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The extant literature supports the role of stress in enhancing the susceptibility of drug
abuse progressing to a substance use disorder diagnosis. However, the molecular
mediators by which stress enhances the progression from cocaine abuse to cocaine
use disorder via the mesolimbic pathway remain elusive. In this mini-review article,
we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic
system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme
in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO),
an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease
DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we
review preclinical literature highlighting how stress modulates the mesolimbic pathway,
including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter
cocaine abuse-related effects. Taken together, stress enhances cocaine’s abuse-related
effects at multiple points along the VTA mesolimbic projection, and uniquely in the
NAcs through a positive feedback type mechanism. Furthermore, we highlight future
directions to elucidate the interaction between the prefrontal cortex (PFC) and key
intermediaries including ∆FosB, cAMP response element binding protein (CREB) and
cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-
induced acceleration of the progression to a cocaine use disorder diagnosis.
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INTRODUCTION

The Diagnostic and Statistical Manual of Mental Disorders (DSM)-V criteria for substance use
disorders is defined as ‘‘recurrent use of alcohol and/or other drugs causes clinically and functionally
significant impairment, such as health problems, disability and failure tomeetmajor responsibilities
at work, school, or home’’ (American Psychiatric Association, 2013). Substance use disorders may
range from mild-to-severe and include a variety of substances such as opiates, nicotine, alcohol,
cocaine and others, each of which has different mechanisms of action and protein targets. While
cocaine exposure does not always progress to a cocaine use disorder diagnosis, a subset of
individuals will progress to severe cocaine use disorder or what is referred to as cocaine ‘‘addiction’’
in the preclinical literature. Although epidemiological reports vary, cocaine use disorder is
estimated to have an incidence of 0.1% worldwide (Shield et al., 2018). Although the factors
that drive progression to substance use disorders are not fully defined, several lines of evidence
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suggest stress exacerbates susceptibility to the abuse-related
effects of drugs (Piazza and Le Moal, 1998; Sinha, 2001; Cleck
and Blendy, 2008). For example, neonatal stress selectively
enhances the acquisition of cocaine self-administration in
rats, but does not augment self-administration when the
reinforcer is food (Kosten et al., 2000). Social housing stress in
nonhuman primates enhances the reinforcing effects of cocaine
in subordinate monkeys (Morgan et al., 2002); however, early
life stress produced by maternal separation does not enhance the
abuse-related effects of cocaine in nonhuman primates (Ewing
Corcoran and Howell, 2010).

Moreover, cumulative adversity is significantly predictive of
drug abuse in a dose-dependent manner (Sinha, 2008). In fact,
the limbic-hypothalamic-pituitary-adrenal axis (LHPA) axis,
responsible for governing the stress response, has substantial
overlap with the mesolimbic ‘‘reward’’ pathway involved in
reward circuitry (Koob, 2009). The mesolimbic pathway involves
dopaminergic projections from the ventral tegmental area (VTA)
to the nucleus accumbens (NAcs) and olfactory tubercle in the
brain (Quintero, 2013). This pathway is hypothesized to have a
critical role in the perception of pleasure and is conceptualized
by Koob (2011) to have several key functions: associating
meaning to reward-related cues, motivating goal-oriented
behavior and general activation. In this mini-review article,
we will focus on the impact of stress on cocaine abuse-
related effects mediated through the mesolimbic dopamine (DA)
‘‘reward’’ pathway. Given the considerable evidence supporting
an impact of stress on substance use disorder susceptibility
and relapse, improved understanding of the mechanisms by
which stress alters the abuse-related effects of drugs may
provide insight into novel molecular targets for therapeutic
interventions.

Underlying Mechanisms of Cocaine Abuse
Cocaine nonselectively binds to all three monoamine
transporters (DA, norepinephrine, and serotonin) and prevents
the reuptake of these monoamines into the presynaptic
terminal thereby enhancing monoamine neurotransmission.
Cocaine inhibition of the DA transporter is thought to be the
primary mediator of the abuse-related effects of cocaine (Ritz
et al., 1987; Volkow et al., 1997). Despite the DA transporter
being the primary target for cocaine’s abuse-related effects,
repeated cocaine exposure does not alter presynaptic DA
transporter availability in either humans (Wang et al., 1997)
or nonhuman primates (Czoty et al., 2007). However, repeated
cocaine exposure has been shown to increase serotonin and
norepinephrine transporter densities in nonhuman primates
(Macey et al., 2003; Beveridge et al., 2005; Banks et al., 2008).
Furthermore, repeated cocaine exposure downregulates both
presynaptic and postsynaptic DA receptors in humans (Volkow
et al., 1990, 1993), nonhuman primates (Nader et al., 2006) and
rats (Laurier et al., 1994). These cocaine-induced decreases in
DA receptors on both pre- and post-synaptic terminals, and the
resulting reduced dopaminergic tone, are thought to contribute
to the depressive-like symptoms of cocaine withdrawal and
relapse of cocaine abuse (Volkow et al., 1993; Thomas et al.,
2001).

In substance use disorders, relapse can be triggered by
drug-related cues that function as discriminative stimuli
to signal contingencies of drug availability and promote
drug-taking behavior. For example, following drug-associated
cue presentation, the amygdala signals to dopaminergic cell
bodies in the VTA (Nestler and Carlezon, 2006; Cleck and
Blendy, 2008). These VTA dopaminergic neurons then signal
to the NAcs to release DA, which triggers increased gamma-
aminobutyric acid (GABA)-ergic input to the thalamus (Koob,
1992; Nestler and Carlezon, 2006). This GABAergic thalamic
input leads to hypoactivation of the prefrontal cortex (PFC),
impairing judgment and reasoning (Volkow and Morales,
2015). Thus, a combination of increased DA output in the
mesolimbic pathway and decreased PFC activation in cortical
pathways appear to result in increased drug-taking behavior.
Curiously, various types of stressors have been shown to promote
drug-taking behavior in preclinical models of drug relapse
(Mantsch et al., 2016; Dong et al., 2017), further highlighting the
interconnection between stress and reward pathways in the brain.

Mechanisms of Stress Response
The LHPA influences a variety of functions including the
digestive system, immune system, reproductive system,
mood and energy expenditure (Vázquez, 1998). The LHPA
undergoes self-regulation through feedback and modulates the
extrahypothalamic stress neurocircuit (Koob and Kreek, 2007).
In addition, the LHPA activates the brain reward circuit (Koob
and Kreek, 2007), bridging the interdependent relationship of
glucocorticoids (GCs) and the dopaminergic system.

The LHPA is activated following hypothalamic release
of corticotropin-releasing hormone (CRH) and vasopressin
through a hypophyseal portal system to the anterior
pituitary (Aguilera, 2011). CRH may be triggered by either
internal or external cues. Synergistically interacting with
vasopressin, CRH induces adrenocorticotrophic hormone
(ACTH) release by the anterior pituitary. ACTH then
acts on the adrenal gland inducing GC secretion into the
bloodstream. Cortisol, the primary GC in humans, binds
to the GC receptor (GR) in the brain and other end organ
tissues facilitating the stress response. The LHPA modulates
the stress response through negative feedback on the axis,
specifically through negative feedback on the anterior pituitary
and hypothalamus that inhibits ACTH and CRH release,
ultimately decreasing blood cortisol levels through reduced
release.

The GR is a transcription factor, and following translocation
to the nucleus, the GR can modulate 10%–20% of genes in
the human genome (Oakley and Cidlowski, 2013). While
unbound GR remains in the cytosol, in the presence of cortisol,
bound GR translocates to the nucleus and interacts with
GC response elements (GREs) to modulate transcription
(Chrousos et al., 2009). Moreover, GR interacts with other
transcription factors, including nuclear factor-κB (NF-
κB; Russo et al., 2007) and activator protein-1 (AP-1),
which have been implicated in the progression to severe
substance use disorder (Hope, 1998; Chrousos et al.,
2009).
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Interactions Between Glucocorticoids and
the Dopaminergic System
The interactions between LHPA-induced GC release and
the dopaminergic system are pivotal to understanding
interactions between stress and substance use disorders.
Both stressors and drugs of abuse have been shown to activate
the mesolimbic ‘‘reward’’ pathway. For example, both increase
glutamate receptor activation of VTA dopaminergic neurons
(Cleck and Blendy, 2008). In addition, the LHPA axis also
enhances glutamatergic plasticity in the VTA (Stelly et al.,
2016). Furthermore, Barrot et al. (2000) have shown that
adrenalectomy leading to decreased GC levels resulted in
decreased basal and cocaine-induced increase in NAcs shell
DA levels. Figure 1 shows three potential mechanisms by
which GCs are hypothesized to alter dopaminergic activity.
First, GCs increase DA biosynthesis by enhancing tyrosine
hydroxylase (TH) activity, the rate-limiting enzyme in
DA synthesis (Daubner et al., 2011). This is illustrated by
the observation that rats exposed to social isolation have
increased TH levels in the NAcs shell (Trainor, 2011). A
second mechanism by which GCs are hypothesized to alter
dopaminergic activity is through GC-induced reductions in
monoamine-oxidase (MAO) activity (Poletto et al., 2011). MAO

FIGURE 1 | Three mechanisms by which glucocorticoids (GCs) induce
dopamine (DA) release. First, GCs upregulate tyrosine hydroxylase (TH), the
rate-limiting enzyme in DA synthesis. Second, GCs downregulate
monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly,
GCs are hypothesized to decrease DA reuptake, subsequently increasing
synaptic DA.

is another method, in addition to monoamine reuptake by
presynaptic transporters as described above, for terminating
monoamine neurotransmission. Decreased MAO activity
would increase synaptic DA levels and enhance dopaminergic
neurotransmission. Lastly, GCs acting at GRs have been
shown to regulate DA transporter expression under both
basal and cocaine-stimulated conditions (Wheeler et al.,
2017). These results are also consistent with reduced DA
transporters in rats that underwent early life stress (Meaney
et al., 2002). Overall, this literature supports a role of GC
regulation of the mesolimbic DA pathway at multiple levels
to alter both basal and cocaine-induced dopaminergic
neurotransmission.

VTA

Increased Glutamatergic Plasticity
Both stress and drugs of abuse have been shown to increase
glutamatergic plasticity in the VTA (Saal et al., 2003).
Furthermore, exposure to stressful events enhances VTA
glutamatergic plasticity that may further enhance the abuse-
related effects of cocaine (Fitzgerald et al., 1996; Kauer and
Malenka, 2007; Stelly et al., 2016). In a recent study by Stelly
et al. (2016), rats first underwent a resident-intruder social
defeat paradigm in conjunction with corticosterone injections,
and then cocaine rewarding effects were assessed using a
conditioned place preference (CPP) procedure. Repeated social
defeat selectively enhanced long-term potentiation (LTP) of
N-Methyl-D-aspartic acid receptors (NMDARs) in the VTA.
This LTP manifested as enhanced VTA dopaminergic neuron
firing in response to cocaine-associated cues during CPP only
in the stressed group. This additional dopaminergic burst was
interpreted as enhancing the conditioned stimulus-response
relationship between drug-associated cues and the abused drug
that may be involved in drug relapse (Stelly et al., 2016).
These results suggest stress-induced glutamatergic plasticity of
NMDAR and subsequent enhancement of cocaine abuse-related
effects may be attenuated in the VTA by a GC antagonist.
Deletion of nuclear receptor subfamily 3, group C, member 1
(nr3c1), a gene encoding a GR, blunted cocaine reinforcement
in a drug self-administration procedure and VTA dopaminergic
firing (Ambroggi et al., 2009; Barik et al., 2013). These results
provide further evidence that GRs modulate VTA dopaminergic
plasticity that directly impacts the abuse-related effects of
cocaine.

Accumulating evidence suggests one molecular mechanism
by which both stress and drugs of abuse impact glutamatergic
plasticity in the mesolimbic pathway is through extracellular
signal-regulated kinases (ERK). For example, stress exposure
increased inositol 1,4,5-trisphosphate receptors (IP3R)
sensitization that was mediated by protein kinase A (PKA),
an upstream activator in ERK pathway (Vanhoutte et al., 1999;
Stelly et al., 2016; Figure 2). Consistent with these previous
results, social-defeat stress increased ERK signaling in the
VTA (Yap et al., 2015). Moreover, ERK signaling appears to
rely on the relative ratio of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) and NMDARs.
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FIGURE 2 | The general mechanism of the extracellular signal-regulated
kinase (ERK) pathway and key downstream products important in cocaine
addiction. Glutamate binding excites the N-Methyl-D-aspartic acid receptor
(NMDAR) and upregulates intracellular calcium. Excitation provokes a signaling
cascade, upregulating transcription factors Fos and Jun. Subsequently,
increased ∆FosB acts on activator protein-1 (AP-1) and upregulates
transcription and translation of cyclin-dependent kinase 5 (CDK5), GLUR2,
dynorphin (Dyn), synaptotagmin VII (Syt7), and neogenin. CDK5 mediates
localization and GLUR2-mediated plasticity in
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
through phosphorylation of δ-Catenin (Poore et al., 2010). Increased
GLUR2 upregulates the ERK pathway in a positive-feedback type manner
through increased AMPAR in the nucleus accumbens (NAcs). Moreover,
increased D1 receptor activation upregulates protein kinase A (PKA),
phosphorylating the transcription factor cAMP response element binding
protein (CREB), leading to further increase in CDK5 and GLUR2 protein levels.

For example, stress exposure increases the AMPA/NMDA ratio
in the VTA (Saal et al., 2003; Dong et al., 2004). However,
inhibition of ERK activation has produced equivocal results on
the abuse-related effects of cocaine. Administration of SL327,
a mitogen-activated protein kinase (MEK) inhibitor used to
inhibit ERK, decreased both context and cocaine-induced CPP
(Valjent et al., 2000, 2006; Pan et al., 2011). This trend may
be indicative of neuroadaptive changes post ERK inhibition.
In contrast, administration of U0126, another MEK inhibitor,
directly into the VTA enhanced both context and cocaine
cue-induced reinstatement in non-stressed rats (Lu et al.,
2004, 2009). However, in rats undergoing social stress first,
U0126 directly into the VTA attenuated stress-enhanced cocaine
locomotor sensitization (Stelly et al., 2016). Taken together, the
role of ERK activation in cocaine’s abuse-related effects seems
fundamental to understanding downstream physiological and
behavioral alterations initiated in the VTA.

FIGURE 3 | Image of a potential mechanism for stress- and cocaine-induced
drug dependence via a feed-forward cycle in the NAcs. In the presence of
stress, ventral tegmental area (VTA) DA release is upregulated resulting in
increased D1 receptor activation. Cortisol is implicated in increasing DA
release through corticotropin-releasing factor acting at type 1 receptor
(CRF-R1) binding to gamma-aminobutyric acid (GABA)-B VTA neurons acting
on VTA DA neurons. Increased DA levels promote D1 activation leading to an
increase in ∆FosB, CREB and CDK5 levels in the NAcs. Moreover,
D1 activation is linked to decreased GABA-B activation in the NAcs, resulting
in greater long-term potentiation (LTP): long-term depression (LDP).
Attenuation of GABA projections from NAcs to the VTA is suggested to further
DA release; however, the particular projection (GABA-A/GABA-B) is currently
unknown. Furthermore, brain-derived neurotrophic factor (BDNF) is implicated
in contributing to LTP in the NAcs through activation of tropomyosin receptor
kinase B (TrkB) receptors.

CRF-R1 Modulation
Corticotropin-releasing factor acting at type 1 receptor (CRF-R1)
has also emerged as one potential molecular mechanism linking
stress and drug abuse. For example, intermittent social defeat
stress elicits CRF release in the VTA (Holly et al., 2016).
Furthermore, social defeat stress or intra-VTA CRF enhanced
the abuse-related effects of cocaine in rats (Boyson et al.,
2014; Leonard et al., 2017). Consistent with these previous
findings, administration of a CRF antagonist before each
social defeat stress attenuated both cocaine-induced locomotor
sensitization and escalated cocaine self-administration in rats
(Boyson et al., 2011). However, CRF antagonists also decrease
escalated cocaine self-administration in non-stressed rats (Specio
et al., 2008) suggesting the role of CRF on interactions between
social stress and cocaine abuse-related effects have not been
fully elucidated. Further complicating the role of CRF in
cocaine reinforcement are results from nonhuman primates
demonstrating a CRF antagonist does not attenuate cocaine
self-administration (Mello et al., 2006). In congruence with this
observation, the CRF antagonist verucerfont failed to attenuate
alcohol craving in anxious alcoholic women, despite blocking
HPA axis responsivity to dexamethasone (Schwandt et al.,
2016). Overall, in contrast to the preclinical reports using
rodents, nonhuman primate and clinical results do not provide
compelling evidence for a significant role of CRF in altering
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the abuse-related effects of abused drugs in either stress or
non-stressed research subjects.

NUCLEUS ACCUMBENS NAcs

Increased LTP From D1 Activation
In addition to drug-induced changes in the VTA, chronic
cocaine use and stress exposure can directly alter the NAcs
(Wolf and Ferrario, 2010; Koya and Hope, 2011). Preclinical
models show cocaine-induced morphological changes in
dendritic spine density and greater AMPAR/NMDAR firing in
the NAcs after administration alone (Wolf and Ferrario, 2010;
Koya and Hope, 2011). Furthermore, chronic stress may alter
relapse and self-administration via epigenetic modifications
to histone dimethyltransferase G9a in the NAcs (Anderson
et al., 2018). In addition to drug and stress induced changes
in the NAcs, chronic stress exposure may further substance
abuse via a feedback loop with the VTA. The D1 receptor
is a Gs-protein coupled post-synaptic receptor that is linked
to upregulation of FBJ murine osteosarcoma viral oncogene
homolog B (∆FosB), cAMP response element binding protein
(CREB), and cyclin-dependent kinase 5 (CDK5; Catalano
et al., 2009; Lebel et al., 2009; Zhang et al., 2002). Increased
D1 receptor activation leads to upregulated glutamatergic
receptors in the NAcs (Chao et al., 2002; Mangiavacchi and
Wolf, 2004). In addition, increased D1 activation attenuates
GABA-B, a metabotropic transmembrane receptor, inhibition
due to changes in adenosine levels after cocaine exposure in
the VTA (Bonci and Williams, 1996). Reduced inhibition by
GABA-B can subsequently increase LTP (Nicola et al., 2000)
and decrease long-term depression (LDP) leading to increased
synaptic plasticity in the NAcs (Bonci and Williams, 1996;
Nicola et al., 2000; Fourgeaud et al., 2004). NAcs inhibitory
neurons can project back to the VTA, resulting in a possible
feedback loop of increased neurogenic excitability and DA
release (Omelchenko and Sesack, 2009; Xia et al., 2011). The
increase in potentiation further excites DA cells, causing
DA release (Gonon and Sundstrom, 1996; Gonon, 1997).
This theory aligns with recent data suggesting increased DA
release after CGP55845 administration, a GABA-B antagonist
(Melchior et al., 2015). Subsequently, greater DA in the
synapse reduces D1 DA receptor availability in the ventral
striatum according to recent PET scans (Martinez et al.,
2009). Additional research is needed to support a pattern of a
positive feedback loop and greater VTA response to the drug.
Furthermore, stress-induced cocaine seeking is initiated by
GABA-B receptor-dependent CRF actions in the VTA (Blacktop
et al., 2016). Although this modulation by stress is carried
out in the VTA, effects of GABA-B and CRF interactions are
exerted in the postsynaptic membrane in the NAcs. Additional
evidence suggests brain-derived neurotrophic factor (BDNF)
may mediate neuronal excitability through activation of
tropomyosin receptor kinase B (TrkB) receptors in the NAcs
(Berton et al., 2006). Lobo et al. (2010) found a loss of TrkB
receptors, mimicked through upregulation of D2 neurons,
lead to decreased cocaine reward; in contrast, upregulation

of D1 excitability showed an increase in cocaine reward. In
addition to BDNF’s mediating role, stress is implicated in
facilitation of further synaptic adaptations in the NAcs. To
this end, Chaudhury et al. (2013) demonstrated that repeated
social defeat stress may induce VTA DA neuron phasic firing
to the NAcs in mice. These data suggest that stress-induced
phasic firing of the VTA may augment synaptic excitability
in the NAcs of cocaine-addicted brains (Chaudhury et al.,
2013).

The proposition that stress exerts effects through inhibition
of positive feedback is not fully supported in the extant
literature. For example, Sinha (2008), reported that chronic
stress inhibits DA synthesis in the NAcs. However, it is
well supported that GC concentrations directly correlate with
extracellular DA release (Brake et al., 2004; Sinha, 2008).
Although DA synthesis may be inhibited by chronic stress,
cocaine sensitization has been repeatedly shown to increase
by gene and protein regulators such as ∆FosB, CREB and
CDK5 (Kelz et al., 1999; Bibb et al., 2001; McClung and
Nestler, 2003; Mattson et al., 2005). Therefore, the combined
data leads us to conclude that stress increases drug addiction
susceptibility through increased sensitization in a positive
feedback manner (Figure 3). Furthermore, the literature suggests
that stress perpetuates drug dependence through allostasis by
reinforcement in an analogous feedback manner (Koob and
Le Moal, 2001; Ahmed et al., 2002). Taken together, the
available findings collectively suggest that stress may mediate
drug dependence at multiple levels, through positive feedback
mechanisms.

CONCLUSION AND FUTURE DIRECTIONS

Although this mini-review article has focused on the effects
of stress on the mesolimbic DA pathway, the effects of stress
on other brain regions implicated in substance use disorders
are important considerations beyond the capacity of this brief
synopsis. For example, GRs are highly expressed in the PFC. GCs
can act locally in the PFC to modulate cognitive impairments in
working memory due to acute stress (Butts et al., 2011). Similar
to GC effects on the mesolimbic DA pathway, corticosterone
administered directly into the PFC can increase DA efflux (Butts
et al., 2011). However, despite the relevant function of the
PFC in substance use disorders (Volkow et al., 2016), relatively
little research has been done to determine the extent to which
molecular intermediaries such as ∆FosB, CREB, or CDK5 are
involved in the PFC with regard to stress-induced enhancement
of cocaine abuse-related effects.

Collectively, this mini-review article details three potential
molecular mechanisms relating DA and GC interactions as they
relate to stress-induced enhancement of cocaine abuse-related
behaviors. In all three mechanisms, stress-induced GC release
and subsequent activation of GRs primes the mesolimbic DA
pathway. The overall net effect is enhanced abuse-related effects
of cocaine and enhanced susceptibility of progressing to a cocaine
use disorder diagnosis (Sinha, 2008). Thus, stress may serve as
a positive feedback mechanism in the NAcs for enhancing the
susceptibility to, or progression to, substance use disorder.
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