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ABSTRACT

Background: Most carabid beetles are particularly sensitive to local habitat
characteristics. Although in China grasslands account for more than 40% of the
national land, their biodiversity is still poorly known. The aim of this paper is to
identify the main environmental characteristics influencing carabid diversity

in different types of grassland in northern China.

Methods: We investigated the influence of vegetation (plant biomass, cover, density,
height and species richness), soil (bulk density, above ground litter, moisture and
temperature) and climate (humidity, precipitation and temperature)

on carabid community structure (species richness, species composition and
functional diversity—measured as body size, movement and total diversity) in
three types of grasslands: desert, typical and meadow steppes. We used Canonical
correspondence analysis to investigate the role of habitat characteristics on species
composition and eigenvector spatial filtering to investigate the responses of

species richness and functional diversities.

Results: We found that carabid community structure was strongly influenced by
local habitat characteristics and particularly by climatic factors. Carabids in the
desert steppe showed the lowest richness and functional diversities. Climate
predictors (temperature, precipitation and humidity) had positive effects on
carabid species richness at both regional and ecosystem levels, with difference
among ecosystems. Plant diversity had a positive influence on carabid richness at
the regional level. Soil compaction and temperature were negatively related to
species richness at regional level. Climatic factors positively influenced functional
diversities, whereas soil temperature had negative effects. Soil moisture and
temperature were the most important drivers of species composition at regional
level, whereas the relative importance of the various environmental parameters
varied among ecosystems.

Discussion: Carabid responses to environmental characteristics varied among
grassland types, which warns against generalizations and indicates that management
programs should be considered at grassland scale. Carabid community structure is
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strongly influenced by climatic factors, and can therefore be particularly sensitive to
ongoing climate change.

Subjects Conservation Biology, Ecology, Ecosystem Science, Entomology, Environmental Impacts
Keywords Climate factors, Functional diversity, Plant biomass, Rarefied richness,
Species composition, Bulk density, Meadow, Steppe, ESF, CCA

INTRODUCTION

Carabid (Coleoptera: Carabidae) assemblages are strongly influenced by habitat structure,
especially as reflected by vegetation and soil characteristics (Koivula et al., 1999;

Brose, 2003; Taboada et al., 2008), being particular sensitive to anthropogenic alterations
(Rainio & Niemeld, 2003; Koivula, 2011). For these reasons, carabid distributional
patterns and community structure can be strongly affected by land-use changes

(Eyre et al., 2003; Eyre & Luff, 2004; Kotze et al., 2011; Gobbi et al., 2015; Lyons et al., 2017;
Lafage & Pétillon, 2016).

For example, soil bulk density (SBD; an indicator of soil structure, also used to
estimate soil compaction, Rabot et al., 2018), and soil moisture (SM), two environmental
characteristics that are altered by human activities, are key factors for carabid ecology.
Kagawa & Maeto (2014) showed that the abundance of some species is associated
with different degrees of SM, while Magura, Téthmérész & Elek (2003) reported that soil
compaction negatively influences carabid activities, such as egg-laying and burrowing
during aestivation and hibernation.

Carabids can also be impacted by the amount of litter on the soil (Magura, Tothmérész
¢ Elek, 2003) since it modulates both SM and soil temperature (ST; Xiao et al., 2014),
improves soil fertility and increases food availability (Koivula et al., 1999; Magura,
Téthmérész & Elek, 2005). It has been observed that leaf litter increases the number of
carabids by increasing habitat heterogeneity, producing favorable microsites and
allowing a separated vertical distribution in the litter layer which may lead to decreased
intra- and inter- species competition (Magura, Tothmérész ¢ Elek, 2003). Another soil
characteristic that is particularly relevant for carabids is ST (Hiramatsu & Usio, 2018;
Robinson et al., 2018) because this physical parameter influences various
species-specific temperature-dependent performances (Merrick ¢ Smith, 2004).

Vegetation composition and diversity also impact carabid community structure
(Koricheva et al., 2000; Brose, 2003; Schaffers et al., 2008; Zou et al., 2013; Pakeman &
Stockan, 2014; Ng et al., 2018a) and functional diversity (Liu et al., 2014; Pakeman &
Stockan, 2014; Spake et al., 2016; Magura, 2017), because plants provide both
shelter and food, directly (for herbivores) and indirectly (by providing prey for predators).

Within local environmental characteristics, in addition to vegetation and soil
characteristics, climate plays an important role in carabid ecology. Temperature influences
flight, speed of digestion, fecundity and also larval survival (Thiele, 1977; Butterfield, 1996;
Lovei ¢ Sunderland, 1996), and Rainio ¢ Niemeld (2003) showed that ambient
temperature and humidity were the two main abiotic factors influencing carabid species.
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Carabid community structure may also be positively impacted by precipitation through
the responses of plants to this factor. Because plant diversity and biomass increase
with increasing precipitation (Yan et al., 2015), sites with more rainfall should provide
more habitat diversity and food for carabids.

In China, grasslands are important ecosystems, accounting for more than 40% of the
national land and playing important roles in servicing the ecological environment and
in socio-economics (Kang et al., 2007; Ren et al., 2008). Chinese grasslands are
experiencing increasing degradation due to land-use for human activities and to
climate change (Lii et al., 2011), yet their biodiversity is still poorly known.

In this study, we aimed at investigating the influence of habitat characteristics on the
structure of carabid communities in different types of grasslands in China that reflect a
gradient of aridity from the most arid to the most humid: desert steppe, typical
steppe and meadow steppe (Kang et al., 2007). For this, we considered 12 environmental
variables, including five vegetational characteristics (plant biomass (PB), cover,
density, height and species richness), four soil factors (bulk density, above ground litter,
moisture and temperature) and three climatic factors (humidity, precipitation and
temperature). In this paper, we investigated carabid responses to these factors at the
regional scale and at grassland type-level by considering three assemblage characteristics:
species richness, species composition and functional diversity (measured as body size
and movement diversity).

MATERIALS AND METHODS

Study areas and sampling design

The study was carried out in the Ningxia region, northern China. We selected three
sampling areas representing the three main ecosystems in the region: desert steppe, typical
steppe and meadow steppe (Figs. 1 and 2). In each area, we identified different habitats to
reflect within-ecosystem variability. We selected the study sites to be representative of
the variability of environmental conditions within and between Chinese grassland
ecosystems. We adopted a stratified sampling design, with a different number of trapping
sites among grassland types to reflect their within-ecosystem variability. To make

results comparable, we used the same number of traps (15) for each habitat within

each ecosystem.

The desert steppe area (Fig. 2A) is located in eastern Ningxia, Yanchi county
(37°59'13"N—-107°05"42"E). This area is characterized by a cold, semi-arid continental
monsoonal climate zone (Liu et al., 2015), with an average annual temperature of 8.3 °C
(—8 °C in January, 22 °C in July), and average annual precipitation of around 200 mm
(Kang et al., 2007). The vegetation is characterized by typical drought-tolerant plant
species, such as Agropyron mongolicum, Artemisia desertorum, Artemisia blepharolepi and
Stipa spp. The typical steppe area (Fig. 2B) is located in southern Ningxia, Guyuan County,
near the Natural Reserve of the Yunwu Mountain. This area is characterized by a
continental monsoon climate. Average annual temperature is 5.7 °C (=22 °C in January,
28 °C in August) and annual rainfall is 350 mm (Kang et al., 2007). The top of the
mountain (36°12"16"N-106°24'37"E) is characterized by grass vegetation crossed by
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Figure 1 Study area (A) and sampling sites (B-D). The inset (A) shows the location of the study area in
China. The light brownish colored areas represent the rest of the region contrasting the blue areas which
are the counties were the grasslands were selected. (B) shows the 15 sampling points in desert steppe.
(C) shows the 45 samplings points in the three sectors of the meadow steppe (orange dots: sampling
points in fire belts on the mountain top; dark dots: sampling points in natural patches on the mountain
top; white dots: sampling points in the mountain bottom). (D) shows the 30 sampling points in the two
sectors of the meadow steppe (green dots: south-west side; blue dots: mountain bottom).

Full-size E&] DO 10.7717/peer}.6197/fig-1

patches of cut grasses that serve as fire belts. The natural vegetation on the top of the
mountain includes Stipa bungeana, S. grandis, Artemisia frigida, Thymus mongolicus and
Heteropappus altaicus. The bottom of the mountain (36°15'6"N-106°23'5"E) is
occupied by crop fields and natural vegetation, including S. bungeana, Artemisia frigida,
T. mongolicus and Potentilla acaulis. In this area, we selected three sectors; the first and
second sectors were located at the top of the mountain, in natural patches of grass
vegetation and in fire belts, respectively; the third sector was selected at the bottom of the
mountain. The meadow steppe area (Fig. 2C) is located in western Ningxia, Haiyuan
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Figure 2 The three types of grasslands investigated in this study. (A) Desert steppe, (B) typical steppe
and (C) meadow steppe. Full-size 4] DOL: 10.7717/peerj.6197/fig-2
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county, near the Nanhua mountain. This area is characterized by a semi-humid climate,
with an annual temperature of 7 °C (=7 °C in January, 20 °C in July), and average
annual precipitation of 450 mm (Kang et al., 2007). Within this area, we selected two sampling
sectors to reflect different vegetation types. The first sector (36°26'50"N-105°38'24"E)
was located at the south-west side of the mountain peak (2,600 m) and is dominated
by several species of the genus of Festuca, principally the alpine fescue Festuca
brachyphylla. The second sector (36°25'13"N—105°36'41"E) was located at the bottom
of the mountain peak (1,800 m) and its vegetation is dominated by S. bungeana,
Artemisia frigida and Achnatherum splendens.

In total, we selected 15 sampling sites in the desert steppe, 45 sites (15 sites per sector)
in the typical steppe and 30 sites in the meadow steppe (15 sites per sector).

Sites were separated by at least 150 m from each other. At each sampling site, five pitfall
traps were placed at a distance of least five m from each other. Pitfall traps were made
of plastic cups (diameter: 7.15 cm, depth: nine cm) dug into the ground and filled
with 60 ml of an attractant solution (vinegar, sugar, 70% alcohol and water in the following
proportion: 2:1:1:20). We used pitfall traps with a diameter slightly over than seven cm
because this size meets Luff’s (1975) suggested optimal diameter (seven cm) for
carabids. Pitfall traps were put down once a month in mid-month, from May to September
2017, and collected 3 days after. A period of 3 days was chosen because many traps
were found completely full of beetles (especially Tenebrionidae) in 2 or 3 days. In total,
we used 2,250 pitfall traps (90 sampling sites x 5 pitfall traps x 5 sampling dates). Prior to
analyses, we pooled the data from the five pitfall traps of each sampling, because soil
and vegetation characteristics were observed at the sampling site level. Trap content was
sorted in the laboratory and carabids identified to species level and assigned to trophic
categories (herbivores vs. predators). All material is preserved in the insect collections of
the School of Agriculture of Ningxia University.

Vegetation and soil characteristics

At each sampling site, we set up one quadrat frame of 0.25 m? to record plant dry
biomass (PB, g/mz), cover (PC, % of soil covered by plants), density (PD, number of
plants per m?), height (PH, average, cm) and species diversity, expressed as richness
(PSD). Near the quadrat frames we collected samples of above-ground litter to measure
litter dry mass (SL, g/mz) and samples of soil (10 cm depth) to measure SM (%) and
SBD (g/cm’). SM was estimated using the thermogravimetric method also known as the
oven dry method (Majumdar, 2001): SM = [(W,—W3)/(W;3-W;)] x 100 where W, is the
weight of the empty aluminum box (g); W, is the weight of the box + soil sample (g)
and Wj is the weight of the box and oven dry soil (g). SBD was estimated using the ring
knife method (Bi, Zou ¢ Zhu, 2014), with the formula SBD = (W, x 100)/(V, x

(100 + SM)) where W, is the weight of the soil in the ring knife; V, is the ring knife
volume. We also measured ST (10 cm depth) using a portable multiparametric

probe TRS-1II (Zhejiang Tuopu Instrument Co. Ltd., Hangzhou City, China; accuracy
of + 0.5 °C). Monthly mean values of humidity (Hum), precipitation (Prec) and
temperature (Temp) were recorded from the meteorological stations in each county.
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Range, mean and standard deviation for the aforementioned environmental variables are
given in Table S1.

Species characteristics

We expressed functional diversity with reference to two aspects: dispersal power and body
size. For dispersal (FD-movement), we used the following morphometric traits, under
the assumption that longer and more robust legs facilitate beetle movements on the
ground: (1) length (from apex to coxa) and (2) maximum width of metafemurs, (3) length
of metatibiae, (4) length of metatarsi and (5) presence of wing. For body size (FD-size),
we used: (1) width of the head, (2) pronotum maximum width and (3) pronotum
maximum height, (4) elytral length and (5) elytral width. All these traits were used to
compute a total functional diversity (FD-total). To calculate FD-total, we also considered
the following traits: (1) length of antennae, (2) feeding habits (predators vs herbivores)
and (3) five characteristics in the mandibles (density of ventral groove; roughness of
dorsal crenulations; sharpness of incisor ridge; ratio width/length of left and right
mandible). Measurements were done using a digital caliper (precision to 0.01 mm,
Stainless Hardened). For species with more than 50 collected individuals, we measured
50 specimens (14 species); for other species, we measured a variable number of individuals
depending on their abundance (11 species).

Data analysis

We assessed species richness using the individual-based rarefaction method implemented
in the “iNEXT” library of R (Hsieh, Ma ¢ Chao, 2016). The input matrix was based on
species abundance (total number of individuals from each sample site). We rarefied
data to the smallest number of collected individuals. Since the number of traps in the
different sites was different, in all analyses dealing with species abundance we used species’
activity density, calculated as the number of individuals from each species divided by the
number of traps used in each site.

For each trait, we calculated functional diversity indices using Rao’s quadratic entropy,
which expresses the sum of the dissimilarities in the trait space among all possible pairs
of species weighted by species-relative abundances (Rao, 1982; Botta-Dukat & Wilson,
2005). High functional divergence should indicate a high degree of niche differentiation
(Mason et al., 2005). To express functional diversity based on multiple traits, we calculated
species dissimilarities with the commonly used Gower distance (Pavoine et al., 2009;
Laliberté ¢ Legendre, 2010). Calculations were done using the “StatMatch” package and
the “melodic” function in R (De Bello et al., 2016).

Differences in species richness and functional diversity between the three grassland
types were tested using a Nested analysis of variance (Nested ANOVA, with type
of grasslands as fixed effect and sub-types of grassland as random effect), followed by
post-hoc Tukey tests using the “multcomp” package in R (Hothorn, Bretz ¢ Westfall,
2008). The effects of vegetation, soil and climate characteristics on beetles rarefied richness
and functional diversity were investigated using a random-effect eigenvector spatial
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filtering (RE-ESF) approach (Murakami ¢ Griffith, 2015) with the “spmoran” package
in R (Murakami, 2018) to take into account spatial dependence.

A Moran test showed a spatial autocorrelation at regional level (Moran’s I = 0.024,
P-value < 0.001) but not at the grassland scale (Desert steppe: Moran’s I = —0.008,
P-value = 0.151; Typical steppe: Moran’s I = —0.004, P-value = 0.397; Meadow steppe:
Moran’s I = —0.007, P-value = 0.645). However, we decided to use the RE-ESF in all models
to make the results comparable.

Preliminary to RE-ESF analysis, variance inflation factors (VIF) were calculated using
the “usdm” package (Naimi et al., 2014) to detect possible collinearity between
explanatory variables and determine the stability of models. A high VIF (>10) indicates
that the predictor is strongly dependent on others and does not carry independent
information. No collinearity was found between the variables, with all being VIF <10
(Table S2).

Using the matrix of geographical coordinates, Moran’s eigenvectors and their
corresponding eigenvalues were calculated using the “meigen” function in the “spmoran”
package. The resulting eigenvectors are used as synthetic explanatory variables in
regression analysis (Griffith ¢» Peres-Neto, 2006).

The effects of vegetation, soil and climate characteristics on beetle community
structure were investigated using Canonical correspondence analysis (CCA) with
abundance data. This technique was particularly appropriate to our data because it
addresses with the double-zero problem which characterizes community compositional
data (Legendre ¢ Gallagher, 2001) and does not try to display all variation in the data,
but only the part that can be explained by the constraints (Oksanen et al., 2015).
Permutation tests (999 permutations) were run to assess model significance. The sum of
the canonical eigenvalues was used as a measure of the variability in the response
variables explained by predictors. The importance of predictors was assessed
beforehand by using the VIF (Table S3; Oksanen et al., 2015). Analyses were
conducted in R using the “vegan” package (Dixon, 2009; Oksanen et al., 2015). We used
the “step” function to determine the best model and the most important predictors in
each CCA.

The variables used in the RE-ESF and CCAs were not redundant and represent
different, but not mutually exclusive, hypotheses and each hypothesis has been evaluated
individually with a selection procedure. We think that a further adjustment of P-values
would result in a higher risk of pruning variables that are important. Thus, we did not
adjust the P-values of variables selected as significant, but focused on the magnitude
of the P-values and the consistency of results (see Moran, 2003).

Finally, we investigated patterns of {3-diversity, that is, species variations among
habitats. We used the approach of Baselga, Jiménez-Valverde ¢» Niccolini (2007) and
Baselga (2010, 2012) for partitioning the overall 3-diversity (8sor, Serensen coefficient)
among habitats into true species-replacement or pure turnover ({3sim, Simpson coefficient)
and nestedness (f3nest = f3sor — {3sim) components. In this respect, nestedness
quantified the part of compositional change caused by ordered species loss, whereas
pure turnover was related to the exchange in species composition. Relationships among
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Table 1 Carabid species, their trophic group (H, herbivores; P, predators) and abundances (total number of collected beetles in brackets) in
three grassland ecosystems in northern China.

Species name and trophic group Species Regional Grassland types
abbreviation scale
(N = 6,873) Desert Typical Meadow
steppe steppe steppe
(N = 338) (N = 4,206) (N = 2,329)
Amara dux Tschitscherine, 1894. H amar.dux 67 6 52 9
Amara harpaloides Dejean, 1828. H amar.harp 11 7 3 1
Amara helva Tschitscherine, 1898. H amar.helv 9 9 0
Amara sp. H amara.sp 15 0 6
Broscus kozlovi Kryzhanovskij, 1995. P bros.kozl 8 0 6
Calosoma anthrax Semenov, 1900. P calo.anth 41 0 34 7
Calosoma chinense, Kirby, 1819. P calo.chin 3 1 1 1
Calosoma lugens Chaudoir, 1869. P calo.luge 11 0 9 2
Carabus anchocephalus Reitter, 1896. P cara.anch 85 0 29 56
Carabus crassesculptus Kraatz, 1881. P cara.cras 339 0 0 339
Carabus gigoloides Cavazzuti, 2000. P cara.gigo 267 0 0 267
Carabus glyptoterus Fischer Von Waldheim, 1827. P cara.glyp 886 252 587 47
Carabus modestulus Semenov, 1887. P cara.mode 84 0 0 84
Carabus sculptipennis Chaudoir, 1877. P cara.sculp 404 0 401 3
Carabus viadimirskyi Dejean, 1830. P cara.vlad 2,039 3 1,212 824
Corsyra fusula Fischer Von Waldheim, 1820. H cors.fusu 3 3 0 0
Cymindis binotata Fischer Von Waldheim, 1820. P cymi.bino 19 19 0
Dolichus halensis Schaller, 1783. P doli.hale 3 0 3
Harpalus lumbaris Mannerheim, 1825. H harp.lumb 11 11 0 0
Poecillus fortipes Chaudoir, 1850. P poec.fort 552 0 338 214
Poecillus gebleri Dejean, 1828. P poec.gebl 1,145 0 1,134 11
Pseudotaphoxenus mongolicus (Jedlicka, 1953). P pseu.mong 77 23 54 0
Pseudotaphoxenus rugupennis Faldermann, 1836. P pseu.rugu 310 3 257 50
Reflexisphodrus reflexipennis Semenov, 1889. P refle.refle 368 0 2 366
Zabrus potanini Semenov, 1889. H zabr.pota 116 1 79 36

assemblages were investigated by cluster analysis using the UPGMA (unweighted
pair-group method, arithmetic average) amalgamation rule. Calculations were done with
PAST v.3 (Hammer, Harper & Ryan, 2001).

RESULTS

Differences in richness and functional diversity

We collected a total of 6,873 individuals belonging to 25 carabid species (Table 1). Overall,
18 species were predators and seven were herbivores (six herbivores and six predators in
the desert steppe, four herbivores and 14 predators in the typical steppe, and four
herbivores and 15 predators in the meadow steppe). Range, mean and standard deviation
of rarefied richness, FD-total, FD-movement and FD-size are given in Table S4. The desert
steppe was the grassland type with the lowest values of rarefied species richness and
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Figure 3 Carabid community structure. Boxplots (median, interquartile range, range and outliers) of
(A) total rarefied richness, (B) total functional diversity, (C) functional diversity for movement traits and
(D) functional diversity for size traits in the three investigated grassland types: desert, typical and
meadow steppes. Same letter indicates non-significant differences according to Tukey tests after Nested
ANOVAs. Number of sampled individuals: 6,873 at regional level, 338 in the desert steppe, 4,206 in the
typical steppe and 2,329 in the meadow steppe. Full-size K&l DOT: 10.7717/peerj.6197/fig-3

the three measures of functional diversity, whereas no significant differences were
found between the meadow and the typical steppe (Fig. 3; Table S5).

Influence of environmental variables on richness and functional
diversity
Climate predictors had strong effects on carabid species richness (Table 2). Hum was
positively related to species richness in the desert and typical steppes, as well as at the
regional scale. Prec had a positive effect on richness at regional scale, but a negative effect
in the desert steppe. Temp had a positive effect on richness at regional scale, in the
meadow and in the typical steppes. At regional scale SBD, ST and SM had negative effects.
SBD and ST also had negative effects in the typical steppe, and SBD had a positive effect
in desert steppe, whereas none of the soil predictors were significant for the meadow
steppe. None of the vegetation predictors were important in explaining species richness in
the desert or in the meadow steppe. PC and PSD had positive effects in the typical steppe
and at regional scale, respectively.

At regional scale (Fig. 4; Table 3), the total variance explained by CCA was 24%,
with the first two axes accounting for 57% of the explained variance. Constraints were
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Table 2 Results of RE-ESF (random effect eigenvector spatial filtering) between habitat characteristics and carabid rarefied richness at
regional scale and for the three grassland types separately.

Regional scale

Grassland types

Desert steppe

Typical steppe

Meadow steppe

Model characteristics r

rlogLik
AIC
BIC
Vegetation PB
PC
PD
PH
PSD
Soil SBD
SL
SM
ST
Climate Hum
Prec
Temp

Intercept

0.35
~1,032.08

2,098.15

2,168.01

-0.28 + 0.16 (0.083)
~0.19 + 0.20 (0.344)
-0.16 + 0.18 (0.360)
-0.24 + 0.20 (0.212)
0.36 + 0.14 (0.013)
-0.38 + 0.18 (0.031)
0.26 + 0.17 (0.129)
~0.42 + 0.20 (0.035)
~0.71 + 0.23 (0.002)
0.54 + 0.18 (0.003)
0.51 + 0.16 (0.002)
1.01 + 0.17 (<0.0001)
3.41 + 0.11(<0.0001)

0.44
~112.92

259.84

299.24

0.13 + 0.13 (0.322)
0.30 + 0.24 (0.210)
~0.38 + 0.21 (0.067)
~0.03 + 0.20 (0.894)
~0.18 + 0.17 (0.294)
0.30 + 0.14 (0.032)
0.19 + 0.14 (0.188)
0.30 + 0.15 (0.059)
0.25 + 0.39 (0.519)
1.02 + 0.23 (<0.0001)

~1.30 + 0.36 (<0.0001)

0.20 + 0.23 (0.374)
1.05 + 0.12 (<0.0001)

0.32

-515.05

1,064.09

1,122.17

0.27 + 0.28 (0.338)
0.59 + 0.30 (0.049)
0.28 + 0.26 (0.292)
~0.51 + 0.29 (0.082)
0.16 + 0.20 (0.411)
~0.46 + 0.20 (0.025)
-0.22 + 0.31 (0.470)
~0.12 + 0.19 (0.528)
~0.53 + 0.20 (0.008)
1.19 + 0.32 (0.0001)
0.42 + 0.23 (0.064)
1.37 + 0.27 (<0.0001)
3.87 + 0.15 (<0.0001)

0.38
~341.99

717.98

769.16

~0.08 + 0.27 (0.759)
~0.25 + 0.26 (0.341)
0.12 + 0.26 (0.643)
~0.15 + 0.38 (0.693)
0.48 + 0.24 (0.051)
~0.51 + 0.28 (0.072)
0.19 + 0.23 (0.402)
~0.00 + 0.28 (0.990)
0.07 + 0.36 (0.841)
0.21 + 0.35 (0.546)
0.26 + 0.32 (0.423)
1.50 + 0.27 (<0.0001)
3.90 + 0.19 (<0.0001)

Notes:
Significant effects are in bold.

Model characteristics: 7, adjusted coefficient of determination; rlogLik, restricted log-likehood; AIC, Akaike information criterion; BIC, Bayesian information criterion.
Parameter estimated coefficients (+ standard error) and P-values (in parentheses) are given for each predictor. Predictors abbreviations: PB, plant dry biomass; PC, plant
cover; PD, plant density; PH, plant height; PSD, plant species diversity (richness); SBD, soil bulk density; SL, soil litter; SM, soil moisture; ST, soil temperature; Hum,
humidity; Prec, precipitation; Temp, temperature.

significant (F = 9.53, P < 0.001) and all predictors were retained in the selection
procedure (Table S6). However, the first axis showed that SM and ST were the most
important variables, acting in opposite directions. In the desert steppe community
(Fig. 5; Table 3), CCA explained 40% of total variance, with the first two axes accounting
for 56% of the explained variance. Constraints were not significant (F = 1.53, P = 0.07),
with only humidity and temperature being included in the final model after the
selection procedure (Table S6). In the typical steppe community (Fig. 6; Table 3), CCA
explained 37% of total variance, with the first two axes accounting for 68% of the
explained variance. Constraints were significant (F = 9.74, P = 0.01), and the final model
included PB (as the most important variable), PC, PD, SL, Hum, Prec and Temp
(Table S6). In the meadow steppe community (Fig. 7; Table 3), CCA explained 25% of
total variance, with the first two axes accounting for 65% of the explained variance.
Constraints were significant (F = 3.38, P = 0.01), with PB, PH, SL, Hum and Temp
being retained in the final model. PH and Temp were the most important variables
(Table S6).

The response of functional diversity to habitat characteristics (vegetation, soil and
climate) differed among grassland types (Table 4). At regional scale, five predictors
showed important effects on FD-total: PB (negative, marginally non-significant),
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Figure 4 Canonical correspondence analysis (CCA) biplot at regional scale. Plot shows relationships
between species (@ = predators, A = herbivores; species abbreviations as in Table 1) and environmental
variables (vegetation, green arrows: PB, plant biomass; PC, plant cover; PD, plant density; PH, plant height;
PSD, plant species diversity; soil, red arrows: SBD: bulk density; SL, soil litter; SM, soil moisture; ST, soil
temperature; and climate, blue arrows; Hum, humidity; Prec, precipitation; Temp, temperature) at regional
scale. See Table 1 for species names abbreviations. Full-size K&l DOT: 10.7717/peerj.6197/fig-4

ST (negative, marginally non-significant), Hum, Prec and Temp (all positive). In the desert
steppe only two predictors had important effects: PD (negative, marginally non-
significant) and Hum (positive). In the typical steppe, only the climate characteristics Hum
and Temp were important and both had positive effects. In the meadow steppe, PC
(negatively) and ST (positively) were important predictors of meadow FD-total
(temperature had a marginally non-significant positive effect).

The response of FD-movement (Table S7) at regional level was similar to that of FD-total,
with the exception of Hum, which was not significant. By contrast, Hum was the only
important predictor of FD-movement in the desert steppe. As at the regional scale, ST, Hum
and Temp were important predictors of FD-movement in the typical steppe. In the meadow
steppe, PB and PC had negative effects, whereas ST and Prec had positive effects.

At regional scale, four predictors showed important effects on FD-size (Table S8):

ST (negatively) and Prec, Hum and Temp (positively). In the desert steppe, two variables
influenced FD-size: Hum (positively) and PD (negatively and marginally non-significant).
In the typical steppe, only Hum and Temp showed significantly positive effects on FD-size.
In the meadow steppe, important predictors where PC and PH (negatively), and Prec
(marginally non-significant) and Temp (both positively).
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Table 3 Results of CCA (Canonical correspondence analysis).

Regional Grassland types
scale
Desert steppe Typical steppe Meadow steppe
Eigenvalues Total constrained 1.86 (23.66%) 1.68 (39.65%) 1.22 (37.48%) 1.13 (25.26%)
(proportion %)
CCAl 0.58 (31.43; 0.001) 0.54 (26.96; 0.246) 0.56 (46.15; 0.001) 0.49 (43.76; 0.001)
CCA2 0.48 (25.63; 0.001) 0.49 (29.34; 0.241) 0.27 (21.85; 0.001) 0.24 (21.19; 0.001)
CCA3 0.33 (17.56; 0.001) 0.30 (17.79; 0.704) 0.22 (17.66; 0.097) 0.16 (14.59; 0.002)
Biplot scores for CCAl CCA2 CCA3 CCAl CCA2 CCA3 CCAl CCA2 CCA3 CCAl CCA2 cCcas
constraining variables
Vegetation PB 0.103 0.675 -0.027 -0.062 0.039 -0.599 0.708 -0.109 0.008 -0.020 0.195 0.396
PC 0.280 0413 -0.531 0368 -0.334 -0.257 0.115 -0.618 0318 0.028 0.310 0.245
PD -0.181 0.081 -0.763 0.105 -0.490 -0.192 -0.352 -0.511 -0.090 0.089 0.332 0.429
PH -0.122 0.045 -0.774 0.192 -0.414 -0.278 -0.400 -0.583 0.160 0.697 -0.097 0.624
PSD 0.249 -0.109 -0.009 0.372 -0.482 0.189 -0.167 0.062 -0.124 0.309 -0.152 -0.104
SBD -0.471  -0.213 0279 -0.089 0.093 -0.296 0.073 0271 0.004 -0.311 -0.139 -0.317
Soil SL 0.121 0333 -0.234 0.148 0.285 -0.068 0.168 -0.470 0.182 0.156 -0.306 -0.357
SM 0.779 0.094 0.09% 0.092 0.188 -0.187 -0.037 -0.317 0.004 -0.151 0.275 -0.102
ST -0.772 -0.104 -0.487 -0.022 -0.147 0.003 -0.487 0.143 0.005 0482 -0.132 0.391
Climate Hum 0.048 -0.436 —-0.025 0.663 0.193 0229 -0.455 -0.290 -0.742 -0.324 0.412 0.708
Prec 0.402 -0.226 -0.279 0.019 -0417 -0.129 -0.431 -0.207 -0.305 -0.340 0.126 0.749
Temp 0.059 -0.554 -0.163 0.010 -0.439 -0.108 -0.633 0.295 0.562 -0.130 -0.913 -0.051

Notes:

Percentages of variance explained and P-values are given in parentheses.
Predictor abbreviations: PB, plant dry biomass; PC, plant cover; PD, plant density; PH, plant height; PSD, plant species diversity (richness); SBD, soil bulk density; SL, soil
litter; SM, soil moisture; ST, soil temperature; Hum, humidity; Prec, precipitation; Temp, temperature.

Beta diversity

Species composition varied greatly among grassland types, with seven species shared by all
three types (Fig. 8). The overall 3-diversity (8sor) pattern (Fig. 9A) indicated that the
desert steppe differed the most. The meadow sector occupied by Festuca spp. also clustered
apart, whereas the other meadow sector, occupied by Stipa spp., clustered with the typical
steppe. When the pure turnover (8sim) is considered (Fig. 9B), the desert was again
identified as the ecosystem differing the most. All three sectors of the typical steppe
clustered together and were separated by the two meadow sectors. In the analysis of the
nestedness component (f3nest) the desert steppe clustered with the sector of typical steppe
located at the bottom of the mountain peak and the meadow steppe dominated

by Festuca spp., whereas the other meadow sector clustered with the typical steppe

(Fig. 9C).

DISCUSSION

We found positive relationships between carabid richness and temperature. Temperature
is known as a major predictor of species richness for several organisms (Allen, Brown &
Gillooly, 2002; Peters et al., 2016; Yu et al., 2016) and is an important factor in the

life-cycle of most carabid species (Thiele, 1977). The lack of any influence of temperature
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Figure 5 Canonical correspondence analysis (CCA) biplot in the desert steppe. Plot shows rela-
tionships between species (@ = predators, A = herbivores; species abbreviations as in Table 1) and
environmental variables (vegetation, green arrows: PB, plant biomass; PC, plant cover; PD, plant density;
PH, plant height; PSD, plant species diversity; soil, red arrows: SBD: bulk density; SL, soil litter; SM, soil
moisture; ST, soil temperature; and climate, blue arrows; Hum, humidity; Prec, precipitation; Temp,
temperature) in the desert steppe. See Table 1 for species names abbreviations.

Full-size K&l DOT: 10.7717/peerj.6197/fig-5

on carabid richness in the desert steppe suggests that in this environment higher
temperatures can be intolerable for most species. Moreover, in this environment,
differences between day and night temperatures are much more pronounced than in the
other grassland types, a source of variation which is not included in our measurements
because this type of datum was unfortunately not available, but which might be
important for carabids.

Rainfall is also a major predictor of species richness at the regional scale and in the
desert, where, however, it has a negative effect. Rainfall drives many ecological processes
and may influence shelter sites and food resources used by carabids (Morecroft et al., 2004).
The negative effect of rainfall observed in the desert steppe may be due to two causes.
First, it is possible that this environment hosts species that are particularly adapted to arid
conditions, and are therefore negatively affected by rainfall. Second, our sampling area in
the arid steppe is surrounded by many industries, and Thiele (1977) mentioned that
carabids are highly vulnerable to polluted rainfall. Thus, it is possible that rainfall was
locally polluted by industry emissions that negatively affected carabids richness. We do not
have data to test this hypothesis, however.

We found a strong positive effect of humidity on carabid species richness at
regional scale in desert and typical steppes, but not in the meadow steppe. This lack of
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Figure 6 Canonical correspondence analysis (CCA) biplot in the typical steppe. Plot shows rela-
tionships between species (@ = predators, A = herbivores; species abbreviations as in Table 1) and
environmental variables (vegetation, green arrows: PB, plant biomass; PC, plant cover; PD, plant density;
PH, plant height; PSD, plant species diversity; soil, red arrows: SBD: bulk density; SL, soil litter; SM, soil
moisture; ST, soil temperature; and climate, blue arrows; Hum, humidity; Prec, precipitation; Temp,
temperature) in the typical steppe. See Table 1 for species names abbreviations.

Full-size K&l DOT: 10.7717/peerj.6197/fig-6

influence of humidity in this ecosystem may reflect the fact that it is the most humid.
Vegetation characteristics are positively related to carabid species richness at regional scale
(as species richness) and in the typical steppe (as PC), but not in the desert and meadow
steppes. Rahman et al. (2015) hypothesized that vegetation cover might accelerate the
establishment of carabid communities because it provides living space and modifies the
microclimate to create a heterogeneous and stratified microenvironment supporting
different carabid species. The influence of plant diversity on carabid richness at the
regional level, which includes a variety of habitat types with different communities, is
consistent with previous studies reporting that a higher plant species richness implies more
diverse food resources, thus allowing the presence of species with different feeding
preferences (Byers et al., 2000; Brose, 2003). However, most carabid species are predators,
so they can be influenced by plant diversity only indirectly (e.g., if a higher plant diversity
supports a higher diversity of prey). In fact, several studies report a lack of significant
relationships or even negative correlations between plant and arthropod diversity

(see Zou et al., 2013). Increased plant diversity may actually promote an increase in
herbivores; a higher diversity and/or abundance of herbivores, however, can represent an
increase in food sources and niches for other predators (such as spiders), thus increasing
the overall competition levels, and consequently reducing the overall diversity of
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Figure 7 Canonical correspondence analysis (CCA) biplot in the meadow steppe. Plot shows rela-
tionships between species (@ = predators, A = herbivores; species abbreviations as in Table 1) and
environmental variables (vegetation, green arrows: PB, plant biomass; PC, plant cover; PD, plant density;
PH, plant height; PSD, plant species diversity; soil, red arrows: SBD: bulk density; SL, soil litter; SM, soil
moisture; ST, soil temperature; and climate, blue arrows; Hum: humidity; Prec: precipitation; Temp:
temperature) in the meadow steppe. See Table 1 for species names abbreviations.

Full-size K&l DOT: 10.7717/peerj.6197/fig-7

predators. This may explain the lack of positive effects of plant diversity on carabid
richness when the three ecosystems are analyzed separately.

Plant height did not influence carabid species richness. PH might enhance arthropod
diversity by adding vertical strata in species niches, thus decreasing overall competition.
The lack of significant effects suggests that this is not important for carabids, probably
because most of them are ground-dwelling insects that do not separate their niches using a
differential vertical distribution. As regards soil characteristics, bulk density (which
increases with soil compaction) was negatively related to species richness at the regional
scale and in the typical steppe, which may be due to the fact that soil compaction makes
egg-laying and burrowing difficult (see Magura, Tothmérész ¢» Elek, 2003), but was
related positively in the desert, where soil is very loose and compaction may reflect the
presence of vegetation spots, which may attract carabids (e.g., by providing water and
shadow). Soil surface temperature was negatively related to species richness at the regional
scale, which may be explained by the fact that the highest temperatures recorded in
our study system are those of the desert steppe, a grassland type with overall low carabid
richness. Moisture impacted carabid richness negatively at the regional scale, which
suggests that most of the species occurring in the study area are not hygrophilous but
adapted to arid conditions.
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Table 4 Results of RE-ESF (random effect eigenvector spatial filtering) between habitat characteristics and carabid total functional diversity
(FD-total) at regional scale and for the three grassland types separately.

Regional scale

Grassland types

Desert steppe

Typical steppe

Meadow steppe

Model r2
characteristics rlogLik
AIC
BIC
Vegetation PB
PC
PD
PH
PSD
Soil SBD
SL
SM
ST
Climate Hum
Prec
Temp

Intercept

0.28
418.57

-803.13

~733.27

~0.01 + 0.01 (0.051)
~0.01 + 0.01 (0.083)
~0.01 + 0.01 (0.417)
0.01 + 0.01 (0.249)
0.00 + 0.01 (0.391)
~0.00 + 0.01 (0.504)
0.00 + 0.01 (0.910)
~0.01 + 0.01 (0.153)
~0.02 + 0.01 (0.060)
0.02 + 0.01 (0.005)
0.01 + 0.01 (0.032)
0.02 + 0.01 (<0.0001)
0.12 + 0.00 (<0.0001)

0.24
47.33

-60.66

-21.27

0.01 + 0.01 (0.307)
0.01 + 0.02 (0.546)
~0.03 + 0.02 (0.061)
0.01 + 0.01 (0.708)
-0.01 + 0.01 (0.279)
0.01 + 0.01 (0.201)
0.02 + 0.01 (0.115)
0.01 + 0.01 (0.356)
~0.01 % 0.03 (0.727)
0.05 + 0.02 (0.009)
~0.05 + 0.03 (0.058)
0.02 + 0.02 (0.303)
0.04 + 0.01 (<0.0001)

0.21

193.17

-352.34

-294.26

0.01 + 0.01 (0.514)
0.01 + 0.01 (0.443)
0.01 + 0.01 (0.170)
0.00 + 0.01 (0.985)
~0.00 + 0.01 (0.550)
~0.01 + 0.01 (0.226)
~0.01 + 0.01 (0.355)
~0.00 + 0.01 (0.707)
~0.01 + 0.01 (0.107)
0.04 + 0.01 (0.001)
0.01 + 0.01 (0.489)
0.04 + 0.01 (<0.0001)
0.14 + 0.01 (<0.0001)

0.38
133.22

—232.44

~181.26

~0.01 + 0.01 (0.200)
~0.02 + 0.01 (0.023)
0.01 + 0.01 (0.208)
0.02 + 0.01 (0.070)
0.01 + 0.01 (0.203)
~0.00 + 0.01 (0.811)
0.01 + 0.01 (0.422)
0.01 + 0.01 (0.457)
0.03 + 0.01 (0.025)
~0.00 + 0.01 (0.694)
0.02 + 0.01 (0.061)
0.02 + 0.01 (0.052)
0.12 + 0.01 (<0.0001)

Notes:

Parameter estimated coefficients (+ standard error) and P-values (in parentheses) are given for each predictor. Significant effects are in bold.
Model characteristics: 7, adjusted coefficient of determination; rlogLik, restricted log-likehood; AIC, Akaike information criterion; BIC, Bayesian information criterion.
Predictors abbreviations: PB, plant dry biomass; PC, plant cover; PD, plant density; PH, plant height; PSD, plant species diversity (richness); SBD, soil bulk density; SL, soil

litter; SM, soil moisture; ST, soil temperature; Hum, humidity; Prec, precipitation; Temp, temperature.

We found that climatic factors, and in particular temperature, were the most important

variables in predicting the variability in carabid species composition, both at regional

scale and for grassland types, except for the desert steppe, for which these factors had

limited explanatory power. Temperature has been reported as the most important

environmental factor for carabid communities (Eyre et al., 2005; Ernst ¢ Buddle, 2015;

Yu et al., 2016), and our results support this conclusion. Previous research found that

vegetation and soil characteristics are also important drivers of carabid species
composition (Holmes, Boyce & Reed, 1993; Perner & Malt, 2003; Schaffers et al., 2008;
Gioria et al., 2010; Birkhofer et al., 2015; Liu et al., 2016; Vogels et al., 2017; Ng et al., 2018b).
We found that at regional scale all vegetation and soil factors were important predictors

of carabid community composition. In particular, we found that herbivorous species

at the regional scale tend to be positively influenced by ST, a possible consequence of

their smaller size (see Tseng et al., 2018).

On the other hand, carabid communities of different grassland types are influenced by

different vegetation and soil characteristics. Some vegetation and soil characteristics are

important for the typical and meadow steppe carabids, but not for the desert steppe

community. These results indicate that different grassland types host different carabid

communities that are diversely influenced by different vegetation and soil characteristics,
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Figure 8 Venn diagram. The diagram shows the number of species per type of grassland.
Full-size k&l DOL: 10.7717/peerj.6197/fig-8

and that virtually all of them concur to generate the overall patterns that emerge when
the three grassland types are considered simultaneously.

Plant height has been reported as an important factor influencing carabid assemblages
in peatlands (Holmes, Boyce & Reed, 1993), although the possible influence of PB
remains unknown. In our study, PB and PH were the only important vegetational
characteristics for the meadow carabid community, whereas all vegetational characteristics
except PH were important for the typical steppe. Thus, PB was the common best
vegetation predictor for both these grassland types, suggesting that ecosystem productivity
(for which PB may be a proxy) is an important driver of carabid assemblage composition.

Within soil characteristics, above-ground litter was the only important predictor
of species composition in the typical and meadow steppes. Previously, evidence of the
role of the amount of litter in carabid species composition has been reported in forests
(Magura, Tothmeérész ¢ Elek, 2003; Vician et al., 2018) and our study indicates that
this soil characteristic may be important in other ecosystems too.

None of the vegetation characteristics had an important influence in the carabid
species composition of the desert steppe, even though half of the species collected in this
grassland type were herbivores. These results contrast with a previous study in an
arid region of the northwestern China (Liu et al., 2016), where shrub height and cover
were important predictors of predator species composition, and shrub cover and
herbaceous species richness were important predictors of herbivorous species richness.
We can hypothesize that the lack of influence of any vegetation and soil characteristics
on the carabid composition in our desert steppe may reflect the fact that most of
these parameters have relatively similar values (as shown by their relatively
small ranges and standard deviations) all through the sampling sites, compared to the
typical and meadow steppes. In other words, the desert steppe was environmentally quite
homogeneous, and thus there was too little variation in vegetation and soil
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Figure 9 Beta diversity. Relationships between carabid communities of different grassland habitats
based on f3sor (A), 8sim (B) and fnest (C) coefficients and UPGMA clustering. Desert, desert steppe;
Meadowl, top sector of the meadow steppe; Meadow2, down sector of the meadow steppe; Typical 1.0,
typical steppe without fire belt; Typical 1.1, typical steppe with fire belts; Typical 2, typical steppe at the
mountain bottom. Full-size K&l DOI: 10.7717/peerj.6197/fig-9

characteristics among sampling sites to generate assemblages that could be differently

influenced by these factors.

All three climate factors were important variables in explaining overall functional

diversity at the regional scale. Temperature was also important in the typical and in the

meadow steppes, but not in the desert steppe, whereas humidity was important in the
desert and the typical steppe, but not in the meadow steppe. These differences may be
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attributed to the different physiological needs of the different species pools in each
grassland type. Even though they are close in term of climate factors, meadow and typical
steppes harbor different functional species pools which respond differently to climate
factors. To our knowledge, this study is the first to investigate the relation between carabid
functional diversity and climate factors in grasslands.

Looking at the different components of functional diversity in the desert steppe,
humidity positively influenced both FD-movement and FD-size. This suggests that higher
humidity values tend to select large-sized and more mobile species, possibly because an
increase in humidity is related to soft soil conditions, higher food resources and diverse
shelter and hibernation places necessary for large species.

Plant biomass had a negative effect on FD-total and FD-movement at regional
scale. PC also negatively influenced FD-total and FD-movement in the meadow
steppe (where PB also had a negative influence). Thus, less mobile species were
associated with a higher amount of biomass. It is possible that higher biomass produces
a higher quantity of debris, which hinders the movement of species. Interestingly,

PD seems to have a negative effect on FD-total and FD-size in the desert steppe.
Previous research reported that small body size is a characteristic of carabid beetles
that inhabit severe environments, probably because of depauperate food availability
(Blake et al., 1994; Lovei & Magura, 2006; Hiramatsu ¢ Usio, 2018), which may
explain the prevalence of small sized species in sites with low vegetation cover

and density.

Soil temperature had a negative effect on all aspects of FD at the regional level, but a
positive effect in the meadow carabids. A general trend is that warmer soils tend to
select small-sized species (Tseng et al., 2018), but in soft soil, like in the meadow steppe,
the rise of ST may favor both larger and highly mobile species. This may be attributed
to the fact that temperature moderates predation effects (Chase, 1996). Thus, larger
and more mobile species will be selected at the expense of small-sized species which
compete less successfully during predation.

CONCLUSIONS

Our study indicates that carabid community structure and functioning in grasslands
are strongly influenced by climatic factors, and can therefore be particular sensitive to
ongoing climate change. We found, however, that the responses of carabid communities
to climate and other factors vary according to the grassland type, which warns

against generalizations. Carabid responses to vegetation and soil characteristics also
varied among grassland types, which indicates that management programs should be
considered at grassland scale. Local habitat characteristics of the desert steppe seem to
act as a strong filter on carabid species, allowing the presence of relatively few species
and a low functional diversity. Given the currently increasing aridification processes,
we can hypothesize that in the future carabid communities will be progressively more
similar to those of the desert steppe, reinforcing the urgent need to implement
conservation policies.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 20/26


http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

ACKNOWLEDGEMENTS

We thank the private landowners for allowing us to place the pitfall traps on their lands.
We are grateful to Professor Hongbin Liang (Institute of Zoology, CAS) for identifying
specimens. We are grateful to numerous students for their help during field work

and trait measurements for functional diversity, and especially to Master Zhao Yuchen.
We are grateful to Jonathan Taglione, Mauro Gobbi and two anonymous referees for their
comments on an early version of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Natural Science Foundation of China

(No. 31660630) and the first-class discipline of Practaculture Science of Ningxia University
(No. NXYLXK2017A01). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31660630.
Practaculture Science of Ningxia University: NXYLXK2017A01.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Noelline Tsafack conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

e Francois Rebaudo analyzed the data, contributed reagents/materials/analysis tools,
prepared figures and/or tables, authored or reviewed drafts of the paper, approved the
final draft.

e Hui Wang conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper,
approved the final draft.

e David D. Nagy analyzed the data, authored or reviewed drafts of the paper, approved the
final draft.

¢ Yingzhong Xie conceived and designed the experiments, contributed reagents/materials/
analysis tools, authored or reviewed drafts of the paper, approved the final draft.

e Xinpu Wang conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper,
approved the final draft.

e Simone Fattorini analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, approved the final draft.

Tsafack et al. (2019), Peerd, DOI 10.7717/peerj.6197 21/26


http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

Data Availability

The following information was supplied regarding data availability:
Tsafack, Noelline, 2018, “Data_Carabidae in China Grasslands,”

DOI 10.7910/DVN/FKBCRQ), Harvard Dataverse, V1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6197#supplemental-information.

REFERENCES

Allen AP, Brown JH, Gillooly JF. 2002. Global biodiversity, biochemical kinetics, and the
energetic-equivalence rule. Science 297(5586):1545-1548 DOI 10.1126/science.1072380.

Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity.

Global Ecology and Biogeography 19(1):134-143 DOI 10.1111/j.1466-8238.2009.00490.x.

Baselga A. 2012. The relationship between species replacement, dissimilarity derived from
nestedness, and nestedness. Global Ecology and Biogeography 21(12):1223-1232
DOI 10.1111/j.1466-8238.2011.00756.x.

Baselga A, Jiménez-Valverde A, Niccolini G. 2007. A multiple-site similarity measure
independent of richness. Biology Letters 3(6):642-645 DOI 10.1098/rsbl.2007.0449.

Bi Y, Zou H, Zhu C. 2014. Dynamic monitoring of soil bulk density and infiltration rate
during coal mining in sandy land with different vegetation. International Journal of Coal Science
& Technology 1(2):198-206 DOI 10.1007/s40789-014-0025-2.

Birkhofer K, Diekdtter T, Meub C, Stotzel K, Wolters V. 2015. Optimizing arthropod predator
conservation in permanent grasslands by considering diversity components beyond species
richness. Agriculture, Ecosystems and Environment 211:65-72 DOI 10.1016/j.agee.2015.05.014.

Blake S, Foster GN, Eyre MD, Luff ML. 1994. Effects of habitat type and grassland management
practices on the body size distribution of carabid beetles. Pedobiologia 38:502-512.

Botta-Dukat Z, Wilson JB. 2005. Rao’s quadratic entropy as a measure of functional diversity
based on multiple traits. Journal of Vegetation Science 16:533-540.

Brose U. 2003. Bottom-up control of carabid beetle communities in early successional
wetlands: mediated by vegetation structure or plant diversity? Oecologia 135(3):407-413
DOI 10.1007/s00442-003-1222-7.

Butterfield JE. 1996. Carabid life-cycle strategies and climate change: a study on an altitude
transect. Ecological Entomology 21(1):9-16 DOI 10.1111/j.1365-2311.1996.tb00260.x.

Byers R, Barker G, Davidson R, Hoebeke E, Sanderson M. 2000. Richness and abundance of
Carabidae and Staphylinidae (Coleoptera) in northeastern dairy pastures under intensive
grazing. Great Lakes Entomologist 33:81-105.

Chase JM. 1996. Abiotic controls of trophic cascades in a simple grassland food chain.

Oikos 77(3):495-506 DOI 10.2307/3545939.

De Bello F, Carmona CP, Leps J, Szava-Kovats R, Partel M. 2016. Functional diversity through
the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms.
Oecologia 180(4):933-940 DOI 10.1007/s00442-016-3546-0.

Dixon P. 2009. VEGAN, a package of R functions for community ecology. Journal of
Vegetation Science 14(6):927-930 DOI 10.1111/j.1654-1103.2003.tb02228 x.

Ernst CM, Buddle CM. 2015. Drivers and patterns of ground-dwelling beetle biodiversity
across Northern Canada. PLOS ONE 10(4):e0122163 DOI 10.1371/journal.pone.0122163.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 22/26


https://doi.org/10.7910/DVN/FKBCRQ
http://dx.doi.org/10.7717/peerj.6197#supplemental-information
http://dx.doi.org/10.7717/peerj.6197#supplemental-information
http://dx.doi.org/10.1126/science.1072380
http://dx.doi.org/10.1111/j.1466-8238.2009.00490.x
http://dx.doi.org/10.1111/j.1466-8238.2011.00756.x
http://dx.doi.org/10.1098/rsbl.2007.0449
http://dx.doi.org/10.1007/s40789-014-0025-2
http://dx.doi.org/10.1016/j.agee.2015.05.014
http://dx.doi.org/10.1007/s00442-003-1222-7
http://dx.doi.org/10.1111/j.1365-2311.1996.tb00260.x
http://dx.doi.org/10.2307/3545939
http://dx.doi.org/10.1007/s00442-016-3546-0
http://dx.doi.org/10.1111/j.1654-1103.2003.tb02228.x
http://dx.doi.org/10.1371/journal.pone.0122163
http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

Eyre MD, Luff ML. 2004. Ground beetle species Coleoptera, Carabidae associations with land
cover variables in northern England and southern Scotland. Ecography 27(4):417-426
DOI 10.1111/j.0906-7590.2004.03757 X.

Eyre MD, Luff ML, Staley JR, Telfer MG. 2003. The relationship between British ground beetles
(Coleoptera, Carabidae) and land cover. Journal of Biogeography 30(5):719-730
DOI 10.1046/j.1365-2699.2003.00859 x.

Eyre MD, Rushton S, Luff ML, Telfer MG. 2005. Investigating the relationships between
the distribution of British ground beetle species Coleoptera, Carabidae and temperature,
precipitation and altitude. Journal of Biogeography 32(6):973-983
DOI 10.1111/j.1365-2699.2005.01258.x.

Gioria M, Schaffers A, Bacaro G, Feehan J. 2010. The conservation value of farmland ponds:
predicting water beetle assemblages using vascular plants as a surrogate group. Biological
Conservation 143(5):1125-1133 DOI 10.1016/j.biocon.2010.02.007.

Gobbi M, Fontaneto D, Bragalanti R, Pedrotti L, Lencioni V. 2015. Carabid beetle
(Coleoptera: Carabidae) richness and functional traits in relation to differently managed
grasslands in the Alps. Annales de la Société entomologique de France (N.S.) 51:52-59
DOI 10.1080/00379271.2015.1060008.

Griffith DA, Peres-Neto PR. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial
analyses. Ecology 87(10):2603-2613 DOI 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2.

Hammer @, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package
for education and data analysis. Palaeontologia Electronica 4:1-9.

Hiramatsu S, Usio N. 2018. Assemblage characteristics and habitat specificity of carabid beetles
in a Japanese alpine-subalpine zone. Psyche: A Journal of Entomology 2018:9754376, 15
DOI 10.1155/2018/9754376.

Holmes PR, Boyce DC, Reed DK. 1993. The ground beetle Coleoptera: Carabidae fauna of welsh
peatland biotopes: factors influencing the distribution of ground beetles and conservation
implications. Biological Conservation 63(2):153-161 DOI 10.1016/0006-3207(93)90504-T.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models.
Biometrical Journal 50(3):346-363 DOI 10.1002/bim;j.200810425.

Hsieh TC, Ma KH, Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of
species diversity (Hill numbers). Methods in Ecology and Evolution 7(12):1451-1456
DOI 10.1111/2041-210X.12613.

Kagawa Y, Maeto K. 2014. Ground beetle Coleoptera: Carabidae assemblages associated with a
satoyama landscape in Japan: the effects of soil moisture, weed height, and distance from
woodlands. Applied Entomology and Zoology 49(3):429-436 DOI 10.1007/s13355-014-0266-y.

Kang L, Han X, Zhang Z, Sun OJ. 2007. Grassland ecosystems in China: review of current
knowledge and research advancement. Philosophical Transactions of the Royal Society B:
Biological Sciences 362(1482):997-1008 DOI 10.1098/rstb.2007.2029.

Koivula M. 2011. Useful model organisms, indicators, or both? Ground beetles Coleoptera,
Carabidae reflecting environmental conditions. ZooKeys 100:287-317
DOI 10.3897/zookeys.100.1533.

Koivula M, Punttila P, Haila Y, Niemeld J. 1999. Leaf litter and the small-scale distribution
of carabid beetles Coleoptera, Carabidae in the boreal forest. Ecography 22(4):424-435
DOI 10.1111/j.1600-0587.1999.tb00579.x.

Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K. 2000. Numerical responses of
different trophic groups of invertebrates to manipulations of plant diversity in grasslands.
Oecologia 125(2):271-282 DOI 10.1007/s004420000450.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 23/26


http://dx.doi.org/10.1111/j.0906-7590.2004.03757.x
http://dx.doi.org/10.1046/j.1365-2699.2003.00859.x
http://dx.doi.org/10.1111/j.1365-2699.2005.01258.x
http://dx.doi.org/10.1016/j.biocon.2010.02.007
http://dx.doi.org/10.1080/00379271.2015.1060008
http://dx.doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
http://dx.doi.org/10.1155/2018/9754376
http://dx.doi.org/10.1016/0006-3207(93)90504-T
http://dx.doi.org/10.1002/bimj.200810425
http://dx.doi.org/10.1111/2041-210X.12613
http://dx.doi.org/10.1007/s13355-014-0266-y
http://dx.doi.org/10.1098/rstb.2007.2029
http://dx.doi.org/10.3897/zookeys.100.1533
http://dx.doi.org/10.1111/j.1600-0587.1999.tb00579.x
http://dx.doi.org/10.1007/s004420000450
http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

Kotze DJ, Brandmayr P, Casale A, Dauffy-Richard E, Dekoninck W, Koivula M, Lovei G,
Mossakowski D, Noordijk J, Paarmann W, Pizzoloto R, Saska P, Schwerk A, Serrano J,
Szyszko J, Taboada Palomares A, Turin H, Venn S, Vermeulen R. 2011. Forty years of carabid
beetle research in Europe—from taxonomy, biology, ecology and population studies to
bioindication, habitat assessment and conservation. ZooKeys 100:55-148
DOI 10.3897/zookeys.100.1523.

Lafage D, Pétillon J. 2016. Relative importance of management and natural flooding on spider,
carabid and plant assemblages in extensively used grasslands along the Loire. Basic and
Applied Ecology 17(6):535-545 DOI 10.1016/j.baae.2016.04.002.

Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity
from multiple traits. Ecology 91(1):299-305 DOI 10.1890/08-2244.1.

Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129(2):271-280 DOI 10.1007/s004420100716.

Liu Y, Duan M, Zhang X, Zhang X, Yu Z, Axmacher JC. 2014. Effects of plant diversity,
habitat and agricultural landscape structure on the functional diversity of carabid assemblages in
the North China Plain. Insect Conservation and Diversity 8(2):163-176 DOI 10.1111/icad.12096.

Liu J-L, Li F-R, Sun T-S, Ma L-F, Liu L-L, Yang K. 2016. Interactive effects of vegetation
and soil determine the composition and diversity of carabid and tenebrionid functional
groups in an arid ecosystem. Journal of Arid Environments 128:80-90
DOI 10.1016/j.jaridenv.2016.01.009.

Liu B, Zhao W, Liu Z, Yang Y, Luo W, Zhou H, Zhang Y. 2015. Changes in species diversity,
aboveground biomass, and vegetation cover along an afforestation successional gradient in a
semiarid desert steppe of China. Ecological Engineering 81:301-311
DOI 10.1016/j.ecoleng.2015.04.014.

Lovei GL, Magura T. 2006. Body size changes in ground beetle assemblages—a reanalysis
of Braun et al. 2004’s data. Ecological Entomology 31(5):411-414
DOI 10.1111/j.1365-2311.2006.00794 x.

Lovei GL, Sunderland KD. 1996. Ecology and behavior of ground beetles Coleoptera: Carabidae.
Annual Review of Entomology 41(1):231-256 DOI 10.1146/annurev.en.41.010196.001311.

Lii Y, Fu B, We W, Yu X, Sun R. 2011. Major ecosystems in China: dynamics and
challenges for sustainable management. Environmental Management 48(1):13-27
DOI 10.1007/500267-011-9684-6.

Luff ML. 1975. Some features influencing the efficiency of pitfall traps. Oecologia 19(4):345-357
DOI 10.1007/BF00348110.

Lyons A, Ashton PA, Powell I, Oxbrough A. 2017. Impacts of contrasting conservation
grazing management on plants and carabid beetles in upland calcareous grasslands.
Agriculture, Ecosystems & Environment 244:22-31 DOI 10.1016/j.agee.2017.04.020.

Magura T. 2017. Ignoring functional and phylogenetic features masks the edge influence on
ground beetle diversity across forest-grassland gradient. Forest Ecology and Management
384:371-377 DOI 10.1016/j.foreco.2016.10.056.

Magura T, Tothmérész B, Elek Z. 2003. Diversity and composition of carabids during a
forestry cycle. Biodiversity and Conservation 12(1):73-85 DOI 10.1023/A:1021289509500.
Magura T, Tothmérész B, Elek Z. 2005. Impacts of leaf-litter addition on carabids in a conifer
plantation. Biodiversity and Conservation 14(2):475-491 DOI 10.1007/s10531-004-7307-8.
Majumdar DK. 2001. Irrigation water management: principles and practice. Delhi: Prentice Hall of

India Learning Private Limited.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 24/26


http://dx.doi.org/10.3897/zookeys.100.1523
http://dx.doi.org/10.1016/j.baae.2016.04.002
http://dx.doi.org/10.1890/08-2244.1
http://dx.doi.org/10.1007/s004420100716
http://dx.doi.org/10.1111/icad.12096
http://dx.doi.org/10.1016/j.jaridenv.2016.01.009
http://dx.doi.org/10.1016/j.ecoleng.2015.04.014
http://dx.doi.org/10.1111/j.1365-2311.2006.00794.x
http://dx.doi.org/10.1146/annurev.en.41.010196.001311
http://dx.doi.org/10.1007/s00267-011-9684-6
http://dx.doi.org/10.1007/BF00348110
http://dx.doi.org/10.1016/j.agee.2017.04.020
http://dx.doi.org/10.1016/j.foreco.2016.10.056
http://dx.doi.org/10.1023/A:1021289509500
http://dx.doi.org/10.1007/s10531-004-7307-8
http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

Mason NW, Mouillot D, Lee WG, Wilson JB. 2005. Functional richness, functional evenness and
functional divergence: the primary components of functional diversity. Oikos 111(1):112-118
DOI 10.1111/j.0030-1299.2005.13886.x.

Merrick MJ, Smith RJ. 2004. Temperature regulation in burying beetles Nicrophorus spp.:
Coleoptera: Silphidae: effects of body size, morphology and environmental temperature.
Journal of Experimental Biology 207(5):723-733 DOI 10.1242/jeb.00807.

Moran MD. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies.

Oikos 100(2):403-405 DOI 10.1034/j.1600-0706.2003.12010.x.

Morecroft MD, Masters GJ, Brown VK, Clarke IP, Taylor ME, Whitehouse AT. 2004. Changing
precipitation patterns alter plant community dynamics and succession in an ex-arable grassland.
Functional Ecology 18(5):648-655 DOI 10.1111/j.0269-8463.2004.00896 x.

Murakami D. 2018. Moran’s eigenvector-based spatial regression models. R Package
version 0.1.6. Available at https://cran.r-project.org/web/packages/spmoran/spmoran.pdyf.
Murakami D, Griffith DA. 2015. Random effects specifications in eigenvector spatial
filtering: a simulation study. Journal of Geographical Systems 17(4):311-331
DOI 10.1007/s10109-015-0213-7.
Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional
uncertainty a problem for species distribution modelling. Ecography 37(2):191-203
DOI 10.1111/j.1600-0587.2013.00205.x.

Ng K, Barton PS, Macfadyen S, Lindenmayer DB, Driscoll DA. 2018b. Beetle’s responses to
edges in fragmented landscapes are driven by adjacent farmland use, season and cross-habitat
movement. Landscape Ecology 33(1):109-125 DOI 10.1007/s10980-017-0587-7.

Ng K, McIntyre S, Macfadyen S, Barton PS, Driscoll DA, Lindenmayer DB. 2018a. Dynamic
effects of ground-layer plant communities on beetles in a fragmented farming landscape.
Biodiversity and Conservation 27(9):2131-2153 DOI 10.1007/s10531-018-1526-x.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P,
Stevens M, Wagner H. 2015. Vegan: community ecology package. R Package vegan,
version 2.2-1. Available at http://cran.r-project.org/package=vegan.

Pakeman R]J, Stockan JA. 2014. Drivers of carabid functional diversity: abiotic environment, plant
functional traits, or plant functional diversity? Ecology 95(5):1213-1224 DOI 10.1890/13-1059.1.

Pavoine S, Vallet J, Dufour A-B, Gachet S, Daniel H. 2009. On the challenge of treating
various types of variables: application for improving the measurement of functional diversity.
Oikos 118(3):391-402 DOI 10.1111/.1600-0706.2008.16668.x.

Perner J, Malt S. 2003. Assessment of changing agricultural land use: response of vegetation,
ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agriculture,
Ecosystems and Environment 98(1-3):169-181 DOI 10.1016/S0167-8809(03)00079-3.

Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW,
Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa W], Mwangomo E,
Ngereza C, Otte I, Roder J, Rutten G, Schellenberger Costa D, Tardanico J, Zancolli G,
Deckert J, Eardley CD, Peters RS, Rodel M-O, Schleuning M, Ssymank A, Kakengi V,
Zhang J, Bohning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M,
Fischer M, Steffan-Dewenter I. 2016. Predictors of elevational biodiversity gradients change
from single taxa to the multi-taxa community level. Nature Communications 7:13736.

Rabot E, Wiesmeier M, Schliiter S, Vogel H-J. 2018. Soil structure as an indicator of soil
functions: a review. Geoderma 314:122-137 DOI 10.1016/j.geoderma.2017.11.009.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 25/26


http://dx.doi.org/10.1111/j.0030-1299.2005.13886.x
http://dx.doi.org/10.1242/jeb.00807
http://dx.doi.org/10.1034/j.1600-0706.2003.12010.x
http://dx.doi.org/10.1111/j.0269-8463.2004.00896.x
https://cran.r-project.org/web/packages/spmoran/spmoran.pdf
http://dx.doi.org/10.1007/s10109-015-0213-7
http://dx.doi.org/10.1111/j.1600-0587.2013.00205.x
http://dx.doi.org/10.1007/s10980-017-0587-7
http://dx.doi.org/10.1007/s10531-018-1526-x
http://cran.r-project.org/package=vegan
http://dx.doi.org/10.1890/13-1059.1
http://dx.doi.org/10.1111/j.1600-0706.2008.16668.x
http://dx.doi.org/10.1016/S0167-8809(03)00079-3
http://dx.doi.org/10.1016/j.geoderma.2017.11.009
http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

Peer/

Rahman ML, Tarrant S, McCollin D, Ollerton J. 2015. Vegetation cover and grasslands in the
vicinity accelerate development of carabid beetle assemblages on restored landfill sites.
Zoology and Ecology 25(4):347-354 DOI 10.1080/21658005.2015.1068521.

Rainio J, Niemeld J. 2003. Ground beetles Coleoptera: Carabidae as bioindicators.

Biodiversity and Conservation 12(3):487-506 DOI 10.1023/A:1022412617568.

Rao CR. 1982. Diversity and dissimilarity coefficients: a unified approach.
Theoretical Population Biology 21(1):24-43 DOI 10.1016/0040-5809(82)90004-1.

Ren JZ, Hu ZZ, Zhao J, Zhang DG, Hou FJ, Lin HL, Mu XD. 2008. A grassland classification
system and its application in China. Rangeland Journal 30(2):199-209 DOI 10.1071/RJ08002.

Robinson SI, McLaughlin OB, Marteinsdéttir B, O’Gorman EJ. 2018. Soil temperature
effects on the structure and diversity of plant and invertebrate communities in a natural
warming experiment. Journal of Animal Ecology 87(3):634-646 DOI 10.1111/1365-2656.12798.

Schaffers AP, Raemakers Ivo P, Sykora Karlé V, Ter Braak Cajo JF. 2008. Arthropod
assemblages are best predicted by plant species composition. Ecology 89(3):782-794
DOI 10.1890/07-0361.1.

Spake R, Barsoum N, Newton AC, Doncaster CP. 2016. Drivers of the composition and diversity
of carabid functional traits in UK coniferous plantations. Forest Ecology and Management
359:300-308 DOI 10.1016/j.foreco.2015.10.008.

Taboada A, Kotze DJ, Tarrega R, Salgado JM. 2008. Carabids of differently aged reforested
pinewoods and a natural pine forest in a historically modified landscape. Basic and Applied
Ecology 9(2):161-171 DOI 10.1016/j.baae.2007.01.004.

Thiele HU. 1977. Carabid beetles in their environments: a study on habitat selection by adaptations
in physiology and behaviour. New York: Springer-Verlag, Berlin Heidelberg.

Tseng M, Kaur KM, Pari S, Sarai K, Chan D, Yao CH, Porto P, Toor A, Toor HS, Fograscher K.
2018. Decreases in beetle body size linked to climate change and warming temperatures.
Journal of Animal Ecology 87(3):647-659 DOI 10.1111/1365-2656.12789.

Vician V, Svitok M, Michalkova E, Lukadik I, Stasiov S. 2018. Influence of tree species and soil
properties on ground beetle Coleoptera: Carabidae communities. Acta Oecologica 91:120-126
DOI 10.1016/j.acta0.2018.07.005.

Vogels JJ, Verberk WCEP, Lamers LPM, Siepel H. 2017. Can changes in soil biochemistry and
plant stoichiometry explain loss of animal diversity of heathlands? Biological Conservation
212:432-447 DOI 10.1016/j.biocon.2016.08.039.

Xiao W, Ge X, Zeng L, Huang Z, Lei J, Zhou B, Li M. 2014. Rates of litter decomposition and
soil respiration in relation to soil temperature and water in different-aged Pinus massoniana
forests in the three Gorges Reservoir Area, China. PLOS ONE 9(7):e101890
DOI 10.1371/journal.pone.0101890.

Yan H, Liang C, Li Z, Liu Z, Miao B, He C, Sheng L. 2015. Impact of precipitation patterns
on biomass and species richness of annuals in a dry steppe. PLOS ONE 10(4):¢0125300
DOI 10.1371/journal.pone.0125300.

Yu X-D, Lii L, Wang F-Y, Luo T-H, Zou S-S, Wang C-B, Song T-T, Zhou H-Z. 2016. The relative
importance of spatial and local environmental factors in determining beetle assemblages in the
inner Mongolia grassland. PLOS ONE 11(5):e0154659 DOI 10.1371/journal.pone.0154659.

Zou Y, Sang W, Bai F, Axmacher JC. 2013. Relationships between plant diversity and the
abundance and a-diversity of predatory ground beetles Coleoptera: Carabidae in a mature Asian
temperate forest ecosystem. PLOS ONE 8(12):e82792 DOI 10.1371/journal.pone.0082792.

Tsafack et al. (2019), PeerdJ, DOI 10.7717/peerj.6197 26/26


http://dx.doi.org/10.1080/21658005.2015.1068521
http://dx.doi.org/10.1023/A:1022412617568
http://dx.doi.org/10.1016/0040-5809(82)90004-1
http://dx.doi.org/10.1071/RJ08002
http://dx.doi.org/10.1111/1365-2656.12798
http://dx.doi.org/10.1890/07-0361.1
http://dx.doi.org/10.1016/j.foreco.2015.10.008
http://dx.doi.org/10.1016/j.baae.2007.01.004
http://dx.doi.org/10.1111/1365-2656.12789
http://dx.doi.org/10.1016/j.actao.2018.07.005
http://dx.doi.org/10.1016/j.biocon.2016.08.039
http://dx.doi.org/10.1371/journal.pone.0101890
http://dx.doi.org/10.1371/journal.pone.0125300
http://dx.doi.org/10.1371/journal.pone.0154659
http://dx.doi.org/10.1371/journal.pone.0082792
http://dx.doi.org/10.7717/peerj.6197
https://peerj.com/

	Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


