
¦ 2018 Vol. 14 no. 4

A review of effect sizes and their confidence intervals,

Part I: The Cohen’s d family
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Abstract Effect sizes and confidence intervals are important statistics to assess the magnitude

and the precision of an effect. The various standardized effect sizes can be grouped in three cate-

gories depending on the experimental design: measures of the difference between two means (the

d family), measures of strength of association (e.g., r,R2
, η2
, ω2
), and risk estimates (e.g., odds ratio,

relative risk, phi; Kirk, 1996). Part I of this study reviews the d family, with a special focus on Co-
hen’s d and Hedges’ g for two-independent groups and two-repeated measures (or paired samples)
designs. The present paper answers questions concerning the d family via Monte Carlo simula-
tions. First, four different denominators are often proposed to standardize the mean difference in

a repeated measures design. Which one should be used? Second, the literature proposes several

approximations to estimate the standard error. Which one most closely estimates the true standard

deviation of the distribution? Lastly, central and noncentral methods have been proposed to con-

struct a confidence interval around d. Which method leads to more precise coverage, and how to
calculate it? Results suggest that the best way to standardize the effect in both designs is by using

the pooled standard deviation in conjunction with a correction factor to unbias d. Likewise, the best
standard error approximation is given by substituting the gamma function from the true formula

by its approximation. Lastly, results from the confidence interval simulations show that, under

the normality assumption, the noncentral method is always superior, especially with small sample

sizes. However, the central method is equivalent to the noncentral method when n is greater than
20 in each group for a between-group design and when n is greater than 24 pairs of observations
for a repeated measures design. A practical guide to apply the findings of this study can be found

after the general discussion.
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Introduction
Researchers in social sciences are usually interested in an-

swering two general questions: Is there an effect in the pop-
ulation? and Is the effect big or small? To answer the first
question, a p value is often computed. This value repre-

sents the probability of obtaining the effect observed in

the sample, or a more extreme one, if the population true

effect is zero (Clay, 2014). Arguably, a p value conveys lit-

tle information regarding the magnitude of an effect and

the degree of error associated with this estimate (Clay,

2014; Cumming, Fidler, Kalinowski, & Lai, 2012; Thomp-

son, 2002). Additionally, the hypothesis embedded in the p

value is often a perfectly “nil” null effect; this unrealistic

point of reference has made a strong case for the develop-

ment of Bayesian analyses.

The second question, Is the effect large or small?, can-
not be answered with p values because they fail to indicate

the magnitude of a difference beyond its significance. Ad-

ditional information must be provided, collectively called

effect sizes. Effect sizes estimate the magnitude of an ef-
fect and often, but not necessarily, standardize this magni-
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tude to facilitate comparison between studies. Those effect

sizes are estimates because they infer the true population
effect from the sample. Consequently, they should be ac-

companied by a confidence interval to assess their preci-

sion. One difficulty remains to select the right effect size

measure, which depends on the experimental design and

the desired interpretation. Kirk (1996) listed more than 40

effect size statistics and Huberty (2002), in a review, raised

that number to 61. Some of those measures are redundant

or too specific; some are more biased estimators than oth-

ers; finally, many are based on approximations, not all very

fortunate.

The present inquiry reviews commonly used effect

sizes and their confidence intervals. This first part ad-

dresses the d family of effect size, which represents stan-
dardized measures of the difference between two means.

More specifically, Cohen’s d and Hedges’ g for between and
within-group designs are reviewed and tested using Monte

Carlo simulations.

The reader is referred to Part II of this study for a re-

view and evaluation of effect sizes and confidence inter-

vals for analysis of variance (two or more groups), correla-

tion (two related variables), and linear regression (one or

more predictors; Goulet-Pelletier & Cousineau, in prepara-

tion).

The Cohen’s d family.
This measure of effect size was inaugurated by Cohen

(1969). It is used to evaluate and to standardize the differ-

ence between two means.
1
It then allows comparing the

impact of a treatment across studies that do not necessar-

ily share the same units of measurement. As mentioned by

Glass (1976) who popularized this measure, it is similar to a

Z score. Hence, interpreting a Cohen’s d is quite intuitive:
a large Cohen d represents a large difference between two
means. Cohen’s d magnitude is expressed in a number of
standard deviations that separate the two groups. Thus,

a d of 0.5 can be understood as one group being located
0.5 standard deviations away from the other group. Cohen

(1969) proposed guidelines to interpret the magnitude of

this measure with 0.2 being "small”, 0.5 being "medium”,

and 0.8 being "large”. They are perhaps more meaning-

fully classify as "merely statistical,” "subtle” and "obvious,”

respectively (Fritz, Morris, & Richler, 2012). These guide-

lines are not meant to be followed rigidly; the context of

a study is crucial to interpret the magnitude of any effect

(Cohen, 1988; Cumming, 2012; see also Pek & Flora, 2018,

for a discussion). A d of 0.5 is said to be visible to the naked
eyes of a careful observer (Cohen, 1992).

Cohen’s d can be employed in four different scenarios:

a) in single group designs, where the sample mean is com-

pared to a pre-specified target value; b) in two indepen-

dent groups designs, where the interest is in the difference

between two population means; c) in single group – two

repeated measure designs (e.g., pretest-posttest or paired

samples), where the interest is in the change in the popu-

lation mean between the two measurements; finally, d) in

designs where one of the groups is a baseline both in terms

of mean and variability (Cumming & Finch, 2001).

The general formula is

d =
M1 −M2

S
(1)

whereM1 andM2 are the two means to be compared, and

S is a measure of standard deviation.
Three decisions must be made before computing a Co-

hen’s d. The first is to choose the right divider S in Eq.
(1), i.e., the value that best estimates the standard devia-

tion of the population in a given design. Depending on the

design, a different standard deviation may be required in

the denominator (hereafter called the divider). The second

is to decide if an unbiased estimate of d is desired or not.
The third decision, although optional, is to determine the

correct standard error of the d statistic to establish its vari-
ability. At least six standard error estimates can be found

in the literature. Finally, if confidence intervals are sought,

decide whether a central or a noncentral t distribution is
used for the coverage factor (often 95%).

Not all of the available options are equally potent. So,

in addition to reviewing them, we evaluate them using

Monte Carlo simulations and make recommendations if

some options are less relevant than others.

Review of the choices composing a Cohen’s d effect size
Which divider to use?

The divider S in Eq. (1) depends on the design. Due to
the alternative ways to calculate a Cohen’s d, researchers
need to carefully select the right formula and report unam-

biguously which one they have used (e.g., using a clear no-

tation). Otherwise, misinterpretations are to be expected.

For this reason, we added a subscript to d to identify which
divider has been used to standardize the mean difference.

Four designs are possible. (a) For a situation where the

mean of a single sample is compared to a target value, the

standard deviation of the sample is used and the effect size

is noted d1. (b) For two independent groups, the popula-

tion variability (σ) is indisputably best estimated by the
pooled standard deviation, Sp, and the effect size is noted
dp. (c) For two repeated measures, there is no agreement
on which divider to choose because different conceptual-

1
Cohen (1969) originally proposed to divide the raw difference by an unusual standard deviation formula. The original Cohen’s d formula is no

longer used nowadays.
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Table 1 Table 1 Cohen’s d effect size estimate for single group, two groups, two repeated measures and comparison to
a baseline designs and the assumptions underlying the equations.

Notation and equation Divider Assumptions

Single group designs

d1 = M1−target value
S1

S1 =
√

1
n1−1

∑
(Xi −M1)2 Population is normal.

Two groups designs

dp = M2−M1

Sp
Sp =

√
(n1−1)S1

2+(n2−1)S2
2

n1+n2−2 Populations are normal; Homogeneity

of variances.

Two repeated measures designs

dp (same as above)

dav = M2−M1

Sav
Sav =

√
S2
1+S2

2

2 Populations are normal; Homogeneity

of variances.

dD = M2−M1

SD
SD =

√
S2

1 + S2
2 − 2 r S1 S2 Populations are normal.

dDc = dD/
√

2(1− r)

Comparison to a baseline designs

∆ = M2−M1

Sbase
Sbase = S1 or S2 depending on which

group is the baseline

Populations are normal.

Note. Note. M1, S1 and n1 are the mean, standard deviation and sample size, respectively, of Group 1 (or measure-

ment time one).M2, S2 and n2 are the same for Group 2 (or measurement time two); r is the cross-measurement cor-
relation in a repeated measure design. Note that dp, dD , and dDc are sometimes called ds, dz , and drm respectively.

ization of the variability can bemade, resulting in different

estimates. One can select amongst: the pooled standard

deviation as in the between-group design (dp), a standard
deviation of the differences (dD), a converted standard de-
viation of the differences (dDc), and an averaged standard
deviation (dav). Note that dp, dD , and dDc are sometimes
called ds, dz , and drm respectively (e.g., Cumming, 2012;
Lakens, 2013; Morris & DeShon, 2002). Finally, (d) the last

case, when one group is compared to a baseline group, is

referred to as Glass’s ∆ for unequal variances (Glass, Mc-

Graw, & Smith, 1981). It will be briefly covered in its own

sub-section.

Equations for calculating these variations of Cohen’s d,
with their divider, are given in Table 1.

Biased or unbiased estimate?

Unfortunately, and as will be confirmed in later simula-

tions, the basic Cohen’s d formula (Eq. 1) is known to over-
estimate the effect size in the population, more so when

the sample size is small. It is therefore a biased estimate.

A correction factor to unbias d has been found by Hedges
(1981). This correction factor, herein called J , is based on

the number of observations. The unbiased version of d is
known as dunbiased, dunb, Hedges g, sometimes as g∗, or even
Hedges h (e.g., Nakagawa & Cuthill, 2007).2 In this text,
we use Hedges g as a synonym for dunbiased. However, and
as Cumming (2012) warns us, the term Hedges g has also
been employed synonymously to Cohen’s d (biased). Con-
sequently, be aware of the inconsistencies surrounding the

term “Hedges g” in the literature. All the characteristics of
Cohen’s d are also true of Hedges’ g, including the interpre-
tation. The only difference is a correction to the result of

Eq. (1). The correction applies similarly to all variants of d.
To avoid confusion, the subscript for Hedges’ g is the same
as for Cohen’s d.
Hedges’ correction factor can be computed with the fol-

lowing Equation (2a)

J(ν) =
Γ
(

1
2ν
)√

ν
2 Γ

(
1
2 (ν − 1)

) (2a)

where ν is the number of observations minus 2 (ν = n1 +
n2 − 2 for a two-group design and 2(n− 1) for a repeated
measures design), and Γ is the Gamma function. For inte-
ger values of x, the Gamma function returns the factorial of

2
Here we have another example of the misnomer law: Hedges found the unbiased estimate as well as its correct standard error and confidence

intervals. Yet, it is named g after Glass (1976) who popularized this effect size.
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Table 2 A few values of the correction factor J (both the exact formula, Eq. 2a, and its approximation, Eq. 2b) as a
function of ν.

J(ν)
ν Exact Approximation

2. 0.56 0.57

3. 0.724 0.727

4. 0.798 0.800

5. 0.841 0.842

10. 0.9227 0.9231

15. 0.9490 0.9492

20. 0.9619 0.9620

25. 0.9696 0.9697

50. 0.98491 0.98493

100. 0.992478 0.992481

200. 0.996245 0.996245

500. 0.998499 0.998499

1000. 0.999250 0.999250

x minus 1, Γ(x) = (x− 1)!. For x having decimals, this for-
mula is computationally complex and is not implemented

in many programming languages. For that reason, the fol-

lowing approximation has been proposed (Hedges, 1981)

J(ν) ≈
(

1− 3

4v − 1

)
. (2b)

Table 2 compares the real formula with its approximation,

for a few degrees of freedom.

As seen in Table 2, the approximation is not different

from the true value up to 2 decimals places for tiny groups

(a total of 5 participants if two groups are measured, so

that ν = 3) and to 5 decimal places for samples totalizing
100 participants or more. Regarding the correction factor

itself, the correction is important for small sample sizes,

but the multiplication tends rapidly towards 1 as sample

size (and, consequently, degrees of freedom) increases. For

example, for two groups with a total of 12 participants

(hence, ν = 10), the correction factor decreases d by about
8% (J(10) ≈ 0.92 = 92%). The correction is negligible
when ν exceeds 100.
Once the correction factor is obtained, Hedges’ g is ob-

tained with

g = J(ν)× d (3)

where J(ν) is the correction factor of Eq. (2a) or (2b), d is
the biased Cohen’s d of Eq. (1), and Hedges’ g is the unbi-
ased Cohen’s d.
As a rule of thumb, unbiased estimates should always

be used and consequently, Hedges’ g should always be pre-
ferred over Cohen’s d. However, for medium sample size
and above (n per group larger than 20), the difference be-
tween the two estimators is negligible, as will be seen in

the simulations next.

Which standard error to compute?

The distribution of Cohen’s d (or Hedges’ g) results from
the subtraction of two distinct population means. Hence,

it follows the noncentral t distribution instead of the (cen-
tral) t distribution for a single mean (or the normal dis-
tribution when samples are very large). Therefore, the

correct standard error needs to be derived from the non-

central t distribution. Unfortunately, this distribution is
computationally demanding as it does not exist in closed

form. This explains why many standard error approxi-

mations have been proposed. Reviewing the literature in

the search for the most commonly used approximation un-

folded a high level of confusion regarding which equation

should be employed, not to mention various errors in the

re-transcription of symbols (e.g., the harmonic mean of the

sample sizes is frequently replaced incorrectly by the arith-

metic mean). One mission of the present text is to reduce

this uncertainty regarding the calculation of a standard er-

ror for Cohen’s d. Hereafter, we review 7 expressions for
which we could locate their origin. They are listed in Table

3 and described below.True standard error. Hedges (1981) was the first to re-
port the true formula for the variance of the Cohen’s d for
two independentmeans, and consequently, after taking the

square root, the standard error of the Cohen’s d. It is given
by

SEbetween group =

√
ν

ν − 2

2

ñ

(
1 + δ2

ñ

2

)
− δ2

(J(ν))
2 (4)

where J(ν) was given in Eq. (2a), ñ is the harmonic mean
of n1 and n2, the size of the two samples, ν is the num-
ber of measurements minus 2, and δ is the true standard-
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Table 3 Table 3: Formulas for the variance of the Cohen’s d.

Name Formula Reference Note

True formula
ν
ν−2 ×

2
ñ

(
1 + δ2 ñ

2

)
− δ2

J(ν)2 Hedges, 1981, eq. 6b, p. 111.

True * (same as above) Morris (2000) Uses Eq. (2b) instead

of (2a)

Hedges Approximation
2
ñ

(
1 +

δ2 ñ2
2ν

)
Hedges, 1981, p. 117. ForN > 50

Hedges & Olkin approx.
a 2

ñ

(
1 +

δ2 ñ2
2N

)
Hedges & Olkin, 1985, Eq. 15, p. 86. ForN > 50

MLE approximation
ν+2
ν ×

2
ñ

(
1 +

δ2 ñ2
2ν

)
Hedges & Olkin, 1985, Eq. 11, p. 82 ForN > 50

Large N approximation
b 2

n̄

(
1 + δ2

8

)
Hedges, 1981, Corollary 1, p. 112 ForN > 50 and bal-

anced group sizes

Correction for small N
c ν+1

ν−1 ×
2
n̄

(
1 + δ2

8

)
Hunter & Schmidt, 1990 For balanced group

sizes

Note. δ is the population standardized effect size or an estimate of it (preferably Hedges’ g);
J(ν) =

Γ( 1
2ν)√

ν
2 Γ( 1

2 (ν−1))
≈
(

1− 3
4ν−1

)
ν is the degree of freedom (ν = n1 + n2 − 2); ñ is the harmonic mean of n1 and n2;N is the total sample size in two-
group designs (n1 + n2).

Some of the formulas are more commonly seen as:
a
:
n1+n2

n1n2
+ δ2

2(n1+n2)

b
: (4/N)

(
1 + δ2

8

)
; note that this formulation and the next one is accurate only when n1 = n2, in which case ñ =

N/2.
c
: (N − 1) / (N − 3) (4/N)

(
1 + δ2

8

)

ized effect size in the population. This formula requires the

Gamma function in order to calculate J(ν), a function that
is not available in all programming languages, as said ear-

lier. In practice, the true effect size δ is unknown. Hence,
the parameter δ in Eq. (4) is replaced by an effect size esti-
mate, preferably the unbiased effect size g.

True*. This approximation substitutes J(ν) from the true
formula by its approximation given by Eq. (2b). This al-

lows avoiding the Γ function while keeping the same for-
mula. This standard error approximation is the most re-

cent in the literature, first proposed by Morris (2000).

Hedges approximation. This approximation was pro-
posed in Hedges (1981) but is accurate for large N only

(whereN is the total sample size).3

Hedges and Olkin approximation. For large N , ν is sim-
ilar to N so that one can be replaced by the other, as was

proposed in Hedges and Olkin (1985).

MLE approximation. Hedges and Olkin (1985) noted that
themaximum likelihood estimate (MLE) of the pooled stan-

dard deviation suggests to divide the sum of squares byN
(i.e., ν+2), the total number of observations, rather than by
N − 2 (i.e., ν). Consequently, this approximation restores

the division byN . It is not guaranteed that it returns a bet-
ter estimate as MLE are often biased.

Large N approximation. The Hedges approximation
above can be further simplified if we assume that ν ≈ N =
2× n and that ñ ≈ n (which is roughly exact when n1 and

n2 are about the same size, i.e., there is no major imbal-

ance between the groups). Hence
ñ
2 /(2ν) ≈ n

2 /(2×2 n) =
1/8. The formula had a typo in the original article which
was corrected in Hunter and Schmidt (1990).

Correction for small N to the large N approximation.
Stacking one approximation on top of another, Hunter and

Schmidt (1990) suggested a further correction (ν+1)/(ν−
1) to the previous formula to accommodateN smaller than
50.

To find which approximation is the best estimate of the

standard error for a between-group design, we explored

three scenarios: (a) small sample sizes (3 ≤ n1 ≤ 20 and
3 ≤ n2 ≤ 20); (b) medium sample sizes (20 ≤ n1 ≤ 100
and 20 ≤ n2 ≤ 100, by steps of 10); and (c) imbalanced
sample sizes (3 ≤ n1 ≤ 20 and 100 ≤ n2 ≤ 1000 by
steps of 100). In all scenarios, we tested all true effect sizes

δ from 0.1 to 1.0 by steps of 0.1. The average estimated

3
This formula encapsulates elegantly all the components of a standard error: the base variance of a standardized normal variate is 1. This baseline

is increased as the noncentrality parameter increases. Also, the average sample size ñ reduces the variance as usual by 1/
√
ñ. Finally, because there

are two groups, the variance is multiplied by 2 when it is assumed that both groups have homogeneous variances.
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Table 4 Comparisons of the seven existing formulas for the variance of the Cohen’s d.

Formula Mean variance bias in percent

Scenario 1: Small ns
True 0.2877 −
True* 0.2878 .0463%
Correction for smallN 0.2810 −2.350%
MLE Approximation 0.2773 −3.733%
LargeN Approximation 0.2442 −17.75%
Hedges Approximation 0.2439 −17.93%
Hedges & Olkin Approximation 0.2426 −18.57%

Scenario 2: Medium ns
True 0.04575 −
True* 0.04575 .00583%
MLE Approximation 0.04568 −0.1400%
Correction for smallN 0.04592 0.3832%
LargeN Approximation 0.04492 −1.835%
Hedges Approximation 0.04470 −2.342%
Hedges & Olkin Approximation 0.04466 −2.434%

Scenario 3: Imbalanced ns
True 0.1207 −
True* 0.1207 0.0002757%
MLE Approximation 0.1207 −0.009815%
Hedges Approximation 0.1200 −0.5888%
Hedges & Olkin Approximation 0.1200 −0.5931%
LargeN Approximation 0.1252 3.597%
Correction for smallN 0.1259 4.1537%

Note. Note: A positive bias means that the variance is overestimated; resulting in longer confidence intervals. Nega-
tive biases imply underestimated variances and shorter confidence intervals, which must be avoided.

variance (across all n1, all n2 and all δ) returned by all the
equations above are listed in Table 4, as well as the relative

deviation to the true value (Eq. 4), sorted from the smallest

deviation to the worst.

As seen, the correction for small N does approximate

well the true variance only when the sample sizes are

indeed small. For medium ns and imbalanced ns, this

method is not so good or the worst. The MLE approxi-

mation does well in all but the small ns scenario. The

other three approximations are just plain bad for small ns,

where underestimation is over 15%. Thus, none of these

techniques can be used in all circumstances. Using the

approximation True* did, however, wonderfully well in

all circumstances, with an error of estimation relative to

the true variance less than 0.5h (per mil) in the least fa-

vorable scenario (small ns). Identical results were found

for repeated measures design. Hence, if the Γ function
is not implemented, or if computational speed is an issue,

we strongly recommend using the approximation for J(ν)

within the true formula, i.e. the True* SE.

Which method to estimate a confidence interval?
There are, at least, three different methods to build confi-

dence intervals for Cohen’s d effect sizes. The three meth-
ods involve: (1) a noncentral t distribution, (2) a central t
distribution, or (3) bootstrap. Even though it is applicable,

the bootstrap method will not be further considered in this

text. An additional method by Steiger and Fouladi (1997,

also see Steiger, 2004) is discussed in Appendix C.

Often based on the sample characteristics (e. g., sample

size and standard deviation), a CI is characterized by γ, the
confidence level, which is often 95%. A good confidence

interval is such that 95% (a proportion γ) of the intervals,
if many were collected, do contain the true effect size (see

Steiger & Fouladi, 1997; and Cumming & Finch, 2001, for

more).

CIs obtained from a noncentral t distribution. As
shown by Hedges (1981), this method returns exact CIs for
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Hedges g. It requires the noncentral t distribution having
two parameters ν and λ (the degree of freedom and the
noncentrality parameter respectively).

4
The noncentral t

distribution is asymmetrical because a number divided by

an estimated standard deviation will either be magnified

or attenuated, but these two outcomes are not equivalent

as magnification results in a wider range of estimates. Con-

sequently, the noncentral t distribution is skewed with a
longer right tail.

5

The noncentral method to construct a CI first requires

to estimate a noncentrality parameter (λ) which is based
on the observed effect size. This parameter is then used

to derive a noncentral t distribution centered at λ with ν
degrees of freedom. From this distribution, two values are

taken at each end of the distribution, in order to constitute

a confidence interval around λ so that 95% (or a propor-
tion γ) of the distribution is covered by the interval. The
interval around λ is then transformed back into an inter-
val for the effect size.

The noncentrality parameter λ for two independent
groups design is obtained with

λbetween groups = d

√
ñ

2
(5a)

where d is the effect size (estimated using, e. g., Cohen’s d
or Hedges’ g) and ñ is the harmonic mean of both n1 and

n2.
6
For repeated measures design, the parameter λ is ob-

tained with

λrepeated measure = d

√
n

2 (1− r)
(5b)

where n is the number of pairs of observations and r is the
correlation between the pairs (Algina & Keselman, 2003;

Morris, 2000). Incidentally, the correct λ value is also the
t value returned if the correct t test is performed. Then,
the noncentral t distribution, derived with the parame-
ters ν and λ, provides the lower and upper bounds of the
confidence interval around λ, at quantiles 1/2 − γ/2 and
1/2 + γ/2 (e.g., .025 and .975 to form a 95% CI):

CIλ = [tL = tv, λ(0.025), tU = tv, λ(0.975)] (6)

The CI for λ is then transformed back into a CI for the effect
size with

CId = [ dL = tL/
λ

d
, dU = tU/

λ

d
(7)

where the square brackets denote the extremity of the in-

terval, tL is the lower limit of the λ interval, tU the upper
limit, and λ is the result of equation (5a) or (5b) depending
on the design.

CIs obtained from a central t distribution. The second
method builds CIs from a generic equation (Cumming &

Finch, 2001; Harding, Tremblay, & Cousineau, 2014):

CI =Observed statistic± SE of
that statistic× coverage factor

where the observed statistic can be a simple descriptive

statistic or an effect size estimate, SE represents the stan-

dard error of the observed statistic, and the coverage fac-

tor (obtained via the central t distribution at quantiles
1/2 − γ/2 and 1/2 + γ/2) increases the SE width so that
the interval can be assigned a desired level of confidence

γ (often 95%). This generic method is appropriate to build
CIs around the mean, median, median deviation, the inter-

quartile range, and many more, and is very accurate when

n is above 20 and the assumptions are met (Harding et al.,
2014).

Constructing a CI for d is easily done via this generic
method. However, this method implicitly assumes that the

distribution is symmetrical. This assumption is incorrect

for a non-null effect size and consequently, a confidence

interval around d built upon this distribution yields incor-
rect coverage. Furthermore, the correct distribution of the

effect changes as a function of themagnitude of the true ef-

fect and the sample size, with more asymmetry for larger

effects and smaller sample sizes (Steiger & Fouladi, 1997).

Thus, a confidence interval constructed from a central dis-

tribution should be more and more incorrect as the true

effect increases in magnitude. For more in-depth expla-

nations, see e.g., Cumming and Finch (2001), Fleishman

(1980), Smithson (2003), and Steiger and Fouladi (1997).

4
Noncentral distributions exist for all commonly used (central) distribution (e.g., t, F , χ2

). They all have an extra noncentrality parameter (ncp;

sometimes symbolized as λ,∆, or δ), that indicates how much non-central the distribution is; when its value is zero, noncentral and central distribu-
tions are identical. Although the true population ncp is often unknown, it can be estimated from the observed effect size and the sample size. When

non zero, the ncp shifts the distribution towards the estimated effect, creating more and more asymmetry as the effect increases in magnitude. Central

distributions (e.g., central t, central F ) are appropriate for null hypothesis testing, where the results of a single study are “tested given the premise
that the population results are known” (encapsulated in the null hypothesis), and compared to this particular distribution (Fidler & Thompson, 2001).

However, the construction of a confidence interval for a non-null effect size is better approached by noncentral distributions.

5
The noncentral t distribution equations are not available in closed form so that no simple formulas can compute its characteristics directly. Instead,

iterative search or piecewise approximations are employed to find the relevant quantiles needed to obtain the interval (Smithson, 2001; Kennedy &

Gentle, 1980). Up until recently, the computational power required to compute noncentral distribution functions was insufficient and consequently,

noncentral distributions were not implemented on commonly used software. For this reason, the noncentral method was somewhat impractical, which

explains why it was left behind despite its exact interval estimations (Steiger, 2004). Fortunately, this has changed and current computers can solve

these functions quickly and accurately.

6
The quantity 2/ñ is often written with a different notation as (n1 + n2)/(n1 × n2).
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The central confidence interval around d is obtained by
multiplying the SE with a t score (from a central t distribu-
tion) at quantile .025 and .975 (assuming a γ of 95%). The
interval is obtained by adding the two resulting values (one

positive and one negative) to the effect size estimate,

CIγ = d± SEd × tν , (8)

where d is the observed effect size estimate (e.g., Cohen’s
d or Hedges’ g), SEd is the standard error of d (evaluated
in Table 4) and tv is found using the t distribution with ν
degree of freedom, ν = n1+n2−2 for independent groups
and ν = npairs − 1 for a repeated measure design.
Note that the relevant assumptions to be respectedwith

both methods are that (a) the data are sampled indepen-

dently of one another (simple randomized sampling); (b)

the data are sampled from normally distributed popula-

tions; and (c) the homogeneity of variance is respected for

all groups under study (Kelley, 2005).

Comparing the methods via simulations
As the introduction highlighted, choices must always be

made when computing effect sizes and their confidence in-

tervals. Crossing these choices (divider to use; biased or

unbiased; what method to construct a CI, and if the cen-

tral t distribution is used, which SE to select) results in
many different estimators. Therefore, we will compare

them hereafter.

The next sections examine the choices as a function of

the design. Monte Carlo simulations are performed to com-

pare a) the Cohen’s d and Hedges’ g in estimating the true
effect size, b) the central and the noncentral method in esti-

mating the correct CI, and c) the four different Cohen’s d in
repeated measures design to determine which one should

be preferred.

Note that constructing a CI about an effect size implies

that the effect size is correctly estimating the real value in

the population without a systematic bias. When the esti-

mate is biased, as it is with Cohen’s d, the confidence in-
terval will also be biased, irrespective of the method used.

Comparing Hedges’ g with Cohen’s d, using a simulated
population, provides an appreciation of the amount of bias

d can possibly have.
As said earlier, the notation utilized here to differenti-

ate the various Cohen’s d is based on which standard devi-
ation equation is used to divide the difference. We report

only 95% confidence intervals but the results reported next

generalize to other confidence levels.

The general methodology is given in Appendix A. We

begin with the two independent groups design.

Two independent groups design.
In a two-group design, one group of participants is com-

pared to another group of participants. The purpose is

to assess the difference between the two groups with re-

spect to their mean performances. Possible measures in

this case are the raw difference in means, the Cohen’s d
and the Hedges’ g.

The correct divider. Assuming that both groups are from
populations with the same variance, the best estimate of

the population standard deviation σ is a weighted aver-
age of the standard deviations of both samples. There-

fore, Sp, the pooled standard deviation is the best esti-
mator. The formula for Sp is given in Table 1. Conse-
quently, Cohen dp for two independent groups is given by
dp = (M2 −M1)/Sp.Biased or unbiased? Cohen’s d being a biased estimator,
a comparison of dp and gp will help determine in which sit-
uation gp should be preferred over dp. Hedges gp is given
by gp = dp × J(ν) with ν = n1 + n2 − 2.

Which SE if the central t distribution is used? Confi-
dence intervals for the d family should be estimated via
the noncentral method for exact coverage rate. However,

in practice, the difference between the noncentral and the

central methods might be too small to change the interpre-

tations, especially when the sample size is large. Four stan-

dard error formulas, given in Table 3, will serve to com-

pute four central CIs for dp: (1) the True* approximation,
(2) the MLE approximation, (3) the Correction-for-small-N

approximation and (4) the Hedges approximation; the first

three were amongst the best estimates in Table 4. Central

and noncentral CIs will be computed with gp for compari-
son purposes.

In all the simulations reported, the population means

were arbitrarily set to 95 and 105 (a difference of 10) with

a standard deviation of 15 so that the true population effect

size is 10/15 = 0.666. The intervals width will be compared

for sample sizes going from n = 4 (tiny) to n = 64 (moder-
ate to large). As previously noted, the quality of the central

method of CI estimation will decrease as the effect size in-

creases (and improve when the effect size decreases). This

trend is not investigated in the present simulations, be-

cause only a single effect size is specified. We return to

this in the discussion.

Results for two independent groups design.

Figure 1 shows the results of the simulations for Cohen’s

dp and central CI based on four standard error approxi-
mations. In all four panels, the same estimate dp is used
and so the mean dp and the observed spread of dp across
simulations (the shaded areas) are identical. What differs

between these panels are the CI limits that are estimated

using different SE, all with the central method. In Figure 2,
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Figure 1 Results of the mean estimated dp and its confidence intervals as a function of sample size (4 to 64) in a between-
group design. The four panels represent four different methods to compute CIs. The red dashed line is the true d in the
population. Samples size n refers to the number of observations within each group.

Hedges’ gp is shown along with two types of CI, the central
method with the Correction for small N SE and the noncen-

tral method.

Effect size estimates. Looking at themeans (central dots),
we see that dp, ranging from 0.73 (for small n) to 0.67 (for
large n), is always overestimating the true effect (0.666).
Overestimation is important for smaller sample sizes (n =
4 and n = 8) but negligible past n = 16. On the other
hand, the mean gp is really closely estimating the true ef-
fect, ranging from 0.662 to 0.670.

Mean CI estimates. The central t distribution CIs are
fairly reliable to estimate the real CI. Figure 1 shows the

average CI estimates (the error bars), to be compared to

the shaded areas which shows the real extent of 95% of the

estimates. For smaller sample sizes (n ≤ 20), the lower
bounds of the confidence interval with the central meth-

ods are severely underestimating the real lower bounds.

This is a frequent finding (Harding et al., 2014). It is also

to be expected that theoretical CIs are not perfect for small

sample sizes as they are derived using asymptotic (large

n) theory. Regarding which SE to choose for the central
CI, if we focus on the smallest n only (n of 4; for large
n, there is no sizeable differences between the methods),
the True* approximation is 37% too long relative to the

observed spread which is 3.50. More importantly, the CIs

of this approximation extend well below zero; this is un-

fortunate as often, we want to assess differences relative

to zero. The MLE approximation and the correction-for-

small-N approximation CIs are comparable, being 24% too

long. These two shows less overestimation compared to

True* because, as seen in Table 4, these SE underestimate

the variance by 2% to 4%. Lastly, in the last panel, Hedges

approximation has too short CIs in the upper limit (Ta-

ble 4 indicated close to 18% underestimation of variance).

The Quantitative Methods for Psychology 2502

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.4.p242


¦ 2018 Vol. 14 no. 4

Figure 2 Results of the mean estimated gp and its confidence intervals as a function of sample size (4 to 64) in a between
group design. The two panels represent two different methods to compute CIs. The red dashed line is the true d in the
population. Sample size n refers to the number of observations within each group.

Hence, this last approximation should be avoided.

Whereas True* SE should be better, the CI from this SE

are the largest (for very small sample size). This is caused

by the distribution used. The central t distribution poorly
captures the spread of the estimates. This is evidenced in

Figure 2 where the central and the noncentral methods are

compared directly. As seen in the latter figure, the noncen-

tral method returns very adequate CIs: (1) For very small

n, its length is 8% too long relative to the observed spread;
(2) underestimation of the lower limit is roughly similar to

overestimation of the upper limit.

Therefore, the noncentral CI is without a doubt the

most reliable method especially when n is smaller than
20. For the central CI methods, the MLE approximation

and the correction-for-small-N approximation are equiva-

lent, and equivalent to the non-central method when n >
20. Hedges approximation should be avoided for small n
whereas True* SE is too conservative for very small n.

Variability in CI estimates. Another way to assess the
quality of the estimate is to examine the precision of the

end-points of the confidence intervals. The precision can

be examined by looking at the variance of the lower and

upper bounds based on the 10,000 simulated CIs. The

True* approximation SE leads to CI estimates that are

about 2.8 times more variable than the noncentral CIs,

while the MLE approximations are about 1.4 times more

variable. The correction-for-small-N approximations and

the noncentral CI’s are about the same, with the lowest

variances (variances are 0.23 and 0.24 respectively when

n = 4).

Discussion

Comparing dp with gp allows to conclude that gp is prefer-
able (least biased) for estimating the magnitude of the ef-

fect when n < 20, and equivalent to Cohen’s dp when
n ≥ 20. Likewise, the noncentral CI had the most reli-
able coverage rate, followed by the (central distribution)

correction-for-small-N standard error approximation. The

MLE approximation is adequate on average only, being

more variable from one dataset to the other. The True* is

less precise in very small sample sizes and more variable.

However, as seen in the next section, it is superior to other

methods in repeated measure designs. There was no size-

able difference between all the CI methods when n > 20.
In the above simulations, we tested a single true ef-

fect of medium size. Smaller effect sizes make the central

method overestimate the upper and the lower bounds of

the CI equivalently. By comparison, larger effect sizes ex-

acerbate the fact that the central methods overestimate the

lower limitmore. This is caused by the fact that the positive

asymmetry of the noncentral t distribution increases in the
presence of larger effect sizes. Hence, one side of the dis-

tribution will be more correctly estimated than the other,

a problem inversely proportional to sample size. This lim-

itation of the central method should be kept in mind for

all subsequent simulations, for which the effect size is kept

constant at 0.666.
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Single group - Two repeated measures
In the case of a repeated measures design (pretest-posttest

or paired samples), the interest lies in the difference be-

tween the two measurement times. The question of inter-

est, when using such designs, is directed on the “change

within a person, relative to the variability of change

scores” (Morris & DeShon, 2002, p. 107). For the effect

size calculation, this could imply to take into account the

correlation between the two measures of each individual.

The choice of divider. Two scenarios apply, based on two
different conceptualizations of the standard deviation, re-

viewed next. First, just like a between groups design,

the population standard deviation can be estimated via a

combination of the standard deviation of both measure-

ment times (the pre- and post-measures, instead of the two

groups). This can be done using the weighted pooled stan-

dard deviation found in Cohen’s dp. Another way to obtain
an estimate that combines the standard deviations is to use

dav , which is based on a regular (unweighted) average of
the two standard deviations, Sav (given in Table 1). How-
ever, because there is always an equal number of obser-

vations between the two measurement times in a repeated

measures design, in such cases, Sav is totally identical to
Sp (Grissom & Kim, 2012, p. 87).
Second, unique to the repeated measures design, the

standard deviation can be estimated via the standard devi-

ation of the differences. This solution is inspired from the

t-test for repeated measures:

t =
Mdiff

SD/
√
n

(9)

in which SD is the standard deviation of the differences, n
is the number of pairs,Mdiff is the difference between the

post- and pretest means, and

SD =

√∑
(Xdiff,i −Mdiff)

2

N − 1
, (10)

in whichXdiff,i is the difference between the two measure-
ment times for participant i (Lakens, 2013). This formula
can be shown to be equivalent to

SD =

√
S1

2 + S2
2 − 2 × r × S1 × S2. (11)

One major problem with dD is that this estimate is not di-
rectly comparable to dp. More specifically, the variabil-
ity within subjects is often less than the variability be-

tween subjects. Hence, dD is divided by a smaller num-
ber compared to dp, which leads to a bigger effect mag-
nitude. More specifically, assuming the homogeneity of

variances (which is not needed for SD , but needed for Sp),

with S1 and S2 being roughly equal (to say, S), SD simpli-
fies to

√
2S2(1− r) and Sp to S. Thus, the result of dD is√

2 (1− r) times larger than Cohen’s dp (Cohen, 1988; Mor-
ris, 2000). Therefore, the factor

√
2 (1− r) can be used to

convert dD into dp estimates (Lakens, 2013).
The conversion is obtained as follow

dD = dp ×
√

2 (1− r) (12a)

or equivalently with

dp = dD /
√

2 (1− r). (12b)

The method suggested by Eq. (12b) will be called dD con-
verted, or dDc.
Guidelines for what constitute small, medium or large

dD have been suggested in Eid, Gollwitzer, and Schmitt
(2017). However, these indications have to be taken with

cautions as they merge two distinct effect sizes, namely the

mean separation (embodied in dp) and the degree of associ-
ation (embodied in r). A "large" dD could be found because
of a very large separation and a correlation close to zero,

because of a small separation and a strong correlation, or

because of any in-between results. Thus, dD lacks speci-
ficity as a measure of effect size. Note that g*Power and
other power computation software use dD for repeated
measures designs (also called dz).
For a given effect, the experimental design should not

influence the effect size reported, otherwise comparisons

between designs is no longer possible, a position also sup-

ported by Dunlap, Cortina, Vaslow, and Burke (1996) and

Lakens (2013). Since dD for repeated measures leads to
larger number compared to the same effect in a between-

group design this could create confusion when data from

different designs are compared. Thus, joining our voice to

the above authors and Cumming (2012), we recommend

that a common measure of effect size, dp, be used irre-
spective of the design. Experimental designs should be in-

scribed in the computations only when statistical signifi-

cance is at stake.

In sum, the best estimate of the population σ is possibly
either: a) Sp, a pooled standard deviation (equivalent to
Sav , an averaged standard deviation) or b) SDc, a standard
deviation of the differences converted to enable compar-

isons (Cohen, 1988; Cumming, 2012; Grissom & Kim, 2012;

Morris & DeShon, 2002). Equations for the dividers are

given in Table 1.

Biased or unbiased? Cohen’s d for repeated measure is
also biased. Therefore, Hedges correction applies (Eq.3).

The correction factor is the same for all variations of d.
However, the correction factor J must be based on the to-
tal number of observations minus 2 instead of the number

of subjects minus one, as seen in Appendix D. This is an
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Figure 3 Results of the mean estimated d and its confidence intervals as a function of sample size (4 to 64) in a repeated
measure design. The four panels represent four different methods to compute d, all CIs being based on the Correction for
small N approximation central t distribution method. The red dashed line is the true d in the population. Sample size n
refers to the number of participants measured twice.

error seen in, e.g., ESCI (Cumming, 2016), and in a recent

book on meta-analysis, which led some authors to wrongly

conclude that the correction does not completely un-bias d
in repeated measures design (Borenstein, Hedges, Higgins,

& Rothstein, 2009; Cumming, 2012).

Which SE if the central t distribution is used? The dis-
tribution of a repeated measure Cohen’s d is

√
2 (1− r) /n

times the noncentral t distribution (Becker, 1988; Morris,
2000). The true SE for this design can be calculated using

the formula identified by Hedges (1981) times this correc-

tion factor (Morris, 2000). Hence, the within-group equiva-

lent of Eq. (4) is

SErepeated measure =√
v

v − 2

2 (1− r)
n

(
1 + δ2

n

2 (1− r)

)
− δ2

(J (v))
2

(4b)

where n is the number of pairs (Algina & Keselman, 2003).
This change is also valid for the True* approximation.

There is no documented equivalent of the other approx-

imations for the repeated-measure design. However, re-

placing in Table 3 all occurrences of 2/ñwith 2(1−r)/n re-
sults in SE approximations adapted to repeated measures

design. Also, the standard error of dD is indirectly ob-
tained from the relation found in Eq. (12a) by multiplying

(4b) by

√
2 (1− r) .

To findwhich Cohen’s d for repeatedmeasure is prefer-
able, simulations has been conducted, estimating the true

effect using dp and dD , along with their converted expres-
sion dpc and dDc (Eqs. 12a and 12b). In all the simula-
tions, binormal scores are generated with means 95 and

105, standard deviations of 15, and a correlation of 0.65.

Confidence intervals were estimated using the noncentral
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Figure 4 Results of the mean estimated g and its confidence intervals as a function of sample size (4 to 64) in a repeated
measures design. The red dashed line is the true d in the population. Sample size n refers to the number of participants
measured twice.

method and the central method with the Correction for

small N SE approximation adapted for repeated measure.

This specific SE was selected because it had the most ad-

equate coverage when we examined between-group de-

signs.

Results for repeated measures design.

The results for the various Cohen’s d with the central CIs
are presented in Figure 3. Likewise, the noncentralmethod

with the estimators gp and gDc are depicted in Figure 4.

Effect size estimates. Comparing with a true effect size
set at 10/15 = 0.666, the results confirm clearly that dD
and the converted version of dp (dpc) are poor estimators,
with a very strong overestimation of the true effect. As

previously argued, these effect sizes should be avoided be-

cause they lack specificity. On the other hand, both dp
and the converted version of dD (dDc) performed well.
The advantage goes to dDc who was markedly less biased
for small n, with estimations ranging from 0.716 to 0.669
(0.687 when n is 8). The estimations of dp were ranging
from 0.814 to 0.672 (0.717 when n is 8). Biases in percent
are 7.4% for dDc vs. 22.1% for dp when n is 4.
Regarding Hedges estimators, Hedges’ gp largely re-

duced the bias found in small sample size, ranging from

0.693 to 0.670 (0.676whenn is 8). Hedges’ gDc, on the other
hand, underestimated the effect in small sample sizes (n
below 12) with estimates ranging from 0.612 to 0.666 (0.649

when n is 8), but completely eliminated the bias in sam-
ple size above 12. Nonetheless, the difference between the

two Hedges’ estimators is immaterial (less than 0.004) for n

above twelve. When n is 4, the bias for gDc is -8%, whereas
the bias for gp is +3.9%, half the bias of the former. Hence
gp is the better choice for this design as well.

Mean CI estimates. The central method to construct a CI
with the Correction for small N standard error was not ex-

act even in larger sample size. With dp, underestimation
of the upper bound is noticeable for all sample sizes. This

is not desirable and therefore this method of constructing

CI should be avoided either by using a different SE approx-

imation or by using the noncentral method, as seen in Fig-

ure 4. On the other hand, dDc CI length underestimated the
true lower bounds (too conservative) for about all sample

sizes examined, something never seen for the other meth-

ods. By comparison, this combination exceeded the true in-

terval by 24% for n of 4, whereas the noncentral CI with gp
exceeded it by 3.9%. Thus, even if the Correction for small

N approximation with dDc is not underestimating the true
interval, it is quite wide.

Given the generally poor performance of the correc-

tion for small N SE, we tested another central approxima-

tion, namely dp and gp with the True* method. The results
are shown in Figure 5. As seen, this standard error pro-

vides much better coverage than the correction for small

N. However, in conjunction with Cohen’s dp, it shows some
underestimation of the upper bounds for ns of 8 to 24. Un-

derestimation is reduced when used in conjunction with

Hedges’ gp, visible only for ns of 16 and 20.
Therefore, the noncentral CI is the most reliable

method, whereas the central method with the True* SE

provides equivalent coverage for sample sizes above 24.
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Figure 5 Results of the mean estimated d (left) and g (right) and its confidence intervals as a function of sample size (4 to
64) in a repeated measures design. The two panels represent two different estimates with the True* method to compute

CIs. The red dashed line is the true d in the population. Sample size n refers to the number of participants measured
twice.

The Correction for small N SE is not exact even in large

samples (n = 64), thus should be abandoned for this de-
sign.

Variability in CI estimates. Looking at the variability at
the two ends of the intervals revealed that the Correction

for small N and the True * SE with dp had the highest vari-
abilities (2.39 and 2.34 respectively for n of 4), closely fol-
lowed by dDc (2.26 for n of 4). The noncentral method with
gp had the lowest variability of all (1.31 for n of 4), followed
by the noncentral method with gDc (1.42 for n of 4).

Discussion

Comparing four different Cohen’s d for repeatedmeasures,
two SE approximations and two methods to build a CI,

along with Hedges’ unbiased estimators, allows conclud-

ing that the noncentral method is superior to the central

method and Hedges gp is superior to the other estimators.
The difference between the central method with the True*

SE and the noncentral was noticeable only for sample size

below 24. Regarding the best estimate of effect size, gp was
found slightly superior to dDc and vastly superior to the
other estimators, dp, dD and dpc. However, the difference
between the estimators quickly resorbs with sample size

greater than 20. Hedges correction considerably reduced

the bias found with small sample size (n < 20) in all d esti-
mators except dDc which was additionally biased after the
correction.

Design with a comparison group: Glass’s∆.
In situation of unequal variances, the standard deviations

of both groups (or both measurement times) cannot be

pooled together. When the assumption of homogeneity

of variances is not respected, or when a control group is

present, the divider that best estimates the population vari-

ation is the unaffected group’s standard deviation. This ap-

proach is referred to as Glass’s∆ (Glass et al., 1981). With a
pre- and post-test design, the pre-group is usually thought

to better represent the population variations since it has

not been affected by the intervention. Similarly, when a

control condition is available, the standard deviation of

this group is taken without combining it with other stan-

dard deviations. These cases will not be further tested us-

ing simulations considering that the heterogeneity of vari-

ances can be modeled in numerous ways, which would ex-

ceed the scope of this article (see Algina, Keselman, & Pen-

field, 2006, for a robust CI; see Morris, 2008, for effect sizes

with a control group). We simply note that Glass’∆, being
based on a single measure of standard deviation, has all

the properties of a single-group Cohen’s d.

Single group d
A last experimental design in which Cohen’s d can be used
is when researchers are interested in comparing a single

mean to a specific value. This value is taken as the popu-

lation mean (µ) or a reliable estimate of it; it can also be
arbitrarily chosen as a point of reference. For example,
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Figure 6 Results of the mean estimated d and g and its confidence intervals as a function of sample size (4 to 64) in a
single-group design. The panels represent two different estimates (d and g) and three methods to compute CI. The red
dashed line is the true d in the population. Sample size n refers to the number of participants.

it could come from a normalized value, specified after a

meta-analysis, or based on a theoretical prediction.

The correct divider. In the absence of a better estimate
(e.g., a meta-analytic estimate or a normalized measure-

ment), the standard deviation of the group is chosen as the

only estimate of the population standard deviation avail-

able.

Biased or unbiased? For any value constructed upon an
estimate of the population standard deviation, the result is

likely biased (as confirmed in the subsequent simulations).

Therefore, Hedges correction also applies to single group

d1, with J (Eqs. 2a or 2b) based on the number of observa-
tions minus 1.

Which SE if the central t distribution is used? Similar
to the other designs, the noncentral method should offer

the best coverage rate. However, if the central method is

desired, the True* or the Correction-for-small-N standard

error approximations are two potential candidates. Both

are tested here.

In another set of simulations, we compared four meth-

ods, Cohen’s d1 with a central CI based on the True* and the

Correction-for-small-N standard error, Hedges’ g1 with the

Correction for small N standard error, and finally, Hedges

estimate with the noncentral method.

The results seen in Figure 6 indicate that d1 is biased

upward whereas g1 completely eliminate this bias. Re-

garding the intervals, d1 in conjunction with the Correc-

tion for small N poorly estimated the upper bounds of the

confidence interval for all sample sizes tested. The same

SE approximation in conjunction with Hedges g1 also led

to systematic underestimation of the upper bounds for all

sample size tested. The True* method with d1 does far

much better with no underestimation of the upper bounds;

the lower bounds are however more conservatively esti-
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mated for about all sample sizes. The inexact estimations

of the lower bounds in larger samples is not attributable to

the absence of Hedges correction. Finally, the noncentral

method is clearly superior with reliable estimates of the

lower bound in small samples, but conservative estimates

of the upper bound for n below 32. In brief, the noncentral
method should be prioritized, in conjunction with g1 for

small sample sizes (n ≤ 24). The central method with d1

and the True* has conservative lower bounds, but do well

with sample sizes above 30.

General discussion
By reporting an effect magnitude and confidence interval,

researchers ensure that the results are translated while

preserving their nuance. In fact, interpreting this informa-

tion allows judging to what extent the research hypothesis

is supported. This can be achieved by reporting the mag-

nitude of an effect in its original unit, displaying graphi-

cal representations of the results, or via standardization

of the effect. All these options share the common chal-

lenge that they infer the population characteristics based

on the sample. Certainly, one of the most efficient ways to

judge the precision of such an inference is to examine the

confidence interval around the reported statistic. This pa-

per was dedicated to the d family of effect sizes, which is
used to standardize the difference between two means for

designs with two independent groups, two repeated mea-

sures, or relative to a specified value. To differentiate the

various Cohen’s d, a notation has been proposed based on
the divider employed. Two methods to construct a confi-

dence interval around d have been evaluated, either rely-
ing on the noncentral t or the central t distribution. To
report the correct confidence intervals and to properly es-

timate the effect size with a Cohen’s d estimator, the right
divider must be identified, an unbiased estimator must be

considered, and a reliable method for building confidence

intervals must be selected. The aim of the present paper

was to shed light on those concerns. The methodology em-

ployed Monte Carlo simulations to compare the various es-

timators with a simulated population composed of 10,000

samples for a given sample size. A summary of the results

is presented below and in Table 5.

For design with two-independent groups, the best di-

vider is a pooled standard deviation. Since all Cohen’s d
are systematically overestimating the effect, Hedges’ cor-

rection should be applied for small sample size (n < 20 per
group). This leaves us with gp as the best estimator for this
design. The construction of a confidence interval around

gp should be done with the noncentral distribution. How-
ever, the central method with the Correction-for-small-N

(or the True*) standard error approximation was similar

to the noncentral method when nper group > 20.

For a repeated measure design, the best divider is a

pooled standard deviation as well, found in dp, or equiv-
alently in dav . Here again, Hedges’ correction should be
applied for small sample sizes (n < 20), which leaves us
with gp as the best estimator for this design. Confidence
intervals should be constructed with the noncentral dis-

tribution. However, the central method with the True*

did equally well with sample sizes above 24. The Correc-

tion for small N standard error approximation for repeated

measures performed poorly and should be avoided.

Therefore, a major recommendation emerges: the non-

central method with gp should be employed in all situa-
tions. If calculations are a concern, the central method

with the True* SE, in conjunction with dp, performed well
in a between-group design with more than 20 participants

per group, and in a repeated measure design with more

than 24 participants measured twice. Implementation of

the noncentralmethod to construct CI aroundHedges g, us-
ing R software, is given in the following subsection. Also,

a comparison of the formula used in the MBESS and the

metafor packages for R and the ESCI spreadsheets for Ex-

cel is available in Appendix B.

One novel contribution of this article was to rectify the

Hedges g correction factor in a repeated measure design,
which was thought to rely on the degree of freedom (dif-

ferent according to the design), while it actually relies on

the number of observations minus two for both between

and within subject designs. Hedges g was found to com-
pletely un-bias the d estimator in all three designs. More
on that can be found in Appendix D.

Lastly, the formula that best estimates the standard er-

ror is the True formula, given in Table 3, or its approxima-

tion, True*. However, only in between-group design and

for n below 12, the latter approximation is less appropri-
ate to estimate the central distribution standard error com-

pared to the Correction-for-small-N formula.

Application Guide

In view of the current results, we propose this guide to help

researchers apply the best practices regarding the d family
of effect size. Standardized effect sizes are great tools to

communicate research results in a comparable scale. How-

ever, un-standardized effect sizes are just as meaningful to

interpret, especially when the measurement tools are well

known or have readily interpretable units (e.g., Beck De-

pression Inventory, responses time). Hence, we encourage

researchers to report un-standardized, as well as standard-

ized effect sizes. In all cases, accurate confidence intervals

should always accompany effect size estimates to assess

their variability and precision.

Acknowledging that an important determinant of good

statistical practices are their accessibility and ease of im-
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Table 5 Main results of the Monte Carlo simulations.

Design Effect size estimation Confidence interval estimation

Two indepen-

dent groups
• gp is the best estimator overall.
• Hedges g correction is necessary when nper group <

16.
• The pooled standard deviation, denoted Sp, is the
best divider.

• The noncentral CI is the most reliable method, espe-

cially when nper group < 20.
• The central CI method is equivalent to the noncen-

tral method when nper group > 20, nomatter the SE

approximation.

• The MLE and the correction-for-small-N SE approx-

imations led to the best central estimations in small

sample sizes.

Repeated

measures
• gp is the best estimator overall. Hedges g correction
is necessary for Sp when nsubjects < 16.

• The pooled standard deviation, Sp, and the stan-
dard deviation of the differences converted, SDc,
are the best dividers.

• gp, dp and dDc are equivalent when nsubjects > 16.

• The noncentral CI is the most reliable method, espe-

cially when nper group < 24.
• The central CI method with the True* SE approx-

imation is equivalent to the noncentral method

when nsubjects > 24.

Single mean

relative to a

target value

• g1 is better overall compared to d1.

• Hedges g correction is necessary when n1 ≤ 24.
• The noncentral CI is the most reliable method, espe-

cially when n1 < 32. However, conservative upper
bounds are expected with this method and those

sample sizes.

• The central CI method with the True* SE approx-

imation is equivalent to the noncentral method

when n1 > 30.

Note. The simulations have been realized with a true effect size of d = .666. The quality of the central CI method decreases
as the true effect size increases, due to the increase in asymmetry. The results are based on simulations which comply with

the assumptions of normality, homogeneity of variances, and independence of data sampling.

plementation, we give a function in R to compute Hedges

gp with its CI based on the noncentral method, available
on the journal’s web site and given in Listing 1 at the end.

The function returns the most accurate estimates for a be-

tween and awithin group designs, according to the present

study. The function first computes a Cohen’s dp based on
the pooled standard deviation of the two groups or the two

measurement times. Then, an unbiased Hedges g is com-
puted bymultiplying dp with the correction factor J , which
is based on the gamma function and the number of obser-

vations minus two (Eq. 2a). The CI is obtained from the

noncentral t distribution with the degree of freedom and
the noncentrality parameter. The command

gethedgesg(x1, x2)

does all the required computations for a between group

Hedges g with its CI, assuming that the vectors “x1” and
“x2” have been defined with for example

x1 <- c(53, 68, 66, 69, 83, 91)
x2 <- c(49, 60, 67, 75, 78, 89)

For a within group Hedges gp, the command is the fol-

lowing

gethedgesg(x1, x2, design = "within")

The between group and the within group commands differ

only in terms of the calculation of the noncentrality param-

eter. Finally, a coverage level γ different from the default
95% can be added to the argument list, with for example

gethedgesg(x1, x2, coverage = 0.9)

Three programs commonly used to compute a Cohen’s d
and its CI are the MBESS and the metafor packages for R

and the ESCI spreadsheets for Excel. In Appendix B, we

compare the results of those programs with the formulas

suggested in this text. We found that MBESS and ESCI rely

on a CI estimationmethod described by Steiger and Fouladi
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(1997) that is less appropriate than the noncentral method

described in the present text to construct a CI around d or
g. Unless revisions are made to the above programs, the
code given above provides an easy way to obtain the cor-

rect gp and noncentral CI.

Limits and conclusion

This study is limited in its approach, relying on the assump-

tions of a normally distributed population, homogeneous

variances and independent data points. The findings of

this study, and the applicability of the noncentral and the

central CIs, are contingent on the respect of those assump-

tions. On the other hand, bootstrapping procedures, which

do not rely on those assumptions, have been occulted from

the present paper, for reasons of parsimony. However,

comparing the bootstrap method with the noncentral one

would be of great value. Lastly, it is always preferable

to operate on real data to reach ecologically valid conclu-

sions. Nevertheless, Monte Carlo methodology allows in-

vestigating situations which would require an impressive

amount of resources otherwise.

In conclusion, this study reviewed the d family of ef-
fect sizes and their confidence intervals. Some ambigu-

ity regarding all the possible combinations have been ad-

dressed and resolved. The literature on commonly-used

effect sizes was found to be very confusing, with many dif-

ferent names for the same constructs and various contra-

dictions. We hope this work correctly addressed somemis-

understandings in a way that will promote the use of effect

sizes and confidence intervals within the field of social sci-

ences.
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which are known so that the estimates can be compared. One simulation consists of a very large number of samples
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Table 6 Estimated effect size [95% confidence intervals] for a fictitious data set (given in Appendix B) for the noncentral

method and from three software packages.

Method or software Independent groups Repeated measures

Noncentral method dp = 0.1449 [-1.1068, 1.4704] dp = 0.1449 [-0.1497, 0.5129]
gp = 0.1338 [-1.1204, 1.4561] gp = 0.1338 [-0.1624, 0.4977]

MBESS dp = 0.1449 [-0.9919, 1.2748] No direct commands available.

gp = 0.1338 [-1.0026, 1.2636]
Metafor [dp is not computed] No direct commands available.

gp = 0.1338 [-0.999, 1.267]
ESCI dp = 0.145 [-0.992, 1.275] dav = 0.145 [-0.161, 0.438]

gp = 0.134 [no interval available.] gav = 0.122 [no interval available.]

generated randomly. In this study, we assumed that simulated groups of participants are taken from normal distributions

with known means and a common standard deviation. The groups have unequal means so that the magnitude of effect

is not zero. Hence, all simulations comply with the normality assumption, the homogeneity of variances assumption and

the independence of data points assumption, that are taken for granted in most formulas.

We chose to simulate 10,000 samples within each group sizes varying from n = 4 to n = 64 (increasing by increments
of 4). A distribution of the 10,000 effect sizes is then obtained, and the quantiles (e.g., .025 and .975 for a 95% coverage)

from this second-order sample of effect sizes are taken as the true confidence interval. Concurrently, for each sample, a

confidence interval is estimated via the central or noncentral estimationmethod. Themean values of the estimated CI’s is

then compared to the true confidence interval. This operation is repeated for all sample sizes. If the estimated CI’s yield

similar results than the true CI, we conclude that the estimation method is reliable.

Appendix B: Existing software to compute d and its confidence interval
There are three commonly used software to compute Cohen’s d and Hedges’ g along with their confidence intervals, the
MBESS and metafor packages within R (Kelley, 2007, 2017; Viechtbauer, 2010) and ESCI within Excel (Cumming, 2016).

We explore their results based on a tiny sample with two sets of scores: Set 1: 53, 68, 66, 69, 83, 91; Set 2: 49, 60, 67, 75, 78,

89. These scores can either be from two independent groups or from a repeated measures design.

With these data, the estimators dp and gp, with their 95% confidence intervals, based on the noncentral method, are
presented in Table 6. Because gp is the same for both within and between-subject designs, the only difference is in the
interval estimations, due to the correlation between scores in the repeated measure design which improves estimations;

as a consequence, the noncentrality parameter is calculated differently. The results of the noncentral method, MBESS,

metafor and ESCI are presented in Table 6 and discussed afterwards.

MBESS within R

We tested MBESS version 4.4.1. A simple set of commands is the following (the lines beginning with # are the output

triggered by the instructions):

library(MBESS)
x1 <- c(53, 68, 66, 69, 83, 91)
x2 <- c(49, 60, 67, 75, 78, 89)
smd(Group.1=x1, Group.2=x2)
smd(Group.1=x1, Group.2=x2, Unbiased=TRUE)
# [1] 0.1449935
# [1] 0.1337921
The first two commands create a two-group dataset, x1 and x2, composed of six participants in each group. The first smd

(standardized mean difference) command return dp whereas the second return gp, the unbiased version of dp. Next, we
compute the CIs.

ci.smd(ncp=0.1449935 * sqrt(6/2), n.1=6, n.2=6, conf.level=0.95)
ci.smd(ncp=0.1337921 * sqrt(6/2), n.1=6, n.2=6, conf.level=0.95)

The Quantitative Methods for Psychology 2612

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.4.p242


¦ 2018 Vol. 14 no. 4

# $Lower.Conf.Limit.smd: −0.9918915; $Upper.Conf.Limit.smd: 1.274752
# $Lower.Conf.Limit.smd: −1.002561; $Upper.Conf.Limit.smd: 1.263567
The above instruction computes the 95% confidence interval of dp and gp respectively, in a between group design.
As seen in Table 6, MBESS returns the correct values for the estimators. However, it returns a shorter confidence

interval for dp and gp than the noncentral method. The difference is due to the method used by this package to construct
the confidence interval, which is based on the interval estimation approach by Steiger and Fouladi (1997). This alternative

approach is discussed in Appendix C.

For a repeated measure design, there exists no command to compute a confidence interval in MBESS. There is a

workaround with the following instructions, which gives a CI aroung gp also based on the estimation approach of Steiger
and Fouladi, resulting in a shorter CI compared to the noncentral method:

r <- cor(x1,x2)
ci <- ci.smd(ncp = 0.1337921 * sqrt(6/2) / sqrt(1-r), n.1=6, n.2=6,

conf.level = .95)
ci$Lower.Conf.Limit.smd * sqrt(1-r)
ci$Upper.Conf.Limit.smd * sqrt(1-r)
# [1] −0.1590722
# [1] 0.4203255
metafor within R

We tested the metafor package version 2.0-0 in R, a package made for calculating various effect sizes and specifying meta-

analytic models. For a between-group design, the following lines of codes return the unbiased Hedges gp (under “yi”) and
its variance of error (under “vi”). The last command returns the summary statistics, which includes the CI (under “ci.lb”

and “ci.ub”):

library(metafor)
x1 <- c(53, 68, 66, 69, 83, 91)
x2 <- c(49, 60, 67, 75, 78, 89)
res <- escalc(measure = "SMD", vtype = "UB", m1i = mean(x1), m2i = mean(x2),

sd1i = sd(x1), sd2i = sd(x2), n1i = length(x1), n2i = length(x2))
summary.escalc(res)
# yi vi sei zi ci.lb ci.ub
# 0.1338 0.3344 0.5783 0.2314 −0.9996 1.2672
The results from this package can be compared to the other packages in Table 6. As seen, the CI from this package is

really close, yet not the same, as the CI built upon the Steiger and Fouladi method with MBESS and ESCI. In fact, we found

out that this package returns a CI using the central method with the Hedges approximation SE, but instead of multiplying

the SE with a t-value, it multiplies it with a z-value. There exists no direct command for a repeated measures design.

ESCI

The spreadsheet ESCI version Nov-17-2016 was tested. In the "Data two" sheet, dedicated to the two-group design, data

points can be entered under "Group 1" and "Group 2" columns. ESCI returns the correct Cohen’s dp and unbiased (Hedges)
gp. However, the confidence interval returned for dp is the same as MBESS, which is shorter than the noncentral method
described in this text. Hence, ESCI is also based on the Steiger and Fouladi (1997) estimation approach. There is no

confidence interval for gp.
For a repeated measures design, the data are entered in the "Data paired" sheet. ESCI returns the correct (biased)

Cohen’s dp (ESCI reports dav but it is identical to dp), but the Hedges (unbiased) gp is 0.122. This erroneous value comes
from the correction factor J being based on ν = npairs − 1 instead of the correct 2(npairs − 1) parameter. Also, the
95% confidence interval for dp, which returned [ 0.161, 0.438], is based on the Steiger and Fouladi (1997) estimation

approach and the incorrect ν. Note that ESCI estimates
√

2(1− r) directly from the ratio of the standard deviation of the
differences onto the pooled standard deviation (rather than estimating r; see Eq. 11) and the noncentrality parameter
from the paired-sample t test (rather than using Eq. 5b). These two variations cause negligible differences in the CI
(compare with the 95% CI without these variations: [-.159. 0.420]). Also, ESCI requires at least 6 pairs of observations to
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Figure 7 Comparison of the Steiger and Fouladi (1997) noncentral method (in red, thick error bars), with the noncentral

method discussed in this text (in blue, thin error bars), in a between-group design. Sample size n refers to the number of
observations within each group.

work in a repeated measure design.

Conclusion.

In brief, MBESS and ESCI both reported the same confidence intervals for a between-group design based on the method

described by Steiger and Fouladi (1997), which leads to a different result compared to the noncentral method described in

the present text. MBESS has no direct command for repeated measure designs whereas ESCI do not report the confidence

interval around Hedges g. Furthermore, ESCI incorrectly applies Hedges g correction for repeated measure based on the
degree of freedom instead of the total number of data points minus 2. Finally, metafor uses a z score for the coverage
of the confidence interval, making it less valid for smaller samples and for larger effects where asymmetry is more

pronounced.

Appendix C: The interval estimation approach by Steiger and Fouladi
Steiger and Fouladi (1997) popularized amethod to construct confidence intervals that is similar to the noncentralmethod

used and described in the present paper, and also relies on the noncentral distribution, yet varies on important aspects.

Their method, that we will further refer to as the pivoting method, has been implemented in some popular software,

e.g., ESCI and MBESS, which is why it is briefly addressed here. In both methods, a non-centrality parameter (ncp) is

estimated from the observed effect size. In the pivoting method of Steiger and Fouladi, two noncentral distributions

are built instead of one. The first noncentral distribution is built around a value that is yet to be obtained from the

distribution that positions the observed ncp at the 0.025 quantile. In a similar manner, the second noncentral distribution

is obtained by placing the observed ncp at the 0.975 quantile. Then, the interval between these two distributions’ ncp is

taken to form the upper and lower bound of the 95% CI respectively. Thus, the pivoting method requires two noncentral

distributions and assumes that the observed ncp is an extreme value, being either exceptionally small or exceptionally

large. By comparison, the noncentral method discussed in this text assumes that the observed ncp is the most likely

and best estimate of the population ncp. Only one noncentral distribution is constructed, centered at the observed ncp,

and the upper and lower bounds are taken from this distribution to form the 95% CI. Hence, the difference between the

two methods is subtle, but quite substantial in theory, in computation time, and possibly also in practice. Algina and

Keselman (2003) have contributed to the validation of the pivoting method for a repeated measures design, dav , scenario.
However, we suspect that this method is less appropriate than the noncentral method presented in this text in most, if

not all, scenarios.

To support our suspicions, we ran three additional simulations. Because the asymmetry of the noncentral distribution

is an issue, and the asymmetry increases with the true effect size, we manipulated the effect size from small (δ = 0.266,
which corresponds to a difference of 4 points when standard deviation is 15); medium (0.666) and very large (δ = 1.666,
a difference of 25 points).

As seen in Figure 7, the pivoting method is always too short in the upper limit. This failure is increasing with in-

creasing effect sizes as expected because asymmetry is larger for the left tail of the upper end, whereas the upper ncp

identified by the pivoting method has short right tail. This problem is vanishing only slowly such that for medium n,
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Figure 8 Distribution of 500,000 Cohen’s d values in three different designs. Sample sizes are 12, the true d is 0.666 and
in the repeated measures design, the true correlation is 0.65.

underestimation is still visible, more so if the true effect size is large. The lower limits, on the other hand, are accurately

estimated for all n. Because a CI should always have coverage of at least γ, underestimated upper bounds are problematic
and thus, the pivoting method should be abandoned.

Appendix D: The sampling distributions of Cohen’s d and the parameter ν of the correction factor J .
We illustrate the results of 500,000 simulated Cohen’s d with its theoretical distribution (full line) in Figure 8. Regarding
the repeated measure design, we illustrate the noncentral t distribution with both 2(n−1) and n−1 degrees of freedom.
The results show unambiguously that the value 2(n− 1)must be employed in the correction factor J .
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Listing 1 A R function that computes Hedges’ g and its confidence interval for within and between subject designs.

gethedgesg <-function( x1, x2, design = "between", coverage = 0.95) {
# mandatory arguments are x1 and x2, both a vector of data
require(psych) # for the function harmonic.mean.
# get basic descriptive statistics
ns <- c(length(x1),length(x2))
mns <- c(mean(x1),mean(x2))
sds <- c(sd(x1),sd(x2))

# get pairwise statistics
ntilde <- harmonic.mean(ns)
dmn <- abs(mns[2]-mns[1])
sdp <- sqrt( (ns[1]-1) *sds[1]^2 + (ns[2]-1)*sds[2]^2) / sqrt(ns[1]+ns[2]-2)

# compute biased Cohen’s d (equation 1)
cohend <- dmn / sdp

# compute unbiased Hedges’ g (equations 2a and 3)
eta <- ns[1] + ns[2] - 2
J <- gamma(eta/2) / (sqrt(eta/2) * gamma((eta-1)/2) )
hedgesg <- cohend * J

# compute noncentrality parameter (equation 5a or 5b depending on the design)
lambda <- if(design == "between") {
hedgesg * sqrt( ntilde/2)

} else {
r <- cor(x1,x2)
hedgesg * sqrt( ntilde/(2 * (1-r)) )

}

# confidence interval of the hedges g (equations 6 and 7)
tlow <- qt(1/2 - coverage/2, df = eta, ncp = lambda )
thig <- qt(1/2 + coverage/2, df = eta, ncp = lambda )

dlow <- tlow / lambda * hedgesg
dhig <- thig / lambda * hedgesg

# all done! display the results
cat("Hedges’g = ", hedgesg, "\n", coverage*100, "% CI = [", dlow, dhig, "]\n")

}
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