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Objective(s): Oxytocin is involved in modulation of many brain-mediated functions. In the present study, 
we investigated the central effects of oxytocin and its receptor antagonist, atosiban on inflammatory 
pain. The contribution of opiate receptors was explored using non-selective and selective antagonists. 
Materials and Methods: The fourth ventricle of the brain of anesthetized rats was implanted with a guide 
cannula. Inflammatory pain in the orofacial region was induced by subcutaneous (SC) injection of formalin 
into the vibrissa pad, and time duration of face rubbing behavior was measured for 45 min. 
Results: A typical biphasic pain was observed after formalin injection. This biphasic pain behavior 
was attenuated by intra-fourth ventricle administration of oxytocin (12.5, 50, and 200 ng/rat). Central 
prior administration of 400 ng/rat atosiban (an oxytocin receptor antagonist), naloxone (a non-
selective opiate receptor antagonist), naloxonazine (a selective µ-opiate receptor antagonist), and nor-
binaltorphimine (a selective κ-opiate receptor antagonist), but not naltrindole (a δ-opiate receptor 
antagonist), prevented oxytocin-induced (200 ng/rat) antinociception.  Except for naltrindole, other 
antagonists increased pain intensity when used alone. Above-mentioned drugs did not alter locomotor 
activity. 
Conclusion: Oxytocin, as a neuropeptide neurotransmitter, may be involved in the supraspinal 
modulation of inflammatory pain through µ- and κ-, but not δ-opiate receptors. 

Article history:
Received: Sep 14, 2017
Accepted: Jun 26, 2018

Keywords: 
Fourth ventricle
Opioid receptors
Orofacial pain
Oxytocin
Rats 

►Please cite this article as:  
Erfanparast A, Tamaddonfard E, Seyedin S. Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced 
antinociception. Iran J Basic Med Sci 2018; 21:1275-1280. doi: 10.22038/ijbms.2018.26302.6449

Introduction
Hypothalamic nuclei such as paraventricular and 

suprachiasmatic nuclei produced neuropeptide 
hormone oxytocin (1). Besides well-known functions 
in the reproductive system (2), this neuropeptide may 
be involved in the modulation of anxiety, epilepsy, 
addiction, memory, and yawning (3-6). Pharmacological 
studies have suggested that oxytocin can modulate pain 
mechanisms at local peripheral, spinal cord, and brain 
sites (7-11). 

The distribution of µ-, δ-, and κ-opiate receptors 
has been reported in many areas of the brain (12). 
These receptors have a central role in pain processing 
(13). Pharmacological and behavioral findings have 
suggested that oxytocin analgesia may be associated 
with the endogenous opioid system. For example, after 
lateral cerebral ventricle co-administration of naloxone 
and oxytocin, the antihyperalgesic effect of oxytocin was 
antagonized (14).

Nociceptive information from the orofacial region 
is transmitted via the trigeminal nerve to the brain 
areas including brainstem trigeminal complex, thalamic 
nuclei, and cerebral cortex (15). Several authors have 
shown that oxytocin can modulate trigeminal pain (16, 
17). Although the centrally mediated antinociception 

of oxytocin on paw formalin test has been reported, 
scholars (18, 19) have suggested some differences 
between spinal and trigeminal nociceptive information 
transmission and processing. Therefore, this study 
was planned to explore the effects of oxytocin and its 
antagonist (atosiban) on orofacial inflammatory pain 
after intracerebroventricular (ICV) administration. 
The participation of opiate receptors was evaluated 
using non-selective and selective opiate receptor 
antagonists. Clavelou et al. established an orofacial 
model of inflammatory pain in the rat (20). To study the 
supraspinal processing mechanisms of orofacial pain, 
scholars frequently used this model of inflammatory 
pain (21-23). The above-mentioned drugs were also 
used for locomotor behavior testing. 

Materials and Methods
Animals

In the present study, we used male Wistar rats 
(250–280 g). The animals were kept in a laboratory 
room under controlled conditions (light on: 07:00 AM; 
ambient temperature: 22 ± 0.5 °C). Food and water were 
ad libitum. Veterinary Ethics Committee of the Faculty 
of Veterinary Medicine of Urmia University approved 
animal use procedures. 
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Drugs
Oxytocin, atosiban, naloxone hydrochloride, 

naloxonazine dihydrochloride hydrate, naltrindole 
hydrochloride, and nor-binaltorphimine dihydrochloride 
were used in this study. They were purchased from Sigma-
Aldrich Chemical Co (St Louis, MO, USA). The drugs were 
used freshly. 

Fourth ventricle cannulation
To test the chemicals, a 23-gauge guide cannula was 

stereotaxically implanted in the fourth ventricle of the 
brain under ketamine (80 mg/kg) and xylazine (8 mg/
kg) anesthesia. The stereotaxic coordinates for this 
ventricle were: -12.5 mm from the bregma, 0 mm lateral 
to the midline, and -7.8 mm from the top of the skull 
(24). The animals were allowed to recover from surgery.

Intra-fourth ventricle administration
Oxytocin at doses of 3.1, 12.5, 50, and 200 ng/rat, 

and 400 ng/rat of atosiban, naloxone, naloxonazine, 
nor-binaltorphimine, and naltrindole alone and before 
200 ng/rat oxytocin were intracerebroventricularly 
(ICV) administered using a 5-μl Hamilton syringe. A 
constant volume of 2 µl was injected over a period 
of 45 sec. In separate and prior injections schedule, 
atosiban, naloxone, naloxonazine, nor-binaltorphimine, 
and naltrindole were injected 8 min, whereas oxytocin 
was injected 4 min before orofacial pain induction. In 
the present study, the used drug doses were chosen 
according to the literature review (22, 25) and our 
preliminary experiments. Due to the proximity of 
orofacial pain modulating centers around the fourth 
ventricle, we used the intra-fourth ventricle injection 
procedure (26-28).

Orofacial formalin pain
For orofacial pain induction, 50 µl of a diluted 

formalin solution (1.5%,) was (SC) injected into the left 
vibrissa pad using a 29-gauge injection needle. Face 
rubbing was observed through a mirror mounted at 45 
° beneath the floor of a plexiglass observation chamber 
(30 cm × 30 cm × 30 cm).  The duration of pain behavior 
was recorded at 3-min blocks for 45 min (20-23). The 
study protocol was performed under blind conditions.

Locomotor activity
An electronic activity box (BorjSanat, Tehran, Iran) 

was used to assess locomotor behavior. The animals 
were placed directly in one corner of the activity box, 
and the number of photobeam breaks due to movement 
of the animal was monitored in a 5-min session. 

Cerebral ventricle cannula location
After (ICV) injection of 2 µl methylene blue, animals 

were euthanized, the brains removed and placed in 
10% formalin solution. Two days later, the brains were 
sectioned into 50–100 µm slices and viewed under a 
loupe to observe methylene blue distribution in the 
fourth ventricle (24). 

Statistical analysis
The GraphPad Prism (5.3) software (GraphPad 

Software, San Diego, CA, USA) was used for statistical 
analysis. Repeated measures analysis of variance 

(ANOVA) followed by Tukey’s test were employed for 
data obtained from SC injection of normal saline and 
formalin into the vibrissa pad. The effects of chemicals 
on pain phases and also on locomotor activity were 
analyzed by one-way ANOVA followed by Tukey’s test. 
The effects of atosiban, naloxone, naloxonazine, nor-
binaltorphimine, and naltrindole used alone were 
analyzed using unpaired t-test. All values are expressed 
as the mean±SEM. Statistical significance was set at 
P<0.05.

Results
Cannula placement verification

Figure 1 shows the cannula tip placement in the fourth 
ventricle of the brain. Figure 1A shows a schematic 
figure of the fourth ventricle of the brain provided from 
the atlas of Paxinos and Watson (24). Figure 1B shows 
the distribution of methylene blue in the fourth ventricle 
of the brain.  

Orofacial pain behavior
A weak pain behavior (2.17 ± 1.05 sec) was observed 

after (SC) injection of normal saline only at the first 
3-min block (data not shown). After SC injection of 
formalin, the first and 5th–11th 3-min blocks significantly 
(F(14,89)=21.301, P<0.05) showed more intensive pain 
behavior in comparison with 2nd–4th and 12th–15th 3-min 
blocks (Figure 2). 

 

  Figure 1. A transverse section of the rat brain showing the location 
of the fourth ventricle adopted from the Paxinos and Watson atlas 
(A). Location of the cannula placement and injection site in the fourth 
ventricle in the present study (B)
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Figure 2. Pain behavior induced by formalin injection into the vibrissa 
pad. Data were shown as means±SEM. * P<0.05 different from other 
3-min blocks
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Effects of intra-fourth ventricular administration 
of oxytocin, atosiban alone, and atosiban prior to 
oxytocin on formalin-induced pain behavior

Central injection of oxytocin at a dose of 3.1 ng/
rat was without effect, whereas at doses of 12.5, 50, 
and 200 ng/rat, oxytocin significantly attenuated 
both the first (F(4,29)=20.891, P<0.01, Figure 3) and 
second (F(4,29)=67.194, P<0.01, Figure 3) phases of pain 
behavior. In the first (df=10, t= 4.018, P<0.01, Figure 
3) as well as the second (df=10, t= 4.206, P<0.01, 
Figure 3) phases intensity of pain was increased after 
central injection of atosiban (400 ng/rat). Prior central 
injection of atosiban (400 ng/rat) significantly inhibited 
the antinociceptive effects of oxytocin (200 ng/rat) on 
the first (F(2,17)=67.0128, P<0.001, Figure 3) and second 
(F(2,17)=123.601, P<0.001, Figure 3) phases of pain. 

Effects of intra-fourth ventricular injection of 
naloxone alone and prior to oxytocin on pain behavior 
induced by formalin

Naloxone alone (400 ng/rat) significantly increased 
the first (df=10, t= 3.682, P<0.01, Figure 4) and second 
(df=10, t= 4.265, P<0.01, Figure 4) phases of pain 
intensity. The suppressive effects of oxytocin (200 ng/
rat) on the first (F(2,17)=50.651, P<0.001, Figure 4) and 
second (F(2,17)=110.903, P<0.001, Figure 4) phases 
of pain were prevented by prior central injection of 

naloxone (400 ng/rat). 

Effects of intra-fourth ventricular injection of 
naloxonazine alone and prior to oxytocin on pain 
behavior induced by formalin

Intra-fourth ventricle injection of naloxonazine (400 
ng/rat) significantly increased the intensity of pain at 
the first (df=10, t= 4.151, P<0.01, Figure 5) and second 
(df=10, t= 4.226, P<0.01, Figure 5) phases. Naloxonazine 
(400 ng/rat) significantly prevented suppressive effects 
of oxytocin (200 ng/rat) on both the first (F(2,17)=58.765, 
P<0.001, Figure 5) and second (F(2,17)=114.304, P<0.001, 
Figure 5) phases of pain when used before oxytocin.

Effects of intra-fourth ventricular injection of nor-
binaltorphimine alone and prior to oxytocin on pain 
behavior induced by formalin

The first phase (df=10, t= 3.887, P<0.01, Figure 6) 
as well as the second phase (df=10, t=4.028, P<0.01, 
Figure 6) of pain intensity significantly increased after 
central administration of nor-binaltorphimine (400 ng/
rat). The suppressive effects of oxytocin (200 ng/rat) 
on the first (F(2,17)=60.18, P<0.001, Figure 6) and second 
(F(2,17)=120.7, P<0.001, Figure 6) phases of pain were 
inhibited by prior administration of 400 ng/rat nor-
binaltorphimine. 
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Effects of intra-fourth ventricular injection of 
naltrindole alone and prior to oxytocin on pain 
behavior induced by formalin

Central injection of nantrindole (400 ng/rat) not only 
had no effect on pain intensity but also did not prevent 
oxytocin (200 ng/rat)-induced antinociceptive effects 
(Figure 7). 

Effects of central administration of oxytocin, atosiban, 
and opioid receptor antagonists on locomotor activity

The photobeam break number after central injection 
of normal saline was 79.2±5.38 in a 5-min session. None 
of the above-used chemicals changed the number of 
photobeam break (Figure 8).

Discussion
Many scholars have reported a biphasic pain behavior 

(face rubbing) after SC injection of diluted formalin 
solutions (1%, 1.5%, and 2%) into lip and vibrissa pad 
(20, 22, 23, 29). Direct stimulation of C-nociceptors 
reflects the first phase, whereas integration among 
nociceptors and spinal and brainstem signaling may 
associate with the second phase (30). Although other 
behaviors including nose grooming, face scratching due 
to SC injection of formalin into the orofacial region have 
been reported (31, 32), face rubbing has been accounted 
as a specific pain behavior resulting from vibrissa pad 
injection of formalin (20, 23). A typical biphasic pain 
behavior obtained in our present study confirms the 
other findings (20, 23, 29). 

In the rat brain, the amygdala (AMY), the 
hippocampus (HIP), the nucleus accumbens (NAc), the 
ventral tegmental area (VTA), the periaqueductal gray 
(PAG), the rostral ventrolateral medulla (RVLM), and the 
spinal cord receive projections from oxytocin neurons 
(33-35). In addition, oxytocin receptors are expressed 
in parallel with oxytocin axons in the central nervous 
system (33, 34). Only one selective receptor for oxytocin 
has been characterized although oxytocin can act via 
vasopressin receptors at high concentrations (36). 
This receptor is coupled to phospholipase C via Gαq11 
protein activation, controlling inositol triphosphate 
and diacylglycerol generation leading to liberation of 
calcium ions from intracellular stores and activation of 
protein kinase C, respectively (33). Oxytocin modulates 
pain at the central nervous system level. Intrathecal 
or (ICV) injection oxytocin and anti-oxytocin serum 
increased and decreased nociception threshold, 
respectively (25). In addition, oxytocin concentration in 
the caudate nucleus (CdN) and PAG was increased after 
noxious stimulation (37, 38). To date, the central effect 
of oxytocin on formalin-induced orofacial pain was not 
investigated. Zubrzycka et al. (16), showed that ICV 
injection of oxytocin suppressed the tongue movements 
induced by tooth pulp stimulation, and prior central 
administration of atosiban blocked this effect (16). In 
addition, ICV injection of oxytocin (100-600 ng/rat) 
attenuated mechanical hypersensitivity following hind 
paw incision (39). In this context, an antihyperalgesic 
effect of centrally administered oxytocin has been 
reported after mechanical and thermal stimulation of 
carrageenan-injected paw in mice (40). The results of 
the present study reveal for the first time that central 
oxytocin through its receptor can modulate the orofacial 
pain induced by formalin.

Our results showed the involvement of central µ- and 
κ-, but not δ-opioid receptor in the processing of orofacial 
pain. Scholars reported moderate to high densities of µ- 
and κ-opioid receptor and a moderate density of delta 
opioid receptor in ascending pain modulation centers 
such as raphe nucleus, locus coeruleus and parabrachial 
nucleus (12). In addition, tooth pulp stimulation 
induced opioid receptors expression with high mu 
opioid receptor expression in brainstem structures such 
as periaqueductal grey (41). Using central injection of 
opioid receptor selective antagonists, it was reported 
that microinjection of naloxone, CTOP (Cys2, Try3, 
Orn5, Pen7amide, a mu-opioid receptor antagonist) and 
nor-binaltorphimine into the subnucleus caudalis of the 
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Figure 8. Effects of central injection of oxytocin and atosiban (A), 
central injection of naloxone, naloxonazine, nor-binaltorphimine 
and naltrindole (B) on locomotor behavior. Locomotor behavior was 
recorded in a 5-min session. Data were shown as means±SEM. No 
significant differences were seen among groups
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spinal trigeminal nucleus increased temporomandibular 
injected formalin-induced nociceptive response (42). In 
addition, the inflammatory pain of temporomandibular 
region increased spinal trigeminal subnucleus caudalis 
level of β-endorphins (43). It seems that central µ- 
and κ-opioid receptors may have a potent role in the 
modulation of inflammatory pain originating from the 
orofacial region.    

Naloxone is a competitive antagonist of µ- and 
κ-opiate receptors with higher affinity for µ- receptors 
(44, 45), and is frequently used to explore the 
contribution of endogenous opioid and non-opioid 
systems in central modulation of orofacial pain (15, 
22, 23). Prior ICV injection of naloxone prevented the 
antihyperalgesic effects of centrally-administered 
oxytocin in the carrageenan model of inflammation and 
hyperalgesia in mice (40). To clarify the contribution of 
opiate receptors in oxytocin-induced antinociception, 
we used selective mu-, kappa-, and delta-opioid 
receptor antagonists, before oxytocin. In addition to a 
direct effect, many scholars suggested an indirect effect 
of oxytocin on pain modulation, which is mediated 
through opioid receptors. Beta-funaltrexamine (a mu-
opioid receptor antagonist) and nor-binaltorphimine, 
but not by naltrindole attenuated centrally administered 
oxytocin-induced antinociception (46). Moreover, the 
concentrations of endogenous opioid peptides such as 
leucine-enkephalin and methionine-enkephalin were 
increased after microinjection of oxytocin into the 
PAG (47). According to our present results, a central 
interaction between opioid and oxytocin receptors in the 
modulation of analgesia in the orofacial inflammatory 
pain is indicated.

Our present results showed that locomotor activity 
has not been influenced by the used chemicals. 
Although there are no reports showing the sedation or 
hyperactivity of the above-mentioned drugs, Peterson 
et al. (48) reported an increase in the amount of 
locomotor activity as well as antinociceptive effect after 
chronic SC injection of oxytocin in ovariectomized rats. 
Therefore, centrally administered oxytocin-induced 
antinociception observed in our present study could be 
due to its effect on pain modulating centers. 

Conclusion
Our present findings showed that ICV injection 

of oxytocin reduced neurogenic and inflammatory 
pain originating from the orofacial region. Oxytocin 
receptors may be involved in this effect. Naloxone 
inhibited oxytocin-induced antinociception. Moreover, 
naloxonazine and norbinaltorphimine, but not 
naltrindole, prevented centrally-administered oxytocin-
induced antinociceptive effects.
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