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Abstract
Background/Aims: NF-κB induces transcription of a number of genes, associated with 
inflammation and apoptosis. In this study, we have investigated the effect of β-adrenergic 
receptor stimulation on NF-κB and IκBα in HUVECs. Methods: Human umbilical vein 
endothelial cells (HUVECs) were cultured in high and low glucose concentrations. All HUVECs 
were treated with different concentrations of isoproterenol and propranolol for different time 
periods. The analytical procedures consisted of  Western Blot, ELISA, DCFH-DA and TUNEL 
assays. Results: Isoproterenol (agonist of a beta-adrenergic receptor) significantly reduced 
phosphorylation at Ser-536 of NF-κB; and Ser-32 and Ser-36 of IκBα in hyperglycemic 
HUVECs.  Isoproterenol also significantly reduced apoptosis and ROS generation.  No effect  
of IκBα was observed on Tyr-42 phosphorylation.  The effect of isoproterenol was reversed by 
the antagonist propranolol. We also checked if NF-κB inhibitor MG132 causes any change at 
the level of apoptosis. However, we observed an almost similar effect.  Conclusion: Given data 
demonstrates that beta-adrenergic receptors stimulation has a protective effect on HUVECs 
that might be occuring via  NF-κβ and IκBα pathway.

Introduction

Diabetes mellitus (DM) is considered to be a metabolic disorder characterized by 
hyperglycaemia, insulin resistance, pancreatic β cell dysfunction and other complications 
[1-10]. Worldwide, millions of people are being affected by diabetes, assigning it as one 
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of the most common non-communicable diseases [8-10]. The molecular and biochemical 
mechanisms of both type I Diabetes mellitus (T1DM) and type II Diabetes mellitus (T2DM) 
are not necessarily be the same. However, there are numerous common similarities between 
both. Both types of diabetes greatly increase the risk of various other complications including 
inflammation and endothelial dysfunction [10-16].

Overproduction of reactive oxygen species (ROS) by mitochondria is known to be 
a causal link between hyperglycemia and the major biochemical pathways, including NF-
kB-mediated inflammation [17, 18]. NF-κβ pathway is a well known pro-inflammatory 
signalling pathway [19]. NF-κβ is a transcription factor that regulates the κβ light chain 
expression and also regulates the genes that control cell survival and cell proliferation [19]. 
Studies have shown that the activation of NF-κβ pathway plays an essential role in apoptosis, 
inflammatory responses, cellular growth and developmental processes [20]. Upon cellular 
activation, phosphorylation at Ser-32/36 and Tyr-42 of IκBα releases the NF-κβ, allowing 
it to translocate to the nucleus where it acts as a transcription factor and up-regulates 
the expression of numerous pro-inflammatory genes, including cytokines and adhesion 
molecules [21]. Phosphorylation of NF-κβ p65 occurs on several serine residues. Upon 
treatment with TNFα, Ser-529 is phosphorylated by casein kinase II [22, 23], Ser-311 by 
protein kinase C (PKC) [24], Ser-276 by both PKA and mitogen- and stress-activated protein 
kinase 1 (MSK1) [25, 26] and Ser-536 by the IκB kinase (IKK) complex [27] in a range of cell 
types.

Beta-adrenergic receptors are the emerging targets for seeking therapeutic interventions. 
Several studies have suggested that they might be the promising targets against vascular, 
cardiac and metabolic complications. In a study, isoproterenol treatment significantly 
decreased protein levels of iNOS, TNF-α, and IL-1B, in rMC-1 cells [28].  Stimulation of beta-
2 adrenergic receptor also exhibited anti-inflammatory effects in rats [29]. The aim of this 
study was to analyse the effect of isoproterenol (β-ARs agonist) and propranolol (β-ARs 
antagonist) on the hyperglycemia-induced apoptosis and phosphorylation of NF-κB at Ser-
536 and IκBα at Ser-32, Ser-36 and Tyr-42 in HUVECs.

Materials and Methods

Cell Culture
Human umbilical vein endothelial cells (HUVECs) were cultured in complete ECM media, supplemented 

with 10% FBS, 1% Penicillin-Streptomycin and animal-derived growth factors. Cells were cultured in flasks 
containing normal (5 mM) and high (25 mM) glucose. HUVECs were treated with agonist (isoproterenol) 
and antagonist (propranolol) in 5 µM, 10 µM and 20 µM concentrations for 6, 12 and 24 hours. Cells were 
also treated with TNF-α (10 ng/ml). Cells were grown in 5% CO2 at 37°C. Media was changed every 2 to 3 
days.

Western Blot Analysis
HUVECs were lysed, centrifuged and proteins were extracted according to the manufacturer’s protocol 

(Sigma). Total of 30 μg proteins was loaded in each well and separated on 10% SDS-PAGE (Precast gels, 
Bio-Rad, cat no 456-1093). Blots were incubated overnight at 4°C with primary antibodies (1:3000) against 
IκBα and NF-κB (Santa Cruz). Anti-β-actin (Santa Cruz, sc-7210) antibodies were used to ensure the 
quality of protein separation and loading contents. Membranes were incubated with HRP-conjugated IgG 
secondary antibodies (Santa Cruz, sc-2004) and visualized with enhanced chemiluminescence (Amersham 
Life Sciences, UK), using gel imaging system (Biospectrum 410, UVP).

Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay
DNA damage was examined and quantified, using a colorimetric apoptosis detection kit with TUNEL 

staining in a 96-well format (Titer TACS; R&D System). Briefly, 1 × 105 cells/well were transferred into a 
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96-well plate and fixed with 3.7% buffered formaldehyde for 5 minutes. After washing with PBS, cells were 
subjected to permeabilization with 100% methanol for 20 minutes. Labelling procedure was carried out 
and the reaction was stopped with 0.2 N HCl. The absorbance was measured at 450 nm with a microplate 
reader.

Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay
2′7′-dichloro-dihydro-fluorescein diacetate (DCFH-DA) reagent was used to measure intracellular ROS 

(reactive oxygen species). Cells were seeded in 96-well plates for 24 hours with beta adrenergic receptors 
agonist and antagonist. Cells were then treated with 5 μM DCFH-DA and the readings were taken at 485 nm 
excitation and 530 nm emission in a fluorescence plate reader.

Statistical Analysis
Each test was performed in triplicate. The results were expressed as the mean value ± SD. One-way 

ANOVA test was used to determine statistical significance. A value of 0.05 was considered significant. 
Statistical analysis was performed using SPSS-17.0 package  (IBM Corporation, Armonk, NY, USA).

Results

Effect of beta-adrenergic receptors agonist and antagonist on apoptosis in HUVECs
We investigated the effect of isoproterenol (beta-adrenergic receptors agonist) and 

Propranolol (beta –adrenergic receptor antagonist) on HUVECs. TUNEL assay was employed 
to check the apoptosis. Cells treated with higher glucose concentration  for 24 hours showed 
significantly high apoptosis. Isoproterenol at various concentrations significantly reduced 
the level of apoptosis. Isoproterenol at concentrations of 10 µM and 20 µM for 12 hours; 
and 5 µM, 10 µM and 20 µM for 24 hours (Fig. 1A, 1B and 1C) showed a significant effect 
on hyperglycemia-induced apoptosis. No effect was observed at 6 hours’ time period. 
Propranolol reversed the effect of isoproterenol when treated with 10 µM and 20 µM for 12 
hours and 24 hours respectively.

Effect of beta-adrenergic receptors agonist and antagonist on reactive oxygen species 
(ROS)
Studies have reported that hyperglycemia significantly induces the level of reactive 

oxygen species in endothelial cells. We were keen to investigated the process by which beta-
adrenergic receptors agonist and antagonists alter ROS level. As shown in Fig. 1D and 1E, 
high glucose-treated cells showed high ROS generation. Isoproterenol at concentrations of 
5 µM, 10 µM and 20 µM for 6 hours, 12 hours and 24 hours, reduced ROS generation in 
hyperglycemic HUVECs. We observed a significant effect when isoproterenol was treated at 
a concentration of 20 µM for 24 hours. Propranolol reversed the effect of isoproterenol.

Stimulation of Beta-adrenergic receptors attenuates apoptosis and ROS via NF-κB and 
IκBα pathway
To elucidate the mechanisms underlying the observed reduction in apoptosis (Fig. 1A, 

1B, 1C) and ROS generation (Fig. 1D) with increased cells viability, we examined NF-κB 
pathway. As shown in Fig. 2A and 2B, glucose stimulation induced phosphorylation of p65 
at Ser-536. Cells were then subjected to various concentrations of agonist (isoproterenol) 
and antagonist (propranolol) for 24 hours. There was a significant reduction in the level of 
phosphorylation of NF-κB p65 at Ser-536 upon isoproterenol treatment at a concentration of 
10 µM and 20 µM for 24 hours. Propranolol showed a reversed effect against isoproterenol-
induced effect at a concentration of 10 µM and 20 µM for 24 hours.

Eukaryotic cells utilise NF-kB as a regulator of genes that control cell survival and 
proliferation. To test our hypothesis and to further elucidate the effect of beta-adrenergic 
receptor stimulation, we intended to first enhance the phosphorylation level and then 
use isoproterenol and propranolol to see whether high phosphorylation level could be 
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reduced. Cells were subjected to TNF-α (10 ng/ml) for 24 hours. Enhanced phosphorylation 
of NF-κB p65 at Ser-536 after TNF-α treatment was observed. Isoproterenol treatment at 
a concentration of 5 µM, 10 µM and 20 µM for 24 hours significantly reduced the TNF-α-
induced phosphorylation of NF-κB p65 at Ser-536 (Fig. 2C and 2D). Propranolol diminished 
the effect of isoproterenol.

It is evident that IKKb can increase phosphorylation of p65 Ser-536, as well as Ser-32 
and Ser-36 of IκBα. IKKb phosphorylates at Ser-32 and Ser-36 of IκBα, which is followed 
by the release of NF-κB from its inhibitor and consequently its activation. Based on these 
reported mechanisms, we presumed that the de-phosphorylation of NF-kB at Ser-536 is 

Fig. 1. Effect of isoproterenol on apoptosis and ROS generation. This Fig. shows increases apoptosis in 
human umbilical vein endothelial cells, treated with high glucose. Apoptosis was reduced by isoproterenol 
(showed iso in labelling) at different concentrations (5 uM, 10 uM and 20 uM) and time periods 6 hours 
(1A), 12 hours (1B) and 24 hours (1C). ROS generation was also reduced after isoproterenol treatment 
(1D). This effect was diminished by the antagonist of beta-adrenergic receptor propranolol (showed pro in 
labelling). Fig. 1E shows the level of apoptosis after inhibiting NF-κB with MG 132.

	

	
Figure	1	
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actually due to the de-phosphorylation of IκBα. To confirm this hypothesis, we further studied  
phosphorylation at Ser-32, Ser-36 and Tyr-42 of IκBα. Interestingly, exposure to glucose 
increased the phosphorylation of IκBα at Ser-32 and Ser-36 with no effect on Tyr-42 (Fig. 

Fig. 3. phosphorylation of IκBα at Ser-32, Ser-36 and Tyr-42. This Fig. shows the effect of isoproterenol and 
propranolol on glucose (3A, 3B) and TNF-α induced (3C, 3D) phosphorylation of IκBα at Ser-32, Ser-36 and 
Tyr-42. Glucose and TNF-α treated cells showed increased phosphorylation of IκBα at Ser-32, Ser-36 and 
Tyr-42 which was significantly reduced by isoproterenol. The effect of isoproterenol was reversed by the 
agonist propranolol.

	

	

Figure	3	

	

	

	

	

Fig. 2. Phosphorylation of NF-κB. This Fig. demonstrates the effect of isoproterenol and propranolol on 
glucose (2A, 2B) and TNF-α induced (2C, 2D) phosphorylation of NF-κB p65 at Ser-536 in HUVECs. High 
glucose and TNF-α treated cells showed increased phosphorylation of NF-κB p65 at Ser-536 which was 
significantly reduced by isoproterenol. The effect of isoproterenol was reversed by the agonist propranolol.
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3A and 3B). Isoproterenol at concentrations of 5 µM, 10 µM and 20 µM, significantly reduced 
the glucose-induced phosphorylation of Ser-32 and Ser-36. The effect of isoproterenol 
was validated by propranolol at the same concentrations and time periods. HUVECs were 
exposed to TNF-α which resulted in increased phosphorylation of Ser-32, Ser-36 and Tyr-42 
(Fig. 3C, 3D). As described above, both agonist and antagonist modulated the level of TNF-α 
induced phosphorylation at Ser-32 and Ser-36 on the same pattern. In order to prove that 
beta-adrenergic receptors stimulation protects HUVECs from apoptosis, via NF-κβ and IκBα 
phosphorylation, we blocked NF-κB by the proteosome inhibitor MG132.  After inhibition, 
we again conducted the apoptosis assay, and observed almost similar pattern of apoptosis 
in HUVECs (Fig. 1E).

Discussion

In this study, we investigated the effect of beta-adrenergic receptors stimulation on 
apoptosis and ROS generation, followed by the role of NF-κB and IκBα phosphorylation. 
Our data demonstrates that hyperglycaemia could be an apoptotic stimulus which triggers 
NF-κβ release and activation. These mechanisms get halted due to beta-adrenergic receptor 
stimulation through its agonist isoproterenol. Our data showed a disruption of NF-κβ 
pathway through de-phosphorylation which may ultimately lead to reduced apoptosis and 
low level of ROS generation.

Studies [30] implicate a general dysregulation of the endothelium with apoptosis, 
mitochondrial dysfunction and increased ROS generation. So we hypothesized that 
endothelial dysfunction might also be detected in endothelial cells under hyperglycemic 
conditions which may reflect the degree of apoptosis and increased level of reactive oxygen 
species [31]. Our results showed reduced ROS generation and decreased apoptosis after 
beta-adrenergic receptor stimulation. These results are in line with the previous studies 
[28, 32, 33] done elsewhere.  Studies have also reported that blockade of TNF-α by sh-
RNA and induction of the beta 2 adrenergic receptor by its agonist salmeterol, significantly 
reduced the apoptosis of retinal Muller cells [34, 35]. These studies support our findings that 
demonstrate that beta-adrenergic receptor stimulation increases the cell viability. A recent 
study, that also support our findings, has reported that activation of the beta-2 adrenergic 
receptor could stimulate anti-inflammatory properties of dendritic cells; [36].

To elucidate the observed results, we hypothesized that beta-adrenergic receptors 
activation shall exert a suppressive effect on NF-κβ and its inhibitor IκBα as it is well 
documented that NF-κB plays a key role in modulating the gene expression [37, 38]. 
Phosphorylation of NF-κB p65 at Ser-536 was markedly reduced after beta-adrenergic 
receptor stimulation. Stimulation of TNF-α further induced the phosphorylation of NF-
κB p65 at Ser-536, which was reversed by isoproterenol. Our results suggest that beta-
adrenergic receptors stimulation inhibits the activation of NF-κB in HUVECs, leading to 
reduced apoptosis and low level of reactive oxygen species. Increased phosphorylation 
of IκBα at Ser-32 and Ser-36 by IKKβ causes dissociation and activation of NF-κβ [39]. 
We were expecting the same dephosphorylating effect on IκBα. Our results displayed the 
same effect by significantly reducing the phosphorylation of Ser-32 and Ser-36 in glucose 
and TNF-α induced HUVECs. Furthermore, we observed a reduction in the glucose-induced 
phosphorylation of Ser-32 and Ser-36 after beta-adrenergic receptor stimulation through 
isoproterenol. This demonstrates that the anti-apoptotic effect of isoproterenol is possibly 
due to the suppression of IκBα phosphorylation at Ser-32 and Ser-36 in HUVECs.

Conclusion

Results of the given study reveal that beta-adrenergic receptors stimulation exert a 
positive effects by reducing apoptosis and by lowering the level ROS generation.  The effect 
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of beta-adrenergic receptors agonist appears to be involved in the dephosphorylation of NF-
κβ and IκBα in hyperglycaemic HUVECs.
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