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Abstract: This work analyses the magnetic shielding for a large variation interval of 

perturbative field in terms of both amplitude and frequency. Founded on Finite Element 

Analysis, shields constructed from different materials are studied. Conclusions about 

materials behavior for a given frequency but different amplitudes are focused on magnetic 

neliniarity influence about shielding efficiency. In the final part of the research, there are 

presented some tips about an acceptable shielding attenuation realized with one single 

layer of material capable to deal with a large spectrum of frequencies and amplitude of 

magnetic interferences. 

 

 

 

1. INTRODUCTION 

 

 A magnetic shielding, suitable for the entire spectrum of electromagnetic field and 

also for any strength of external interference, is a very complicate task to be achieved in 

practice. For example, the biomagnetic signals (~10
-13

T), must be processed in absence of 

other electromagnetic signals in medicine, while the Earth magnetic field range is between 

approximately 25,000 and 65,000 nT – static field, but also for harmonic, up to mT order 

values - fields generated by power distribution and bigger frequencies fields used in 

communications.  

 For higher magnetic flux densities and frequencies the shielding effect is altered, in 

magnetic materials cases, by saturation, [5] and induced magnetic fields.  
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 Analytical solutions for attenuation factor, S,
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are available only for linear, isotropic and homogenous materials, and also for simple 

geometrical configurations. The proper tool to design, evaluate and optimize the magnetic 

shielding is the Finite Element Method, [1], [2], [7], [8]. 

 Mostly shielded rooms are quasi-cubic enclosure, analyzed in first time as a spherical 

volume and only when this configuration was optimized in terms of inputted data, the real 

geometry is tacked into account, for last retouching, [6]. This paper analyzed the 2 m diameter 

spherical room, 2 mm thickness, t, of material in one layer shield, for different materials and 

different applied fields, fig. 1. 

 

Fig. 1. Spherical one layer shield model 

 

 

2. ANALYTICAL COMPUTATIONS 

 

 The chosen geometrical configuration is a very simple one, so if the material of the 

shield is considered linear, homogenous and isotropic there are available analytical relations. 

 For static fields, the attenuation factor, based on variable separations, [3], is: 
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where μr is the relative magnetic permeability of the shield magnetic material. 

 The maximum value of magnetic flux density in magnetic material is: 
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with M being:
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 For variable magnetic fields, the attenuation factor can be computed as [3]: 

 
   SSS 22 ImRe 
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where, 
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and, 

   fjk 22
 (7) 

where f is the frequency of the field, µ is the magnetic permeability and σ the conductivity, 

these two last variable referring to the shield material.  

 The limitations of analytical computation are not just the insufficient material 

properties countable, but also a lot of hypothesis that have to be considered to reduce the form 

of equations to a solvable ones. These hypothesis concern the aspect of induced current, the 

ways that magnetic field varies, etc. 

 Using Finite Element Method (FEM), the real behavior of a magnetic shield is more 

exactly described.  

 

 

3. FNITIE ELEMENT ANALYSIS 

 

 Maxwell equations applied for magnetostatic, and for harmonic problem leads to 

equations (8), respectively (9). These equations are to be solved by FEM. All configurations 

are computed in David Meeker's Finite Element Method Magnetics, FEMM®, in 2D 

configurations, [4].  
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where A  represents the magnetic vector potential and SRCJ  represents the applied currents 

sources.  

 The chosen geometrical configuration is a very simple one, so if the material of the 

shield is considered linear, homogenous and isotropic there are available analytical relations. 

 If the magnetic field oscillates at one fixed frequency, a phasor transformation for 

magnetic vector potential is available: 
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 FEMM® solves, for harmonic magnetic problems, the resulted equation, [4]: 
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with 
SRCJ  representing the phasor transform of the applied current sources and a being the 

complex amplitude of the phasor transformation, of A. 

 

 

4. RESULTS 

 

 In [1], the influence of nonlinearity of the magnetic materials in shielding efficiency is 

treated for magnetostatic regime. In this work were considered the same materials, meaning: 

low carbon steel, “1010 Steel” with a constant relative magnetic permeability (linear 

consideration of material) μr = 902.6 and a conductivity σ = 5.8 MS/m; cobalt iron “Hiperco 

50” with μr = 3520, σ = 2.5 MS/m and nickel alloys “Mu metal” with μr = 82910, but 

supplemented with Cooper, μr = 1, σ = 58 MS/m.  

 The magnetic characteristics of the ferromagnetic materials are illustrated in fig. 2. 

 

Fig. 2. Relative magnetic permeability of analyzed magnetic materials 
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 Graphically presentation of equation (2) shows the attenuations of the studied shields, 

fig 1, in terms of exterior magnetic field density and having the relative magnetic 

permeability as a parameter, fig. 3, as straight lines, due to the linearity of materials. Of 

course the Cu shield has no effect on magnetostatic fields. 

 Considering the nonlinearity, the shield efficiency drops as the magnetic flux density 

increases, fig. 3. 

  

Fig. 3. The attenuation for magnetostatic interferences 

 

 

Fig. 4. Discretization and magnetic field spectrum for Mu metal, B0 = 1.26∙10
-5 
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Fig. 5. Discretization and magnetic field spectrum for Mu metal, B0 = 0.0126 T, f = 0 Hz 

 

 

Fig. 6. Discretization and magnetic field values for Mu metal, B0 = 1.26∙10
-5 

T, f = 50 Hz 

 

 

Fig. 7. Induced current in shield for Mu metal, B0 = 1.26∙10
-5 

T, f = 50 Hz 
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Fig. 8. Induced current in shield for Mu metal, B0 = 0.0126 T, f = 1kHz 

 

 The magnetic saturation is obviously in fig 5 compared to 4. 

 Also for variable magnetic field, the induced currents in shields are bigger, which 

leads to a bigger attenuation factor.  

 Again if we considered the materials as linear, the equation (5) conducts to results far 

from reality in case of magnetic materials at high values magnetic fields applied. The 

differences can be observed in fig. 9 and fig. 10-11. 

 

Fig. 9. The attenuation for variable magnetic interference - linear material shields 
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 Carefully observation of above mentioned figures shows that the importance of 
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interferences inside the shielded room is very important. 

 As a general behavior, the better conductivity of the shield material goes to an 

improved shielding effect for high frequencies and the same proportionality is available 

between magnetostatic shielding and relative magnetic permeability, but carefully considers 

the saturation effect. 

 

Fig. 10. The attenuation for variable magnetic interference-nonlinear material shields,B0 = 1.26∙10
-5 

T 

 

 

Fig. 11. The attenuation for variable magnetic interference - nonlinear material shields,B0 = 0.0126 T 

 

 

5. CONCLUSIONS 
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proprieties of materials in shielding techniques.  Because it is very unlikely to be able to 

predict the real incident magnetic field, generally, the designers must considered a very 

extend ranges of both magnetic flux density and frequency. If we are dealing with medical 

applications, for example, the geomagnetic field is a very important perturbation, so only a 

magnetic material shield must be tacked into account.  

 For higher frequencies, only matters the electric conductivity and for lower 

frequencies, only matters the relative magnetic permeability. If it is possible to reduce the 

range of variation for applied magnetic field parameters, it is possible to choose an optimum 

material for shield from fig. 3, 10 and/or 11. 
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