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Background: Convolution neural networks (CNN) is increasingly used in computer

science and finds more and more applications in different fields. However, analyzing brain

network with CNN is not trivial, due to the non-Euclidean characteristics of brain network

built by graph theory.

Method: To address this problem, we used a famous algorithm “word2vec” from the

field of natural language processing (NLP), to represent the vertexes of graph in the node

embedding space, and transform the brain network into images, which can bridge the

gap between brain network and CNN. Using this model, we analyze and classify the

brain network from Magnetoencephalography (MEG) data into two categories: normal

controls and patients with migraine.

Results: In the experiments, we applied our method on the clinical MEG dataset, and

got the mean classification accuracy rate 81.25%.

Conclusions: These results indicate that our method can feasibly analyze and classify

the brain network, and all the abundant resources of CNN can be used on the analysis

of brain network.

Keywords: convolution neural networks, brain network, word2vec, node embedding space, MEG

INTRODUCTION

Brain network and brain functional/structural connectivity play an important role in
neuroanatomy, neurodevelopment, electrophysiology, functional brain imaging, and neural basis
of cognition (Hosseini et al., 2012). Recently, more and more graph theoretical analyses have been
used to quantitatively measure the brain network of neuroimaging data. Niso et al. (2015) recorded
magnetoencephalographic (MEG) data from 45 subjects (15 healthy controls and 30 migraine
patients) during interracial testing state with closed eyes, and calculated 15 graph-theoretic
measures to compare brain network characterizations between healthy controls and epileptic
patients. Their results showed that differences in spectral power between the control and the
epileptic groups have a distinctive pattern, which indicate that functional epileptic brain networks
are different to those of healthy subjects during interictal stage at rest. Bassett and Bullmore
(2006, 2017) analyzed the brain network using graph theoretical measures, which were clustering
coefficient and path length, and concluded that the brain network had a small-world topology
characterized by a high clustering coefficient between neighboring nodes and a short path length
between any pair of nodes. Sherman et al. (2014) studied development of the default mode network
across early adolescence based on graph theory, and found that brain network measures, such as
integration, segregation, and connectivity, increased as the participants’ age grow.
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According to graph theory, brain networks can be composed
of nodes and edges. The nodes represent neurons or brain
regions, and the edges represent the physical or functional
connections between nodes. Therefore, the brain network
analysis using graph theory can be composed of four steps
(Bullmore and Sporns, 2009): (1) define the network nodes,
(2) define the measure of connections between nodes, (3)
generate a adjacent matrix or undirected graph by calculating
the pairwise associations between nodes, (4) calculate the
graph theoretical parameters which can locally or globally
characterize the brain network. Although, graph theory is
widely used to analyze the brain network, there are still some
shortcomings in the framework. Until now, many mathematical
definitions of brain network measures have been presented,
such as degree, shortest path length (Watts and Strogatz,
1998), number of triangles, global/local efficiency (Latora and
Marchiori, 2001), clustering coefficient (Watts and Strogatz,
1998), transitivity (Newman, 2003), modularity (Newman, 2004),
closeness centrality (Freeman, 1978), betweenness centrality
(Freeman, 1978), within-module degree z-score (Guimerà and
Amaral, 2005), participation coefficient (Guimerà and Amaral,
2005), anatomical and functional motifs (Milo et al., 2002;
Sporns and Kotter, 2004), motif z-score(Milo et al., 2002),
motif fingerprint (Sporns and Kotter, 2004), degree distribution
(Barabasi and Albert, 1999), average neighbor degree (Pastor-
Satorras et al., 2001), assortativity coefficient (Newman, 2002),
measure of small-worldness (Humphries and Gurney, 2008). All
these measures have different specific advantage and suitable for
different fields, respectively, for example, shortest path length
and global efficiency are suitable for measuring integration
of brain network, clustering coefficient, local efficiency, and
transitivity are suitable for measuring segregation of brain
network, centrality and within-module degree z-score are
suitable for measuring the centrality of brain network, motif
z-score and motif fingerprint are suitable to measuring the
brain network motifs, degree distribution, average neighbor
degree, and assortativity coefficient are suitable for measuring
the resilience of brain network. Therefore, different measures
have different emphasis and performance on analyzing the brain
network, which even result into totally conflicting results. Two
studies (Leistedt et al., 2009; Zhang et al., 2011) found that
major depressive disorder (MDD) patients had lower shortest
path length compared with normal controls, and no significant
differences in clustering coefficient. However, another study
(Lord et al., 2012) found that MDD patients had a significant
change of the community structures compared with healthy
controls, but there was no significant differences in shortest path
length and clustering coefficient.

In the last few years, convolutional neural network (CNN) has
performed very well in many fields, such as image processing,
artificial intelligence, human speech recognition, computer-aided
diagnosis, natural language processing (NLP), and so on. The
development of CNN can be tracked back in 1968, which
is interestingly motivated by neuroscience findings. In 1968,
Hubel and Wiesel (1968) found that cells in animal visual
cortex are responsible for detecting light in receptive fields.
Inspired by their findings, Kunihiko Fukushima proposed the

neocognitron in 1980 (Fukushima and Miyake, 1982). Next, in
1990, LeCun et al. (1989) improved neocognitron and proposed
LeNet-5 (LeCun et al., 1998), which can be recognized as the
predecessor of CNN. LeNet-5 was composed of many artificial
neural network layers and can be trained with backpropagation
method. However, due to the poor performance of the computers
at the time, the training of CNN is desperately time consuming,
which means that CNN cannot resolve complicated problems
at that time. As the rapid and huge development of computer
hardware and software framework, as well as the Big Data
technology, CNN comes back into researchers’ vision again.
In 2012, Krizhevsky et al. improved traditional CNN and
proposed AlexNet (Krizhevsky et al., 2012), which is similar to
LeNet-5 but with a deeper structure. After that, ZFnet (Zeiler
and Fergus, 2014), VGGNet (Simonyan and Zisserman, 2015),
GoogleNet (Szegedy et al., 2015), ResNet (He et al., 2016), etc.,
were proposed, all these CNN structures became deeper and
deeper, and can resolve many complicated problems in image,
video, and speech processing tasks. However, image, video,
and speech data are represented by 1D or 2D Euclidean space
discretized by rectangles, which means that CNN are suitable for
these kinds of regular, grid-like, low-dimensional data. Besides
Euclidean space data (image, video, speech), there are also
irregular or non-Euclidean domains that can be structured with
graphs, such as user data on social networks, gene data on
biological regulatory networks, log data on telecommunication
networks, text documents on word embeddings (Defferrard et al.,
2016), as well as brain networks which is our concern in this
paper.

Although, CNN has got outstanding performance in
Euclidean space data, generalization of CNN to irregular or
non-Euclidean data ( represented by graph) is not trivial,
because the operators in CNN (convolution, pooling, Relu,
dropout, etc. ) are only defined for regular grids. Analyzing the
graph based on CNN is a new topic, Defferrard et al. (2016)
and Kipf and Welling (2017) invoke the convolution theorem
from signal processing theory and transform the graph to
Fourier domain by SVD decomposition of the graph Laplacian
matrix, whose eigenvalues are recognized as “frequencies”
(Tixier et al., 2017). By contrast, Niepert et al. (2016) don’t
operate the CNN graph in the Fourier domain, they imitate
the image-based convolution networks and present a general
approach to extracting locally connected regions from graphs.
Kawahara et al. (2017) propose novel convolution filters that
leverage the topological locality of structural brain networks,
in contrast to the spatially local convolutions done in the
traditional image-based CNN. And they use this framework
to predict clinical neurodevelopmental outcomes from brain
networks.

In the present study, we aim to classified the brain network
into normal group and migraine group using the MEG data from
normal controls and patients with migraine. We construct the
brain network using graph theory, then analyze the brain network
based on CNN, instead of carefully and elaborately choosing one
or several graph measures to quantitatively delineate the brain
network and result in a significant difference or mathematical
relationship, which may be conflicting if another measures are
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FIGURE 1 | The schematic of our method.

FIGURE 2 | The schematic of building brain network based on graph theory.

picked. The main contributions of the present study are: (1)
build a bridge between brain network and CNN, so that the
abundant CNN toolkits and methods can be used to analyze
brain network; (2) the first study that classify the brain network
into two categories, which are normal and abnormal (migraine);
(3) represent the graph as an image and classify the graph by
extracting features by building a CNN structure from the images.

METHODS

The main steps of our method are: (1) construct a brain network
using graph theory; (2) represent the graph as an image; (3) build
a CNN structure; (4) analyze and classify the transformed images
based on CNN. And the schematic of our method is show in
Figure 1.

Building Brain Network
Before building brain network, there are some preprocessing on
the raw MEG data. Noticeable noise or artifacts were excluded
using FieldTrip (an open source MATLAB toolbox, http://www.
fieldtriptoolbox.org/start), and the preprocessing steps are: (1)
Define segments of interest; (2) Read the MEG data (with
padding) from disk; (3) Filter the data; (4) Z-transforme the
filtered data and averaging it over channels; (5) Threshold the
accumulated z-score.

Mathematically, brain network is represented by ordered pairs
of set G(N, L) in which N is a set of nodes and L is a set of links.
Graphically, the nodes are plotted as points and the links as lines
joining them. When two nodes are connected by a link, they are
considered neighbors (or adjacent) (Wang and Meng, 2016). In
the present study, we used 275 MEG sensors as the graph nodes,
and used phase lag index (PLI) (Luis et al., 2016) as the functional
connections between nodes, which are graph edges.

PLI = | < sign[(1ϕ(tk))] > (1)

∆j represents the phase difference between two time series,
k represents the time-point, sign represents signum function,
<> represents the mean value and | | represents the absolute
value. The schematic of building brain network is shown is
Figure 2.

Represent a Graph as an Image
This is the core contents of this study. Suppose that we have
a graph G(V, E) after building the brain network, V represents
the nodes of the graph and the element vi represents the ith
node, E represents the edges of the graph and the element ei,j
represents the weight between node vi and vj. So the adjacency
matrix A can be obtained, which is a square and symmetric
matrix with the dimensionality of |V|×|V|, and the element ai,j
equals to ei,j. However, graph adjacency matrix does not have
spatial dependence property. Therefore, we cannot directly input
the graph adjacency matrix to the 2D CNN. To resolve this
problem, we represent a graph as an image based on graph node
embedding.

Graph Node Embedding
Given a graph G(V, E), a graph embedding is defined as a
mapping f :

f : vi → yi ∈ Rd ∀i ∈ [n] and d≪ |V| (2)

Therefore, the graph embedding space maps each node in the
graph to a low dimensional vector, and the proximity between
two nodes can be represented as the Euclidean distance between
two vectors in the graph embedding space. In the present
study, we calculate the mapping function f from graph to node
embedding space, which was inspired by a NLP method, that is
“Word2Vec” (Mikolov et al., 2013). UsingWord2Vec method, all
the words in the corpus can be represented as a low dimensional
vector, instead of a high dimensional one-hot vector, and the
reduction of vector dimensionality can extremely enhance the
performance of many NLP tasks, such as word storage, semantic
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Algorithm 1: Node2Vec (G, I, w, d, l)

Input: (1) Graph G(V, E)
(2) Walks’ iteration times I
(3) Window size w
(4) Embedding size d
(5) Walk length l
(6) Neural network set U = (N1,N2,...,N|V|) , each node vi
has one corresponding neural network Ni, and all the
networks have the same structure, that is one input layer,
one hidden layer and one output layer
Output: matrix of graph nodes representations ΦǫR|V|×d

1: Initialize all the elements in U
2: for i= 0 to I do
3: for each vi ε V do
4: P = RandomWalk (G, s, l)
5: SkipGram (U, P, w)
6: end for
7: end for

analysis, language translation, and so on. And in our study, we
denoted random walk as a stochastic process which was rooted
at a node k0 in the brain network and randomly chose another
nodes k1,k2,. . .ki in the neighbor of node k0. Random walk can
characterize the neighboring structure of the rooted node in
the brain network. Therefore, we can use a serial of random
walks to illustrate the information of brain network structure,
that is to say, the relationship between brain network nodes and
edges. Motivated by the Word2Vec in NLP, we assume that the
random walks in a brain network can be thought as sentences
and phrases in a language, and all the nodes in the random
walks can be though as words in a language, so we can learn not
only a probability distribution of node co-occurrences, but also
a representation of nodes in the format of vectors. Similarly, we
name our method “Node2Vec.” The algorithm pseudo-code of
Node2Vec is shown in Algorithm 1.

Each node vi in the graph has one corresponding neural
network Ni. The input layer of Ni is a 1 × |V| one-hot vector,
there is only one “1” in the one-hot vector and the index of “1”
indicates the specific node vi. The output layer of Ni is a 1 × |V|
vector, and each item of vector indicates the possibility that the
corresponding node is in the neighbor of node Ni. The hidden
layer of Ni is a 1 × d vector ( d << |V| ), this is the mapping
function f we’re looking for, it means that the corresponding
node in the input layer can be represented by the vector in the
hidden layer, which is represented in formula (1).

Line 4 and 5 are the core steps of Node2Vec algorithm. Given
a graph G(V, E), we denote random walk of length l rooted from
node s as a stochastic process with random variables X1, X2,..., Xl,
such that X1 = s and Xi+1 is a vertex chosen randomly from the
neighbors of Xi. We used random walk to extract local structure
information from the network. The algorithm pseudo-code of
random walk is shown in Algorithm 2. SkipGram algorithm
maximizes the co-occurrence probability among the nodes in a

Algorithm 2: RandomWalk (G, s, l)

Input: (1) Graph G(V, E)
(2) Starting node s
(3) Walk length l
Output: random walk path Ps,l= ( X1, X2,..., Xl )

1: Initialization: Let i= 1, walk length= 1, and Xibe the
starting node s
2: while ( walk length hasn’t reached l )
3: Let node Xi+1 be a random neighbor of node Xi

4: Add node Xi+1 in the random walk path Ps,l
5: Let walk length added by 1
6: end while

Algorithm 3: .SkipGram (U, P, w)

Input: (1) Neural network set U = (N1,N2,...,N|V|)
(2) Random walk path P
(3) Window size w
Output: update the neural network set U

1: for each vjǫP do
2: for each uk ǫ P[j-w: j+w] do
3: Represent vj by a one-hot vector hj
4: Let hj be the input layer of Nj

5: Update output layer using uk
6: Train neural network Nj, and update the hidden layer of
Nj

7: end for
8: end for

window (Mikolov et al., 2013), and the algorithm pseudo-code is
shown in Algorithm 3.

Represent Graph as Image
In the graph node embedding space, we obtain the matrix of
graph nodes representations ΦǫR|V|×d, so we can represent
each node vi in the graph as a d-dimension vector. And in the
viewpoint of machine learning, we can also conclude that each
node vi in the graph has d features. Next, we need to align all
these features to determine which feature is the most important
one, which dimensional is the second important one, and so on.
Therefore, in this paper, principle component analysis (PCA)
method is used to transform the d-dimension vector of node vi
into dPCA-dimension vector LPCA, which is a sequential list.

LPCA =
{

f1, f2, . . . , fdPCA
}

1 ≤ i ≤ |V| , dPCA < d (3)

|V| represents the number of nodes in the graph. Then, we can
build a matrixM1 using the first two features of all nodes,

M1 =

∣

∣

∣

∣

f v11 , f v21 , f v31 , . . . , f
v|V|
1

f v12 , f v22 , f v32 , . . . , f
v|V|
2

∣

∣

∣

∣

(4)
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f vi1 (1 ≤ i ≤ |V|) represents the first feature of node vi, f
vi
2 (1 ≤ i ≤

|V|) represents the second feature of node vi. Then we normalize
f vi1 and f vi2 to a fixed number r of equally-size bins. Then we can
build the image I1, the resolution of the image I1 is r × r, and the
value of image pixels are defined as the count of the number of
nodes falling into that bin. The algorithm pseudo-code is shown
in Algorithm 4.

Algorithm 4: Graph2Img (U, P, w)

Input: (1) Graph G(V, E)
(2) Matrix of graph nodes representations ΦǫR|V|×d

Output: Image I1 representing graph

1: Initialization: Let all pixels of I1 to be zero
2: Re-organize ? by PCA method
3: Build a matrixM1 using the first two features of all nodes
4: for i= 1 to |V| do
5: x= f vi1
6: y= f vi2
7: Let I1 (x, y) added by 1
8: end for

Similarly, we also can build image I2 using the third
and fourth features of all nodes, build image I3 using the
fifth and sixth features of all nodes, and so on. Totally, we
can build dPCA/2 images from the graph node embedding
space. However, we don’t have to use all the dPCA /2
images, because PCA method is used to reduce and align the
features into a sequential list. In this study, we only use the
first four features to build two images I1 and I2, which is
enough to analyze and classify the brain network, shown in
Figure 3.

CNN Architecture
The brain network is represented by two images I1 and I2. We
can also recognize I1 and I2 as two channels of one image,
just like (R,G,B) channels in the color images. Then we can
use these images as an input to CNN. In this study, our CNN
structure is based on LeNet-5 (LeCun et al., 1998), there are seven
layers totally, including input layer (I1), convolution layer 1 (C2),
convolution layer 2 (C3), pooling layer (P4), full connection layer
1 (F5), full connection layer 2 (F6), and output layer (F7), shown
as Figure 4.

Firstly, the input layer is a 10 × 10 image. Then, the
first convolution layer is 32 kernels of 3 × 3 feature map,
each kernel computes a convolution of the input image with
a ReLU activation function. The second convolution layer is
128 kernels of 3 × 3 feature map with a ReLU activation
function, followed by a 2 × 2 max pooling layer. Next, there
two fully-connected layers with 32 nodes and 16 nodes. Finally,
the output layer with two output nodes is used to classify
the input images into two categories based on the softmax
function.

EXPERIMENT AND RESULT

In this section, we applied our method on the clinical MEG
dataset, which is consists of 40 subjects, 20 healthy controls
(subject ID: 1 to 20) and 20 patients with migraine (subject
ID: 21–40). All these MEG data were obtained from Cincinnati
Children’s Hospital Medical Center (CCHMC) and Nanjing
Brain Hospital, and the target is to classify MEG data into two
classes: the abnormal subjects and the healthy controls.

Our method use some open-source toolkits, MEG data is pre-
processed by using FieldTrip toolkit (Oostenveld et al., 2011),
brain network is built by using FieldTrip toolkit, graph node
embedding is calculated by using node2vec toolkit (Grover and
Leskovec, 2016), PCA is performed by using Matlab PCA toolkit,
histogram of vectors is calculated by using histograms python
toolkit (Tixier et al., 2017), our CNN is implemented using the
Keras model with tensorflow (Abadi et al., 2016) backend. All
these algorithms are run on Intel Core i7-6700 3.4 GHz CPU
and 8 GB of RAM, under Windows 7× 64 operating system and
Python 3.5.

In this study, brain networks of MEG data are represented as
images with two channels and resolution 10 × 10. We perform
4-fold cross-validation; the 40 MEG datasets are randomly split
into four equal size subsamples. In each run, three subsamples
are selected as the train grouping, and the remaining single
subsample is retained as the test group. Input all these images
of train group into our CNN architecture, and the categorical
cross-entropy loss is optimized with Adam. To avoid over-fitting,
dropout = 0.25 is used after convolution layers C2, C3 and
fully-connected layer F5, and early stopping is also used after
every epoch, so the number of epochs of each run is different.
The training parameters are as following: dropout rate =

0.25, regularization weight = 5 × 10−4, learning rate = 0.001,
momentum = 0.1, training epoch = 1,000, iteration = 10. After
training from CNN, the filter kernels of convolution layers (C2,
C3) and the weights of full-connected layers (F5, F6) can be
determined, then the training results can be used to validate the
test group.

The schematics of the whole procedure of one healthy control
(subject ID = 10) and one patient with migraine (subject
ID= 30) were shown in Figures 5, 7. And we can see that it’s not
clear to distinguish the differences between healthy controls and
patients with migraine in the brain network (Figure 5) or in the
node embedding space (Figure 6), however, in the representation
of two-channel images (Figure 7), the differences can be easily
found and classified by CNN.

In this experiment, we repeat the training and testing
procedures ten iterations to ensure the stability of the method.
Limited by the article length, we can’t show all the results from
10 iterations. Therefore, from the iteration #1 of 4-fold cross-
validation, we illustrate the validation accuracy rate of every
25 epochs and validation loss rate of every 25 epochs, which
are shown in Figures 8–11. The accuracy rate and loss rate
were steady after 300 epochs. The classification accuracy rate
of four cross-validation are shown in Table 1. Therefore, we
may conclude that our method can analyze and classify the
brain network into two categories: normal and migraine. After
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FIGURE 3 | Schematic of representing graph as images, (A) segments of MEG waveform from a healthy control, (B) use 273 sensors as nodes, PLI as edges to build

brain network, (C) each in the graph is represented by a d/2 dimensional vector, (D) use PCA method to align and reduce the vectors, (E) build 2D histogram, in this

study, each feature is divided into ten bins, therefore, each value in the 10 × 10 matrix is the number of nodes falling into the corresponding bin, and the sum of all

pixel values is 273, which is the number of sensors, (F) 3D visualization of histogram.
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FIGURE 4 | Schematic representation of CNN structure.

FIGURE 5 | An example of brain network result built from raw MEG data, and the size is 273 × 273, (A) one healthy control (subject ID = 10), (B) one patient with

migraine (subject ID = 30).

FIGURE 6 | An example of node2vec result built from brain network, each node of the brain network was represented as a 20-dimensional vector in the node

embedding space, so the size was 273 × 20, (A) one healthy control (subject ID = 10), (B) one patient with migraine (subject ID = 30).

training of 10 iterations, we can obtain the model and weights
of each layer. Visualization of weights in all layers from our
CNN is shown in Figure 12. Figure 12A shows the weights of

the first convolve layer with size (3, 3, 2, 32); Figure 12B shows
the weights of the second convolve layer with size (3, 3, 32,
128); Figure 12C shows the weights of the first fully-connected
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FIGURE 7 | An example of two-channel images results by from 20-dimensional node vectors, each subject was represented as an image with two channels, so the

image size is 10 × 10 × 2, (A,B) represent the two channels from one healthy control (subject ID = 10), (C,D) represent the two channels from one patient with

migraine (subject ID = 30), (E,F) represent the differences between healthy control and patient.

layer with size (1152, 32); Figure 12D shows the weights of
the second fully-connected layer with size (32, 16); Figure 12E
shows the weights of the third fully-connected layer with size
(16, 2). By the visualization, we can see that our convolution
kernel size is only 3 × 3, we didn’t choose the bigger one,

because the resolution of our target is 10 × 10, and large kernel
may hinder feature extraction by the feature maps. However,
as a remedy for the small kernel size, we used large amount
of feature maps and units in the convolve layers and fully-
connected layers, and the total number of parameters in our
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FIGURE 8 | Testing results of the first run, each dot in the image represents the mean value of every 25 epochs, (A) mean accurate rate of test group, (B) mean loss

rate of the group.

FIGURE 9 | Testing results of the second run, each dot in the image represents the mean value of every 25 epochs, (A) mean accurate rate of test group, (B) mean

loss rate of the group.

FIGURE 10 | Testing results of the third run, each dot in the image represents the mean value of every 25 epochs, (A) mean accurate rate of test group, (B) mean loss

rate of the group.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 December 2018 | Volume 12 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Meng and Xiang Analyze Brain Network Using CNN

FIGURE 11 | Testing results of the fourth run, each dot in the image represents the mean value of every 25 epochs, (A) mean accurate rate of test group, (B) mean

loss rate of the group.

FIGURE 12 | Visualization of weights in all layers from convolutional neural network, (A) the first convolve layer with size (3, 3, 2, 32), which means that there are 64

kernels whose size are 3 × 3, and this layer is visualized by a 9 × 64 image; (B) the second convolve layer with size (3, 3, 32, 128), which means that there are 4,096

kernels whose size are 3 × 3, and this layer is visualized by a 9 × 4096 image; (C) the first fully-connected layer with size (1152, 32), which means that 1,152 units

from the output of the last layer and 32 units from the input of first fully-connected layer, and this layer is visualized by a 1,152 × 32 image; (D) the second

fully-connected layer with size (32, 16), which means that 32 units from the output of the last layer and 16 units from the second fully-connected layer, and this layer is

visualized by a 32 × 16 image; (E) the third fully-connected layer with size (16, 2), which means that 16 units from the last layer and 2 classifications as the output

result (normal or migraine), and this layer is visualized by a 16 × 2 image.
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TABLE 1 | Results of accuracy rate from four cross-validation in iteration #1.

First cross-validation (%) Second cross-validation (%) Third cross-validation (%) Forth cross-validation (%) Mean

Accuracy rate 88.9 74.6 79.0 82.5 81.25%

TABLE 2 | The comparison of our method and two baseline methods.

Method Mean accuracy rate (%)

Linear SVM 58.37

GCNN 75.60

Our method 81.25

CNN is 74,784, which can make sure that the differences between
healthy controls and patients with migraine can be extracted by
our CNN.

Besides, we also compared our classification results with the
other two base line methods, Linear SVM and graph convolution
neural network (GCNN) from Defferrard et al. (2016), shown in
Table 2. Linear SVM is a classical supervised learning method
for classification and regression analysis, but for the classification
of MEG raw data, the mean accuracy rate is only 58.37%, we
guess the poor performance is due to the huge amount of MEG
channels, and multiple dimensionalities of MEG data. GCNN
and our method both outperform Linear SVM, which indicates
that the integration of graph theory and CNN can greatly
enhance the performance of classification accuracy, however,
GCNN has not made special optimization for MEG data, so it
lags behind our method in classification accuracy.

CONCLUSION AND FUTURE WORK

In this paper, we bridge the gap between brain network and
convolution neural network, and classify the brain network from

MEGdata into two categories: normal andmigraine.We train the
CNN architecture on the training group, and validate the result
on the testing group, which indicates that our method is feasible
and can distinguish normal and migraine brain network.

Next, we will mainly focus on two aspects: (1) collect
more MEG data, and improve the CNN architecture; (2)
diversify the abnormal MEG brain network, and use our
method on the epileptic brain network, autism brain network,
and so on; (3) analyze the brain network at the source
level.
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