =
360
E

In this case, the angle spanned by each neurite arbor will be
αi = Ei

∗β

• Assigning constant angles, αi, per neurite arbor: each
constant angle occupies a circular sector of uniform width
α:

α =
360
N

Now, each neurite will have to pack its segments, nodes and
branch endings more or less tightly depending on the number
of branch endings per arbor. The angle between two consecutive
segments, βi, will be given by the expression βi =

αi
Ei

.
Figures 7E–G illustrates angular sector distribution options,

displaying two dendrograms constructed using constant branch
ending widths or constant neurite widths. From this figure, it
can be seen that these two options favor either paying more
attention to neurite distribution or to neurite ending distribution,
depending on the ways αi and βi are chosen.

Ordering Criteria in Circular Dendrograms
2D microscopy images acquired from real neurons show
neurites in fixed relative positions and orientations. However,
their distribution is misleading; selecting another point of
view or projection direction would normally result in different
arrangements. By contrast, circular dendrograms replace
projection-based distributions with user-defined synthetic
arrangements. Using this synthetic approach, the way in which
neurites are ranked can be modified in order to provide users
with specific comparative information.

It is possible to modify angular positions at two levels:
ordering of whole neurites, and ordering of individual branches.
Nevertheless, it should be noted that the margin for designers
to modify angular positions is notably smaller than for the cases
of segment length and circular sector angle. Users might expect
certain neurites or neurite fragments to be placed at a specific
position. For example, users expect pyramidal neurons with the
apical dendrite depicted departing vertically upward from the
soma, with all of the segments belonging to the apical dendrite
oriented in this direction. Also, they may expect axons departing
downward from the soma. Introducing changes here might create
confusion, although it is possible to devise solutions in which the
orientation of certain principal neurites can be left unchanged,
while other specific features might affect, for example, how basal
dendrites are displayed.

Many different ordering criteria can be selected for the circular
arrangement of neurites and bifurcation nodes. Neurites could
be ranked according to, for example, node count; bifurcation
levels; total number of endings; number or density of dendritic
spines; length, etc. With respect to criteria for the arrangement
of the bifurcation nodes within neurites, features such as segment
length, segment volume, and mean diameter can be used, among
others. In fact, practically any feature can be used for the
angular ordering of dendrites or branches, giving an indication
of the distribution of that particular feature within a specific cell.
Figures 8A–C illustrates the effect of using different arrangement
criteria while displaying the same neuron.

Mapping Additional Information Into
Dendrograms
In addition to providing information about the basic structure of
neurons, dendrograms can be used to present users with almost
any kind of information acquired or calculated from raw data
(regardless of whether the information is quantitative, ordinal,
categorical, etc.). The data, obtained from the whole neuron or
any of its parts, can then be mapped onto the dendrogram,
combining in this way the symbolic representation with the
real values of the extracted data. For this purpose, users have
different options at their disposal. A number of visual resources
have already been described in the previous sections. Some
other resources, such as line width, color, etc., are described
below.

Line Width and Color
The dendrogram segment width can convey information about
the value of a specific variable on that neurite segment. If the
dendrogram has been generated using real (or proportional)
segment lengths, it provides a quite accurate idea of the changes
of that variable along the neurites. Using uniform lengths, on the
other hand, provides images that are generally easier to interpret.

Even though any variable can be mapped onto the
dendrogram segment width, there are some features that are
particularly suited to this kind of coding, such as dendrite width
itself, dendrite spine density, average volume, etc., as illustrated
by the neuron in Figures 8D–F.

Color has been frequently used in scientific visualization to
facilitate the analysis of how specific parameters or variables
change over a region of interest by mapping their intensity
variations into colors through a modifiable color table or
function. Also, using more than one color channel allows
the display of more than one variable (Sheppard et al., 1969;
Moreland and Moreland, 2009). Nevertheless, using color for
information visualization requires some caution, and it is
necessary to follow some basic design principles, since human
perception of color presents here a number of problems and
particularities (Rhyne, 2017). However, with an adequate design,
coding information with color can provide useful feedback to
users, particularly for numerical or categorical data. Figure 8F
presents the same neuron as Figures 8D,E. In Figure 8F, color
is used to also display dendritic spine density, by using a pre-
specified color map.
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FIGURE 8 | Different circular arrangements for the dendrites of the same neuron. (A) Original branch order. (B) Same neuron, with dendrites sorted according to
arbor complexity (number of branch endings per dendrite). (C) Same neuron, with dendrites sorted according to their mean diameter. (D) Shows the pyramidal
neuron dendrogram with segment widths proportional to the corresponding neurite segment widths. (E) Represents the same data, but using a gain factor to make
width changes more evident, thereby facilitating user perception of relative segment width. (F) Color is used to display dendritic spine density. A pre-specified color
map has been applied.

Other Resources
Finally, there are other options for including additional
information in dendrograms:

• Features associated with specific locations can be added to
the dendrogram. If real lengths are used, the dendrogram
reflects their distribution depending on soma distance. If
unit segment lengths are used, feature variation depending
on branching level is easier to perceive. An example of this
is the placement of tags indicating the presence of dendritic
spines or any other morphological feature.
• Textual tags can also be included to provide additional

information, possibly at the request of the user.
• Pictograms and glyphs can also code feature information.
• Iteractive dendrogram modification provides users with a

dynamic feedback that is very useful for enhancing user
perception of certain aspects, such as —for example— how
different features are distributed among neurites.

Figure 9 shows some examples of how different information
can be mapped onto dendrograms. In this case, real neurite
lengths are shown (since the dendrograms are in RLM mode),
and dendritic spine information has been added to the
dendrogram segments, either as textual tags, dots or glyphs. (D)
and (E) show the result of applying filtering operations to the
spine data, displaying only those spines that have a volume above
two different thresholds, so that only large spines are shown.

EXPERIMENTAL RESULTS

This paper describes a novel abstract representation model that
can facilitate the visual exploration of neuronal morphologies.
The proposed method can be applied to different tasks, from
providing general overviews for characterizing a neuron or set
of neurons, to the analysis of specific features of neuronal
populations. Also, the proposed models are well suited to
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FIGURE 9 | Different ways of mapping dendritic spine information onto dendrograms. (A) Includes the number of dendritic spines per branch in textual tags.
(B) Dendritic spines are represented with equally sized dots on their corresponding dendrite positions. (C–E) Also display dendritic spines in their actual positions,
represented as dots. In this last case, the dendrogram also displays dendritic spine volume information, by coding it as disk diameter and color, according to
predefined scales. (D,E) Present the result of applying different filtering operations, with dendritic spines filtered out according to their volume (only those spines with
volumes above a certain threshold are displayed).

activities where users are interested in obtaining at a glance as
much information as possible about neuronal morphology, such
as when browsing through large neuronal repositories.

In general, the proposed method can be applied to data
acquired by virtually any laboratory and technique. The
dendrogram images included in this paper have been generated
with HUGO (Highly Uniform Graphic Organization) — a
software tool that can generate the models described.

Regarding the usefulness of the method, a preliminary
validation study has been carried out with a set of users in
order to evaluate the impact of visualizing symbolic dendrograms
instead of conventional 2D projections of the 3D tracings,
when performing analysis tasks related to the morphological
structure of the cells. The results, presented below, show
that using a symbolic representation enhances the perception
of the underlying arborization structure while hiding finer,
non-essential details and avoiding artifacts due to perspective
projections.

Many different tasks can benefit from the kind of
symbolic representations presented here. To illustrate this,
we present various examples. First, a visual comparison
of human and mouse neocortical pyramidal neurons. We
then show the possibility of using HUGO for neuronal
classification. Finally, we point out other domains where
this model can be applied, such as for the analysis of brain
vasculature.

Analysis of Morphological Features:
Counting the Number of Dendrites and
Dendrite Bifurcation Nodes
A user study was conducted to evaluate how helpful the proposed
symbolic representation is for tasks related to the analysis of
some basic neuronal morphological features. Specifically, the
experiment focused on counting the number of dendrites and the
number of bifurcation nodes in a neuron.
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Experimental Design
A set of seven neurons of different types was selected from the
Neuromorpho repository (NeuroMorpho.Org, 2018). For each
of them, two representations were computed — the first using
the standard 2D projections of the neurons’ 3D morphological
tracings, and the second using the circular dendrograms
presented here. Seven images were rendered for each of the
two representation methods. The selected neurons have different
numbers of dendrites (between 4 and 8) and different numbers of
bifurcation nodes (between 12 and 34). Table 1 shows the actual
number of dendrites and nodes for each of the seven selected
neurons.

Two different tasks were defined for this study: counting the
number of dendrites and counting the number of bifurcation
nodes for each of the neurons. Each participant was asked
to perform both of these tasks by viewing the morphological
tracings and the symbolic dendrograms of the cells, while the
time required to complete both tasks with each depiction was
measured. The dendrogram and 2D projection representations
for all of the neurons were shuffled, in order to prevent
participants from knowing beforehand the responses about node
and dendrite count because the other representation of the same
cell had just been analyzed.

Population and Procedure
To test the performance of the proposed symbolic representation
system compared to the standard 3D representation, a group of
12 subjects counted the number of dendrites and nodes from
all 7 neurons. This resulted in a total of 84 measurements
of the number of dendrites, and 84 measurements of the
number of nodes using the symbolic representation. The
same tasks were performed using the standard 3D neuronal
representations, resulting in a further 84 measurements of the
number of dendrites and 84 measurements of the number of
nodes.

Since the participants had no prior background in neuronal
anatomy, a short explanation of the basic anatomical parts of the
neuron was provided, together with a description of the symbolic
model (using Figure 4 for this purpose). This explanation was
the same and provided by the same person in all cases. Each user
was then asked to count the number of dendrites and nodes for
each image that was presented to him. As mentioned above, the
images were selected in a random fashion, alternating between
the symbolic and 3D depictions.

Results
The results of the tasks related to counting nodes and those
corresponding to counting dendrites are shown in Table 2.

TABLE 1 | Number of dendrites and bifurcation nodes of the seven neurons
involved in the validation experiment.

Neuron N1 N2 N3 N4 N5 N6 N7

# Dendrites 4 5 5 5 6 7 8

# Nodes 13 12 13 19 26 21 34

The actual mean number of nodes per neuron for the
experiment sample was 19.71, with a standard deviation of 7.56.
The mean number of nodes counted by the subjects was 14.31
when using the standard 3D representations, and 19.23 when
using the symbolic representations. The standard deviation of
the observations when using the 3D representations was 6.06,
while its value was 7.32 when using the symbolic representation
(Table 2).

Regarding the average relative error, the observations
performed using the 3D representations had a mean relative error
of 0.28 and a standard deviation of 0.14. The relative error of the
observations performed on the symbolic representations had a
mean of 0.02, and a standard deviation of 0.04 (Table 2).

A similar trend can be seen when studying dendrites; the mean
number of dendrites per neuron for the experiment sample was
5.71, with a standard deviation of 1.28. The mean number of
dendrites counted by the subjects was 6.27 when the neurons
were depicted using the standard 3D representations; and 5.70
when they were drawn using the symbolic representations.
The standard deviation of the observations was 1.43 when the
standard 3D representations were used; and 1.28 when the
circular dendrogram representations were used (Table 2).

When the tests were carried out using the 3D representation,
the mean relative error for the dendrite observations was 0.160,
with a standard deviation of 0.157; while, with the symbolic
representation, the mean relative error was 0.005, with a standard
deviation of 0.029 (Table 2).

In both tasks (dendrite and node counting), the relative error
obtained when using the symbolic model was one order of
magnitude less than the error obtained while analyzing the 3D
model.

The time taken by human operators to carry out the tasks
was also markedly different, depending on the representation
used. It took experimenters an average of 26.428 s to perform the
morphologic analysis with the 3D representation (the standard
deviation was 11.756 s). By contrast, it took only 15.571 s when
using the symbolic model (the standard deviation was 5.839 s;
Table 2). That is, using the proposed model, the time needed to
perform the analysis was almost halved.

These results are also shown in Figure 10 where (A) presents
the relative error obtained when counting the number of
dendrites, while (B) shows the relative error obtained when
counting the number of nodes. In both panels, the horizontal axis
shows the time taken to complete the visual analysis. It can be
seen that the difference in relative errors is even greater when
counting the bifurcation nodes, since this task is considerably
more complex. (C) Depicts the errors of each task in each
axis. Errors with the symbolic representation are confined to a
small region in the proximity of the origin, while errors with
the 3D representation present a remarkably higher variability.
(D) Compares the completion time needed to perform both
analysis tasks using each of the two representation models. The
times were consistently lower when using the proposed circular
dendrograms.

The numerical values previously presented suggest that
the relative errors when counting dendrites and nodes are
clearly lower when performing these tasks with the symbolic
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TABLE 2 | Results of the node- and dendrite-counting task and time for completion of both tasks.

Nodes Dendrites Time for completion of both tasks

M SD ARE SDRE M SD ARE SDRE AT SDT

Real data 19.714 7.561 5.714 1.285

3D experiment 14.309 6.057 0.279 0.141 6.273 1.434 0.160 0.157 26.428 11.756

Symbolic dendrogram 19.226 7.326 0.02 0.041 5.702 1.287 0.005 0.029 15.571 5.839

M, mean; SD, standard deviation; ARE, average relative error; SDRE, standard deviation of the relative error; AT, average time; SDT, standard deviation time.

FIGURE 10 | Relative errors and completion times for the two experimental tasks using the 3D representations and the symbolic dendrograms. (A) Relative errors
when counting dendrites vs. completion time. (B) Relative errors when counting bifurcation nodes vs. completion time. (C) Relative errors when counting dendrites
vs. relative errors when counting nodes. (D) Average completion time for performing the tasks.

dendrogram. In order to statistically validate this affirmation,
a t-test was performed stating the following null-hypothesis
(H0): “There is no significant difference between the mean error
when the task is performed using a 3D representation, and
the mean error when the task is performed using the symbolic
dendrogram.”

With regard to the dendrite counting task, the t-test analysis
rejected H0 (p-value = 1.018E-15), and this was also the case for
the node counting task in which the t-test analysis also rejected
H0 (p-value = 3.188E-34).

In addition, the time needed to perform these analysis tasks
was noticeably lower when using the symbolic dendrogram.
A t-test validation, with the following null-hypothesis “There
is no significant difference between the mean time to complete
the tasks when they are performed using a 3D representation,
and the mean time when they are performed using the symbolic
dendrogram,” concluded that the differences in completion time
are undoubtedly significant (p-value = 2,31499E-12).

These results point to a common conclusion: user
performance when presented with the symbolic representations,
both for counting nodes and dendrites, is remarkably better than
when the observers are presented with morphologically accurate

representations. The tests also seem to support the idea that the
more complex the task, the larger the benefits of using simplified
symbolic representations, as seen when comparing the dendrite
counting task with the more complex node counting task.

Ultimately, these results prove that the symbolic model
can be accurately and efficiently used to visually evaluate the
morphological characteristics of neurons. However, the practical
integration of this new symbolic model into current applications
within the field of neuroscience would require an assessment
of its performance when dealing with the different tasks that
scientists face in their research, as well as a determination
regarding which of the different representation variations
described in this paper are better suited to different tasks.

Browsing Through Large Neuronal
Repositories
In addition to the visual analysis of numerical morphological
variables (such as number of dendrites, number of nodes, etc.),
other tasks can be carried out more easily when users have
symbolic representations at their disposal. Some examples are
given below.
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An illustration of how symbolic representations facilitate the
user experience is that the overall cell morphology can be more
easily perceived with the help of circular dendrograms, especially
when they are used in combination with 2D or 3D accurate
representations. Neurons of different types —or those coming
from different brain regions— present marked differences in
their morphology. Dendrograms have the capacity to capture
these anatomical differences and provide abstract representations
that highlight such differences even at first glance. Figure 11

shows the dendrograms of apical and basal arbors from human
pyramidal neurons obtained from human hippocampal field CA1
and temporal cortex, as well as from mouse somatosensory
cortex (described in the section “Materials and Methods”). The
dendrograms in this figure show clearly the huge visual variation
among cells. Dendrograms, therefore, can also be useful when
performing initial visual discriminations among cell populations.

As a second example, the complexity of neurite arbors is
difficult to perceive when neurons are depicted in 3D, due to

FIGURE 11 | Examples of human (H) pyramidal neurons from CA1 of the hippocampus (CA1) and temporal cortex (temp), as well as from the mouse (M)
somatosensory cortex (SS), through layers II, III, IV, Va, Vb, and VI. Each neuron is represented using both a 3D projection and a circular dendrogram. Note that the
size of the cells are not represented in the models. Scale bar for the 3D projections = 100 microns.
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their intricate geometry and branch occlusion, as well as the fact
that the image is dependent on the viewing angle; by contrast,
symbolic dendrograms offer a clear, unambiguous representation
of the cells’ morphology that aids the comparison of arborization
patterns among sets of neurons.

Also, the simplicity of the symbolic representations can be
beneficial when browsing through large repositories of neurons
using circular dendrograms. In fact, the tests performed during
the development of our tool allowed us to discover that one
particular neuron had been included twice within a dataset of
our laboratory — something that had remained unnoticed when
exploring the dataset visualizing the 3D tracings in the usual way.
Although this may seem anecdotal, it does further demonstrate
the utility of the proposed representation model, since it allowed
the users to flag up an issue that had gone unnoticed by a number
of people.

Finally, Figure 12 reinforces the conclusions drawn from the
statistical analysis of the user experiment previously presented.
It can be observed that counting the number of dendrites or
bifurcation nodes can be performed much more easily by looking
at the symbolic models. Using additional visual resources —such
as color, to represent a specific variable (dendrite diameter in this
example) — is also more effective in the symbolic representations,
since the occlusions in the 3D representations hamper the
perception of branch color.

Most of the examples presented so far have only dealt with
arborization patterns. However, as discussed previously in this
paper, the proposed method can make use of other resources,
such as line width and color, to intensify certain morphological
features. This can be useful for characterizing neuron families
or for performing fast, approximated visual characterizations

of neurons or neuron sets. In this regard, Figure 12 shows
the morphologies of four very different kinds of neurons. The
variability of their anatomy is effectively captured by the symbolic
dendrograms, producing characteristic patterns that can be
helpful for characterization or classification purposes.

Application to Other Domains
The symbolic model presented in this paper has been specifically
designed to represent neuronal morphology. Nevertheless, it can
also be used in many other contexts.

Firstly, the representation of features other than
morphological variables is straightforward. The visual resources
described in this paper can be easily associated to variables of a
very different nature, providing symbolic representations that
can depict, for example, physiological features, morphological
data, combinations of morphological and physiological data, etc.

In addition, the proposed symbolic model can also be applied
to other domains that present branching structures. Figure 13
shows an example of brain vasculature represented with circular
dendrograms.

DISCUSSION, CONCLUSION, AND
FUTURE WORK

This paper describes a novel symbolic representation method
for neurons, based on circular dendrograms. These diagrams
encode user-selected features by varying visual characteristics
or rearranging the different diagram elements according to
predefined criteria. The flexibility provided by these changes
facilitates the interactive parameterization of each visualization

FIGURE 12 | Four cells with very different morphologies, presenting their dendrograms (left) and morphological tracings (right). The symbolic model preserves (and
even emphasizes) morphological variations among cells. Line width and color provide increased information in the dendrograms. Purkinje Cell: Guinea pig,
Cerebellum. NeuroMorpho.Org ID NMO_00610 (Rapp et al., 1994). Large Aspiny Cell: rat, ventral striatum. NeuroMorpho.Org ID NMO_04423 (McDonald et al.,
2007). Motoneuron: rat, brainstem. NeuroMorpho.Org ID NMO_00665 (Nüñez-Abades et al., 1994). Anterior Olfactory Nucleus: rat, anterior olfactory nucleus.
NeuroMorpho.Org ID NMO_05982 (Brunjes and Kenerson, 2009).
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FIGURE 13 | Representation of brain vasculature using circular dendrograms. (A) Shows the structure of brain vasculature, while (B) additionally depicts the
diameter of the vessels. Circular dendrogram (C) corresponds to the image (B), representing the diameter of the vessels according to the color scale shown in the
same panel, using RLM for (C) and UM for (D). SWC data model from http://cng.gmu.edu/brava: BG001 (Wright et al., 2013).

according to the users’ needs, emphasizing the most relevant
variables while hiding the least important ones. By modifying
their graphical characteristics, it is also possible to create sets of
circular dendrograms that can give complementary views of the
same data. These views can also be adapted to reflect the changing
needs of users over time. It should be noted that the circular
dendrograms described here can be automatically generated,
providing deterministic models that are operator-independent.

This paper also presents other contributions:

• The idea that dendrograms can be tuned to enhance
different kinds of information by customizing the way the
information is encoded into the dendrogram, and specific
proposals for modifying how this encoding is achieved.
• The proposal of using dendrograms that permit other

information (morphological, functional, etc.) to be mapped
onto them, such as the distribution of dendritic spines that
is presented in this paper.
• The possibility of creating interactive and dynamic

dendrograms. Exploring this option is beyond the scope of
this paper, but will be done in a subsequent study.
• The idea of using dendrograms to perform specific analysis

operations (i.e., Sholl analysis).

The concept of dendrograms is not new; classical, linear
dendrograms have been in use for some time (Costa et al., 2000;
Van Pelt et al., 2001; Cervantes et al., 2018), but the circular
arrangement proposed in this work presents some advantages
and interesting features:

• Clarity: the information displayed in circular dendrograms
is easier to grasp, regardless of the level of user expertise.

The system does not allow ambiguities that can mislead
users, unlike the artifacts and variability inherent in
2D projections from 3D data. Compared with classical
dendrograms, the new proposal provides representations
that are closer to real cell morphologies.
• Simplicity: only essential, non-accessory information is

included in the representations. Users can even collapse
neurite portions for additional simplification, which
also contributes toward improving the clarity of the
representation.
• Precision: this new representation system allows the

users to get an accurate idea of relative magnitude for
ordinal or quantitative features, especially when additional
graphical resources —such as color, width, angular spacing
ordering, etc. — are correctly exploited. If the order and
angular arrangement of dendrites follow the neuron’s 2D
projections, circular dendrograms can also give a more
precise indication of spatial distribution of features than
classical dendrograms.
• Compactness: circular dendrograms make a better use of

space than linear dendrograms.

Regarding clarity, circular dendrograms are an evolution of
the traditional binary tree drawings of classical dendrograms.
In addition to occupying less space, circular dendrograms, with
their radial distribution of neurites, show a geometrical layout
that is much closer to the real cell structure since neurites
originate at and radiate from approximately central somas. It
should be pointed out that one of the reasons why the use of
traditional dendrograms has not become more widespread is
possibly because they are not very natural, that is, their structure
is very different from the real neuronal geometry.
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Combining circular dendrograms with 2D projections can
bring together the best of both worlds, showing the neurites’
real morphology while also displaying detailed but easier to
analyze morphological information. Finding relationships among
elements is easier with circular dendrograms than with 2D
representations. Additionally, there are visual resources (such as
distribution of angular width) that can be helpful for comparing
different neurites and which are available only in circular
dendrograms.

With respect to specific analysis tasks, the results presented
in Section “Experimental Results” support the considerations
stated above, showing that the representation model presented in
this paper can help to perform visual exploratory analysis tasks,
such as the analysis of morphological variables, discrimination
among neurons, and the exploration of global features of
neuronal morphology. Additionally, we believe that this kind
of representation will be very useful for browsing large
neuronal repositories, very possibly in combination with
2D projections of the real neuronal morphologies. A study
comparing different populations (e.g., experts vs. people with
no prior exposure to neuroscience) would be also of great
interest.

There is a wide scope for future studies, focusing on topics
such as the integration of circular dendrograms in interactive
exploratory analysis tools; the inclusion of other morphological
or electrophysiological variables and connectivity information;
exploitation of the temporal dimension in dynamic dendrograms;
and the enhancement of the capabilities of the method regarding
multiple levels of detail in complex scenarios. In addition,
in-depth user studies should be carried out in close collaboration
with neuroscience laboratories to fully assess the potential of the
method.

One final point that should be made is that the method
presented here approaches just one of the multiple aspects
involved in the study of neuroanatomy, but it approaches it in a
novel way, that is, through the design of a formal representation
system. This representation system can be used either with
experimentally acquired data or with synthetic data, derived from
and possibly validated by in silico simulations. We believe that
it is a small but important step in a direction that could greatly
affect scientific workflows through the introduction of computer
supported-analysis tools.
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