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One of the most exciting areas of rehabilitation research is brain-controlled prostheses,

which translate electroencephalography (EEG) signals into control commands that

operate prostheses. However, the existing brain-control methods have an obstacle

between the selection of brain computer interface (BCI) and its performance. In this

paper, a novel BCI system based on a facial expression paradigm is proposed to control

prostheses that uses the characteristics of theta and alpha rhythms of the prefrontal

and motor cortices. A portable brain-controlled prosthesis system was constructed to

validate the feasibility of the facial-expression-based BCI (FE-BCI) system. Four types

of facial expressions were used in this study. An effective filtering algorithm based

on noise-assisted multivariate empirical mode decomposition (NA-MEMD) and sample

entropy (SampEn) was used to remove electromyography (EMG) artifacts. A wavelet

transform (WT) was applied to calculate the feature set, and a back propagation neural

network (BPNN) was employed as a classifier. To prove the effectiveness of the FE-BCI

system for prosthesis control, 18 subjects were involved in both offline and online

experiments. The grand average accuracy over 18 subjects was 81.31 ± 5.82% during

the online experiment. The experimental results indicated that the proposed FE-BCI

system achieved good performance and can be efficiently applied for prosthesis control.

Keywords: facial expressions, electroencephalography (EEG), brain computer interface (BCI), brain-controlled

prosthesis, the motor cortex, the prefrontal cortex

INTRODUCTION

With the increase in the number of disabled persons with amputations or spinal cord injuries,
many studies have focused on the development of prosthetic technology to restore lost motion
function (Ziegler-Graham et al., 2008). Research on prosthesis control strategies is expected to
enable patients who can use a prosthesis as an assistive device to realize their routine activities
(Makowski et al., 2014). Several types of prosthesis have been developed, ranging from passive
cosmetic prostheses to body-powered limbs, from EMG-based prostheses to EEG-based prostheses
(Lee et al., 2014). The earliest prostheses were passive cosmetic devices, which can only help a
person seem less awkward in social situations but not change posture (Cordella et al., 2016).
However, body-powered prostheses gradually replaced the passive cosmetic prostheses due to
their simple design and effectiveness. The shortcoming of these types of prosthesis is that they
can only control one joint at a time by mechanical linkage (Kistenberg Robert, 2014). With

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00943
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00943&domain=pdf&date_stamp=2018-12-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xdzhang@mail.xjtu.edu.cn
https://doi.org/10.3389/fnins.2018.00943
https://www.frontiersin.org/articles/10.3389/fnins.2018.00943/full
http://loop.frontiersin.org/people/558661/overview
http://loop.frontiersin.org/people/649993/overview


Li et al. Facial Expression Based BCI

developments in prosthetic technology, considerable attention
has been focused on biological signal control strategies because
these signals can represent a person’s own intention. Due to
the distinct neural information of EMG, these signals play
an important role in prosthesis control technology (Lobo-Prat
et al., 2014; Madusanka et al., 2015). Two types of EMG
prostheses, the I-limb system and the ProDigits system, are
commercially available due to their characteristics such as high
recognition accuracy and minimal complexity (Pan et al., 2014).
However, EMG-controlled prostheses can only be effective if
they satisfy two premises. Firstly, the amputees could voluntarily
activate repeatable and distinct EMG signal patterns for different
motor tasks associated with their limb movements. Secondly,
the amputees have enough residual muscles to provide EMG
signals with rich set of neural information for accurate limb
movement intents decoding (Kuiken et al., 2009; Al-Angari et al.,
2016).

Since EEG signals are independent of residual muscles and
contain high-quality neural information on an individual’s
intentions, developments in BCI systems are designed to control
prostheses using a subject’s thoughts alone (Donchin et al., 2000;
Mcmullen et al., 2014; Stan et al., 2015; Vidaurre et al., 2016),
which can be divided into spontaneous BCIs [event-related
(de)synchronization (ERD/ERS)] and evoked BCIs [steady-
state visual evoked potential (SSVEP), P300 potential, etc.]
(Pfurtscheller et al., 2000b; He et al., 2016). Several efforts have
been exploited that use BCIs to control prosthesis, and the
main system include motor-imagery-based BCIs (MI-BCIs) and
SSVEP-based BCIs (SSVEP-BCIs) (Acharya et al., 2010; Wang
and Veluvolu, 2017). The first report to use a MI-BCI system
to control a prosthesis was presented by the Graz University
of Technology. After several months of training, their accuracy
was close to 90% (Pfurtscheller et al., 2000a). Another study
showed how monkeys could use their motor cortical activity
to control a mechanized arm in a self-feeding task. This study
was the first to add physical interactions between a 5 degrees
of freedom (5-DOFs) robotic arm and physical objects (Velliste
et al., 2008). Recently, a MI based brain-controlled prosthesis
using multiple controlled tasks has been reported. The MI-BCI
was associated with multiple classes of imagined upper limb
movements collected from 64-channel EEG signals, and it has
showed good performance (Samuel et al., 2017b). Although this
kind of BCI system has some advantages, such as stable and rapid
responses, the long duration of training and variability between
different users limits their further study.

Another widely adopted BCI system is the SSVEP-BCI, which
responds to visual stimulation (Vialatte et al., 2010). The most
common paradigm used in this area is flashing light patterns,
which have been successfully used to control a 2-DOFs hand
orthotic using only 2 EEG signals. The mean accuracy of this
method can reach 85% without training (Pfurtscheller et al.,
2010). In another development, a scene graph SSVEP-BCI system
for control of a 2-DOFs prosthesis using 2 EEG channels
recording from the occipital cortex has been reported. The merits
of this method are the high information transfer rate (IRT), high
recognition accuracy and lack of training time required; however,
this system relies entirely on a stimulator (Xie et al., 2012; Chen

et al., 2014). Moreover, a long stimulation time may easily lead to
epileptic seizures.

Under all obstacles above, there remains motivation for
finding a novel BCI method. Providing an alternative BCI
system to overcome the limitations between high accuracy and
independence is necessary. Recently, another kind of novel BCI
system, which is called a FE-BCI system, has been developed.
Most researchers have focused on face-based video or face-based
image induced systems to develop a FE-BCI system (Kashihara,
2014; Daly et al., 2016; Toth and Arvaneh, 2017). Jin and
colleagues introduced a visual stimulus pattern based on the
images of facial expression, the presentation of images of face
could successfully evoke ERPs (Jin et al., 2014). However, only a
few studies have used real facial expressions. Chin and colleagues
reported a technology that classified facial expressions based on
EEG and EMG signals using the Filter Bank Common Spatial
Pattern (FBCSP) algorithm (Chin et al., 2008). However, this
system is not a complete BCI system. As EEG signals are very
sensitive to EMG signals, the contributions of each kind of signal
was unknown. Additionally, the location of the most contributive
channels was not investigated.

In this study, we hypothesized that the responses from the
prefrontal and motor cortices contain important information
relevant to different facial expressions. To verify the feasibility
of the proposed paradigm, a FE-BCI system was implemented
using four facial expressions to control a 2-DOFs prosthesis. The
organization of this paper is as follows. Section Materials and
Methods addresses methodology, including the mechanisms of
facial expression, the brain-controlled prosthesis based on a FE-
BCI system, the experimental setup and data analysis. Section
Results describes the brain response experimental results as well
as corresponding accuracies. The discussion and conclusion are
stated in Sections Discussion and Conclusions, respectively.

MATERIALS AND METHODS

The neural pathwaymechanisms of different EEG signals provide
the theoretical foundation for a BCI system. In this section,
we described the biological mechanisms of facial expression
formation and the construction of a brain-controlled prosthesis
system. Moreover, the experimental setup and the EEG signal
analysis algorithm are also systematically investigated.

Mechanisms of Facial Expression
A new field of neurophysiology is that of affective computing,
which integrates systems that analyze and process human
emotions (Marinkovic and Halgren, 1998; Etkin et al., 2011). One
of the most fundamental features that depicts human emotions
is facial expression, which synthesizes several basic emotions
(Keltner et al., 2003; Kilts et al., 2003). Multiple factors appear
to contribute the mechanisms of human facial expressions,
including brain responses, nervous system transmissions, motor
neuron activity generation, facial nerve transmissions and
realizations, and facial muscle movements (Mandal and Awasthi,
2015). Earl‘s group and other similar studies have extensively
reported that several of the critical abilities of the prefrontal
cortex are related to cognitive control, goal-directed behavior
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and facial expression (Marinkovic et al., 2000; Miller and
Cohen, 2001; Gray et al., 2002; Lisetti and Schiano, 2008). The
role of facial expressions in physiological emotional processes
and conscious emotional experiences has inspired considerable
discussion. One of the most distinguished result from the
previous studies was that the change of facial expression could
result in the corresponding brain activity over the prefrontal
cortex, especially in alpha and theta band (Friedman and
Thayer, 1991; Coan et al., 2001). Hence, facial expression is an
effective method to intensified emotions-specific responses over
prefrontal.

Furthermore, a series of studies by Ross and Guillermo
demonstrated that brain responses to facial expressions are also
seen in the motor cortex (Paradiso et al., 2005; Ross et al., 2016).
Thus, the brain responses over the motor cortex might provide
a possible link between this area and the representation of facial
expression. Facial expressions can generally be divided into the
upper facial expressions and the lower facial expressions. The
upper facial expressions mainly concern with the expressions
from brows and eyes. The lower facial expressions are related
to the expressions around cheek and mouth. Interestingly,
researchers found that the upper facial expressions have its
responses reflected on the prefrontal cortex and motor cortex,
while the lower facial expressions have more distinguished
activity on motor cortex.

Considering the mechanisms of facial expression and the
goal of our study, four facial expressions [Raising Brow
(RB), Furrowing Brow (FB), Left Smirking (LS) and Right
Smirking (RS)] were selected for the proposed FE-BCI system.
The simplicity, repeatability and the distinct differences of
the involved brain cortices among facial expressions were
taken into account. In relation to the emotional experience,
these expressions were chosen because they convey typical
emotions (e.g., Raising Brow is accompanied by shock emotions).
Meanwhile, considering the responses over the motor cortex, RB
and FB as two general upper facial expressions were selected due
to its simplicity and repeatability. Also, LS and RS one-sided
lower facial expressions were selected to enlarge the different
response of the motor cortex. In a nutshell, RB, FB, RS, and LS
were used in the FE-BCI system and the brain responses from
the prefrontal and motor cortices serves as the regions of interest
to classify the different facial expressions.

Description of Brain-Controlled Prosthesis
System
Based on previous experiences and the performance criteria for
prosthesis control (He et al., 2016; Minguillon et al., 2017), the
system used in this study was composed of three modules: EEG
signal acquisition, EEG signal processing and the prosthesis.
An 8-channel wireless Neuracle manufactured by Neuracle
Technology Co., Ltd, was selected as the EEG signal-acquisition
module, and a microprocessor with Intel (R) Core (TM) i5-5600
CPU was employed as the EEG signal-processing module. The
prosthesis module was custom-made by Danyang Artificial Limb
Co., Ltd. and integrated an Arduino Uno controller, a L298N
motor driver, 2-DOFs prosthesis with wrist and finger joints and

a Bluetooth device. An overview of the system is illustrated in
Figure 1A.

The prosthesis-control strategy and corresponding schematic
of EEG signal analysis are shown in Figures 1B,C. When the
system working, each facial expression task was observed for 4 s,
and a rest session of 2 s was introduced between two consecutive
tasks. Neuracle recorded EEG signals from the prefrontal and
motor cortices during the task, which were simultaneously
transferred to the microprocessor by Bluetooth. Then, the
microprocessor processed the EEG signals in two steps. The first
step was EMG artifacts removal, which was calculated by NA-
MEMD and SampEn algorithms. After EMG artifacts removal,
the feature set of the resulting signal was extracted by WT, and
BPNN was used to discriminate the subject’s intention. Finally,
the recognition result was translated into a control command
to actuate the driving and controlling devices, and then the
prosthesis was operated based on the subject’s intention. The
delay that occurred while sending the control command from
themicroprocessor to controller was 200ms.More details of EEG
data analysis can be found in Section Data processing.

Subjects and Data Acquisition
Eighteen healthy subjects (22–30 years of age, 15 males and
3 females) participated in this study, without any experience
of the proposed FE-BCI system. None of them received any
training before the experiments. Written informed consent
was obtained from each subject before the experiment. The
Institutional Review Board of Xi’an Jiaotong University approved
the proposed experiment, and all experiments were conducted in
accordance with the Declaration of Helsinki. The detail method
of sample size estimation can be found in section Statistical
analysis.

EEG signals were acquired using Neuracle (Figure 2A) at
sampling rate of 1,000Hz. The Neuracle has 8 EEG channels
and 2 references channels that collect EEG signals. The
channel distributions are based on the international 10-20
electrode location system. According to the neurophysiological
mechanisms of facial expressions and reduce the unavoidable
EMG artifacts over the prefrontal and motor cortices, four
electrodes were placed on FC5, FC6, C3, and C4, which are
shown in Figure 2A. The electrodes AFz and CPz served as a
reference and ground by the previous literature (Yao, 2001). The
impedances for all electrodes were maintained below 5 k�. All
online and offline data analyses were performed after resampling
to 250Hz. After this, a Butterworth bandpass filter was used to
filter EEG data into 3–30Hz frequency bands.

Experimental Procedure
In the experiment, subjects were instructed to sit behind a table
and avoid body movements during the experiment; the seat
was placed 20∼50 cm away from the desk. All subjects were
instructed to perform both offline and online experiments. There
were 10 sessions for each experiment, and each session consisted
of 6 trials. In each trial, a beep will alert the subject that the
experiment is just about to begin; the subjects have 2 s to prepare
and then instructed to perform one of four facial expressions
within for 4 s. To avoid mental fatigue, there were 2-s breaks
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FIGURE 1 | The brain-controlled prosthesis system based on facial expressions and its schematic description. (A) The 2-DOFs brain-controlled prosthesis system.

(B) A schematic of the FE-BCI system-controlled prosthesis. (C) Flowchart of EEG signal processing.

FIGURE 2 | Experimental setup and task description. (A) The Neuracle device and its electrode placements. (B) Overview of the time series of one session. (C) The

experiment scene with one subject (S3) to illustrate the four facial expression tasks used for prosthesis movements. Raising Brow corresponds to hand opened,

Furrowing Brow corresponds to hand closed, Left Smirking corresponds to wrist rotation to the right, and Right Smirking corresponds to wrist rotation to the left.

Written informed consent for the publication of identifying images was obtained from the subject (S3).

between every 2 trials and a 5-min intermission between every
2 sessions. The time series of one session is shown in Figure 2B.

Figure 2C depicts the experiment scenes from one subject
(S3). During the offline stage, the subjects were instructed to
repeat the RB, FB, RS, and LSmovements. Each subject was asked
to perform 10 repetitions of each facial expression. After the
best feature sets had been determined for each facial expression

of each subject, an online task to imitate drinking water was
conducted.

In the online stage, each subject performed 10 sessions with
the same time series as the offline experiment. Due to grasp
pattern being one of the most important functional motion
for human hand, it can help disabled person to perform more
complicate activities without requiring additional support, such
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as holding a bag, drinking, eating, among other. Thus, four
kind of actions were selected; hand opening, hand closing, wrist
rotating right and wrist rotating left, respectively. In each session
of online experiment, the subjects had to finish a complete
prosthesis movement that imitated the process of drinking water
by a disabled person. The detailed procedure is as follows:

(1) Opening the prosthesis to prepare grasping cup.
(2) Closing the prosthesis to grasp the cup.
(3) Wrist rotating to the right direction. It means wrist rotation

toward subject to drink water.
(4) Wrist rotating to the left direction. It means wrist rotation

away from subject to prepare to put down the cup.
(5) Putting down the cup on the table and then open the

prosthesis
(6) Closing the prosthesis to the initial state.

Four different facial expressions RB, FB, RS, and LS were
performed to control hand opening, hand closing, wrist rotating
right and wrist rotating left, respectively. During the online test,
distinct results were generated every 0.5 s after the initial 2.5 s of
each trial. Once the control command was detected, the classifier
would not work until next trial begin to ensure the specific
gesture of prosthesis finished.

Data Processing
Artifact Removal
EMG artifacts in EEG signals may inevitably result misleading
in signal detection. Many algorithms are used for EMG artifacts
removal, among them, Independent Component Analysis (ICA)
was the most-commonly used method in the BCI system.
However, with the necessary assumption of multichannel
condition, this technique is only effective when a sufficient
number of channels are available (Boscolo et al., 2004). To
overcome these obstacles, NA-MEMD has been developed with
relatively good performance in terms of EMG artifacts removal
in few-channel EEG signals due to its highly localized time-
frequency representations and self-adaptation characteristics
(Rehman and Mandic, 2009; Teng et al., 2014; Chen et al.,
2017, 2018). Moreover, SampEn is an effective way to identify
the complexity of different biological signals (Richman and
Moorman, 2000; Liu et al., 2017). It is well known that the
randomness of EMG signal is much stronger than that of EEG
signal in the same condition, so the entropy of EMG signal will
be larger than that of EEG signal. Therefore, an appropriate
threshold of sample entropy can be determined to distinguish
the EMG artifact. Taking the above properties into account,
NA-MEMD combined with SampEn was used to reduce EMG
artifacts in the FE-BCI system.

NA-MEMD simultaneously decomposes multichannel data,
ensuring the better alignment of corresponding Intrinsic mode
functions (IMFs) from different channels, which will benefit
the specific feature extraction of EEG signals. Since the quasi-
dyadic filter bank properties of MEMD on white Gaussian noise
(WGN) and the broadband characteristic of white noise, IMFs
corresponding to the original signal can exhibits a quasi-dyadic
structure enforced by the extra noisy channels and thus, reduces
the mode mixing problem (Ur Rehman and Mandic, 2011).
Given that y (t) consists of the N channel EEG signals and M

channel WGN with the same length, which is represented by:

y(t) = {y1(t), y2(t)......yn(t)}Tt=1, (n = 1,2......M + N, t = 1, 2......T)

(1)

where T is the number of temporal samples, n is the total number
of channels.

Given that y (t) can be decomposed into J scales of IMF by

NA-MEMD, y(t) =
∑J

j=1 hj(t)+ r(t), where hj (t) is the jth IMF

of y (t) and r (t) is the residual components. The detailed steps of
NA-MEMD are given as follows:

(1) Hammersley sequences were used to generate a suitable set
of direction vectors Xθk on an (n-1) sphere, that is:

Xθk = [xk1, x
k
2, ...x

k
n] (2)

Where θk = [θ1
k, θ2

k, ..., θkn−1] is the direction angles
corresponding to the direction vectors.

(2) The projection Pθk of the input signal y (t) along the
direction vector Xθk, for all k, was calculated; Pθk is denoted
by:

{Pθk(t)}Kk=1

(

k = 1, 2, . . . . . . ,K
)

(3)

where K is the total number of direction vectors.
(3) All the time instants tθ

k

i were calculated, corresponding to

the maxima of the set of projected signals{Pθk(t)}K
k=1

, where
i denotes the maximal time point.

(4) [tθ
k

i , y(tθ
k

i )] was interpolated for all k to obtain the

multivariate envelope curves
{

eθ
k
}K

k=1
.

(5) The average envelope curves were computed for all k, which
were calculated by

m(t) = 1/K
∑K

k=1
eθ

k
(t) (4)

(6) The detail component hj (t) was subtracted from the input
signal y (t), which is represented by:

hj(t) = y(t)−m(t)
(

j = 1, 2, . . . , J
)

(5)

(7) If the detail component hj (t) satisfied the stop criterion
for an IMF, the above steps were repeated until residual
components rj (t) satisfied the stop criteria. Otherwise, steps
(2–6) were repeated until all projected signals satisfied the
stop criterion.

To further identify the information for each IMF, SampEn is
used as a criterion to select significant IMFs. SampEn is widely
used to detect artifacts because of its ability to detect the
complexity of changes in brain activity (Mahajan and Morshed,
2015; Al-Qazzaz et al., 2017; Cuesta-Frau et al., 2017). SampEn is
calculated as follows:

SampEn(m, r,N) = − ln[
Am(r)

Bm(r)
] (6)
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whereN is the length of the IMF,m is constant, and r is tolerance.
In this study, m = 2, r = 0.2∗std, where std is the standard
deviation of the data.

Considering previous literature and experimental experiences,
we set a specific threshold of 0.45 (Friesen et al., 1990; Liu et al.,
2017). If SampEn exceeded the threshold, the corresponding IMF
was discarded as an EMG artifact of the EEG signals. Finally,
the clean EEG signals were reconstructed by summing the EEG-
related IMFs.

Feature Extraction
To detect the various brain responses induced by the facial
expression tasks, we computed feature sets using the WT
algorithm. This algorithm decomposes EEG signals into a set of
basic functions that combine time and frequency characteristics.
In this paper, the energy and variances of the wavelet coefficients
of the alpha and theta rhythms from each facial expression served
as the feature set of the signal.

Considering the orthogonally, support set, symmetry,
regularity and vanishing moment order, the db-3 wavelet was
used as the WT basis function, and the decomposition level was
set at 5 in this study. The procedure of WT decomposition is
shown in Figure 3A. The EEG signal was decomposed into scales
with different time and frequency resolution. After 5 series of
wavelet decomposition, the EEG signal was separated into delta
(0∼4Hz), theta (4∼8Hz), alpha (8∼16Hz), beta (16∼32Hz),
gamma (>32Hz) rhythms and the resulting WT coefficients
could be further applied as signal features for its application
(Wang et al., 2013). Since brain activity in the prefrontal and
motor cortices are usually affected by different facial expressions,
the feature sets of the synchronous brain responses induced by
facial expressions include two statistics:

(1) Energy of the wavelet coefficients

Pαj =

n
∑

i=1

y2i , Pθj =

n
∑

i=1

y2i (j = 1, 2, 3, 4) (7)

(2) Variance of the wavelet coefficients

Dαj =
1

n

n
∑

i=1

(yi − ȳ)2,Dθ j =
1

n

n
∑

i=1

(yi − ȳ)2 (j = 1, 2, 3, 4)

(8)

where j represents the FC5, FC6, C3, and C4 channels; i denotes
the wavelet coefficient of the alpha and theta rhythms; n denotes
the total number of wavelet coefficients in each rhythm; Pαj and
Pθ j are the energy of the wavelet coefficients of the alpha and theta
rhythms from each channel, respectively; Dαj and Dθ j are the
variance of the wavelet coefficients of the alpha and theta rhythms
from each channel, respectively.

The feature set of the synchronous brain responses induced
by facial expressions was computed for four channels and then
concatenated to form a 1∗16-dimensional feature vector W,
which is described by:

W = [PαjPθ jDαjDθ j]
T (9)

Classification
It is well known that the BPNN classifier provides good
performances when classifying non-linear, self-adaptive and self-
learning feature sets (Jiao et al., 2010). Thus, BPNN was chosen
for EEG signal classification.

The BPNN performance is affected by three factors, training
datasets, learning algorithms and network design. In this study,
the training datasets were the WT coefficients from the EEG
signals for each of the 4 facial expressions. Based on previous
studies of training methods, a gradient descent with momentum
algorithm was used for the learning stage because of its high
convergence rate and short learning time.

The network design includes two steps. The first step is
forming the network structure, where the input layer depends on
the results of feature extraction, and the output layer is denoted
by the number of signal types. No unified standard is available
for the selection of hidden layer nodes, which are typically
determined by the assessing of overall accuracy. Since the input
of BPNN is the feature set of each trial, which was composed
of 4 WT coefficients from 4 channels, the corresponding input
layer of BPNN had 16 nodes. Due to the 2-DOFs prosthesis used
in this study, the output layer had 2 nodes flagging the results
[(0, 0) for Furrowing Brow, (0, 1) for Raising Brow, (1, 0) for
Left Smirking, (1, 1) for Right Smirking]. Thus, a 3-layer BPNN
model with 1 hidden layer was constructed. The hidden layer
with 20 nodes showed the optimal performance. The structure
of designed BPNN is depicts in the Figure 3B.

The next step in the BPNN design is determining the learning
parameters, which include the values of the network weighted
matrices, the learning rate and the error threshold. All layers of
BPNN were connected together with the weights matrices. The
value of weights must be normalized to small random numbers
because the network may be saturated by large weighted values.
The learning rate represents the rate of network learning, and
the best values range from 0.1 to 0.9 (Omaima, 2010). The error
threshold is the criterion used to evaluate the learning rate. The
whole process for BPNN training is as follows:

1. Initial assessments of the network weighted matrices, learning
rate and error threshold of the proposed BPNN.

2. In the beginning, set k= 1 and error e= 0. Obtain the feature
vectorXk from the datasets, and feed it to the input layer, k= 1,
2, 3. . . .m.

3. In normal propagation, calculate the outputs of hidden layer
bin.

4. In normal propagation, calculate the outputs of the output
layer b0ut .

5. Calculate the errors by subtracting the actual output from the
desired output.

6. In backward propagation, adjust the network weighted
matricesWin andWout based on the errors.

7. If k < m, then set k = k+1 and go to the Step 2; otherwise,
compare the errors. If the errors < the threshold error, stop
training; otherwise, go to Step 2.

To detect the robustness of the proposed BPNN and prevent
an over-fitting problem, 5-fold cross-validation was used to
investigate the classification accuracy, and each subject’s data

Frontiers in Neuroscience | www.frontiersin.org 6 December 2018 | Volume 12 | Article 943

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Facial Expression Based BCI

FIGURE 3 | The flowcharts of WT and BPNN in FE-BCI system. (A) The flowchart of WT by 5 level decomposition. (B) The flowchart of BPNN with 3 layers and 20

nodes of hidden layer.

were used to train his/her own classifier. The offline dataset was
randomly divided into 5 equal-sized subsets. The cross validation
was repeated four times. During each validation, four subsets of
data were used for training, and one was used for testing.

Statistical Analysis
According to the statistical theory, the choice of the sample size
was depend on the three parameters: the expected effect size, the
desired statistical power (1-β) and the significance level (α) (Desu
and Raghavarao, 1990). Moreover, Cohen’s f is one of the most
widely used effect size measures in one way analysis of variance
(ANOVA) (Cohen, 1988; Lakens, 2013). In this study, the desired
statistical power was set to 0.8 (1-β = 0.8), the level of significance
is 0.05 (α = 0.05) and the desired effect size is 0.9 (f = 0.9). Under
this given condition, the estimated sample size is 18 subjects
using statistical software G∗Power.

One-way ANOVA was conducted to assess differences in
the SampEn values between IMFs and the feature sets of four
facial expressions. The recognition results from two different
analyses of channel and feature comparisons were assessed
using one-way ANOVA and the corresponding actual effect
sizes of Cohen’s f were also computed. The homogeneity of
variance analysis was calculated to ensure the data is satisfies the
assumptions of analysis of variance. Moreover, the Greenhouse-
Geisser correction was applied for p value adjustments.

RESULTS

To validate the effectiveness of our proposed FE-BCI system
for controlling a prosthesis, two experiments were conducted.
The purpose of the offline experiment was to investigate the
validity and reliability of the proposed system. During the online
experiment, a 2-DOFs prosthesis was controlled using the FE-
BCI system.

Offline Experiment Analysis
To demonstrate the validity and reliability of FE-BCI system,
the average offline data from subject S5 was analyzed. The other

subjects showed similar results. To verify the performance of
EMG artifacts removed by NA-MEMD combined with SampEn,
the comparisons between the original EEG signals and the
artifact-attenuated EEG signals were conducted associated with
the grand average Furrowing Brow in FC5 and FC6. In time
domain analysis, it is evident that the variability of the artifact-
attenuated EEG signals was significantly alleviated, as seen in
Figure 4A. In frequency domain analysis, the average frequency
spectra were further analyzed using a fast Fourier transform
(FFT). The low-frequency band (5-15Hz) decreased slightly,
while the high-frequency band (>15Hz) dropped drastically
after NA-MEMD, as seen in Figure 4B. To better observe the
effectiveness of EMG artifacts removal, the first eight IMF
components associated with the grand average FB in FC5 were
reserved for further analysis, which are shown in Figure 4C. In
Figure 4C, the first and third column presented the time-domain
characteristics and the second and fourth column presented the
frequency-domain analysis using FFT. It is observed that the
frequency bands higher than 30Hz were mainly located in the
components of IMF 4 - IMF 5 and their SampEn values were
significantly higher than 0.45. Considering the characteristics of
EMG artifacts and the set threshold value of 0.45 in this study,
the 4th−5th IMF components were marked as EMG artifacts,
and hence discarded. Additionally, the statistical results from
the SampEn, which included four select channels in four facial
expressions, from the first eight components were calculated and
then illustrated in Figure 4D. All the SampEn values for each IMF
component showed good statistical properties, and the values of
the 4th-5th IMF components were much higher than the others.
It was also discovered that similar values of the IMFs for the
four expressions. The result of one-way ANOVA demonstrated
that there was a significant difference between IMF component
(p < 0.05), especially between the 4th-5th IMFs and the other
components. Both of the SampEn values and the frequency
ranges demonstrated that these components were related to EMG
artifacts and could be discarded.

Hence, these experimental results demonstrated that
most of the EMG artifacts were successfully removed while
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FIGURE 4 | Results of EMG artifacts removal from one representative subject (S5). (A) The time series comparison associated with the grand average Furrowing Brow

expression in FC5 and FC6. (B) The FFT comparison associated with the grand average Furrowing Brow expression in FC5, FC6, C3, and C4. The curves

represented the original EEG signals, the artifact-attenuated EEG signals and the differences. (C) Time domain and frequency domain analyses of the decomposition

components from the NA-MEMD with the average Furrowing Brow expression in FC5. The EMG artifacts are highlighted by an orange rectangle. (D) Statistical results

of the average SampEn values from first eight IMF components. Dotted line is the threshold of 0.45.

brain activity were well preserved during the FE-BCI system
working.

To investigate the discriminative ability among different
facial expressions, the global correlation coefficients between
any two specific facial expressions at each channel were
calculated. In statistics, the high correlation values indicate
that the brain responses yielded by different tasks are similar
to each other (Hsu, 2015). Hence, discrimination is reversed
with correlations. For accurate descriptions, topographic maps
were constructed to represent the grand average correlations
among all channels for the 4 types of facial expressions,
as illustrated in Figure 5A. The results of one-way ANOVA
indicated that the correlations were significantly different on
8 channels, and a rare connection was found between the
prefrontal and motor cortices, especially at FC5, FC6, C3 and
C4 (p < 0.05). These results demonstrated that the four selected
electrodes (FC5, FC6, C3, and C4) in the prefrontal and motor
cortices contribute significantly to distinguish different facial
expression. This finding is also consistent with the physiological
mechanisms of facial expressions (Keltner et al., 2003; Kilts et al.,
2003).

The normalized WT coefficients features of facial expressions
for each electrode were depicted in Figure 5B. It can be clearly
seen that the brain activity of the four facial expressions showed

different characteristics of the selected rhythms for each channel.
In the case of C3 for instance, the power of alpha rhythm was
smaller in Left Smirking, while the variance of theta rhythm was
higher than the Furrowing Brow. It is quite evident that there are
obvious power changes existed between alpha and theta rhythm
under C3, C4, FC5, and FC6. The one-way ANOVA analyses for
the feature sets of four facial expressions were conducted. The
result indicated that the significant differences were observed
among different feature sets of four facial expressions, whereas
not such differences were found among subjects (p < 0.05).

In order to understand the brain responses to the FE-BCI
paradigm comprehensively, EEG signals evoked by four facial
expressions were converted into time-frequency characteristics
using a short-time Fourier transform (STFT), as shown in
Figure 5C. Here, we used the EEG signals from the S5 as an
example. The other subjects showed similar responses. Figure 5C
shows that the stable change of power from the EEG signals was
dominant at a range of 4–16Hz among four facial expressions,
where the alpha and theta rhythms were located after a latency
stage. By comparing to the power in resting state, significant
energy changes were recorded during the four expressions. Using
Furrowing Brow as an example, the power of alpha energy
increased while the power of theta energy decreased over the
prefrontal and motor cortices, respectively. Although the energy

Frontiers in Neuroscience | www.frontiersin.org 8 December 2018 | Volume 12 | Article 943

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Facial Expression Based BCI

FIGURE 5 | Grand average results from one representative subject (S5). (A) Topographic map of the correlation coefficients of four facial expressions’ relations. The

degree of correlation differences is depicted by the colored scale. (B) The feature sets of four facial expressions from C3, C4, FC5, and FC6. (C) The power

distributions of the average four facial expression from FC5, FC6, C3, and C4.

change covered these cortexes, the right hemispheres (FC6 and
C4) was more dominant than the left hemispheres (FC5 and
C3) during the Furrowing Brow. Interestingly, significant alpha
energy changes occurred over the motor cortex (C3 and C4)
during both Left and Right smirking. In more details, there is a
contralateral power increase of alpha rhythm and an ipsilateral
power decrease of the same rhythm for the expression of left and
right smirking. These performances are consistent with previous
research (Paradiso et al., 2005). Most importantly, these results
further verified that the prefrontal and motor cortices play an
important role in the classification of different facial expressions,
and the power variations in alpha and theta rhythms occurred
during the expression presentation.

Therefore, the above findings confirmed that facial
expressions could induce discriminable brain responses at
the corresponding representation areas. Most importantly, these
results indicated that the brain activity from the prefrontal and
motor cortices was sufficient for categorization.

To determine the efficiency of the selected methods in the
FE-BCI system, the offline classification accuracy was estimated
using two different analyses, channel comparisons (FC5, FC6, C3,
C4 vs. FC5, FC6 vs. C3, C4) and feature comparisons (energy
of the WT coefficient vs. variance of the WT coefficient vs
the combination of these features). Figure 6 summarizes the
grand average offline accuracy obtained for all subjects. The
final accuracy was the average value of the four runs of the 5-
fold cross validation. As seen in Figure 6A, all subjects achieved
performance higher than 72.69% in the three conditions; all
subjects showed performances that were significantly higher than
the chance level (the chance level was 29.58% for each subject
and 26.09% for the group). The performance of the proposed
channel selection set showed the highest classification rate for
all subjects. In addition, the grand average accuracy across all
subjects was 81.28 ± 4.5% in the selected channel condition,
and the highest value was 88.94 ± 4.37% from S14. It was
clear that the brain responses of the motor cortex exhibited the
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FIGURE 6 | Offline classification accuracies of standard deviations using two analyses for each subject. (A) Offline accuracies of three channel conditions: FC5, FC6,

C3, C4 vs. FC5, FC6 vs. C3, C4. The red bar indicates the accuracies based on the proposed method, the violet bar indicates the accuracies based on the FC5 and

FC6 channels, and the orange bar denotes the accuracies based on the C3 and C4 channels. (B) Offline accuracies of three feature set conditions: energy of the WT

coefficient vs variance of the WT coefficient vs the combination of these features. The red bar indicates the accuracies based on the proposed method, the green bar

indicates the accuracies based on the energy of the WT coefficient, and the yellow bar denotes the accuracies based on the variance of the WT coefficient.

lowest accuracy. The statistical analysis was also used to assess
the performance of two different comparisons (channel and
feature comparisons), which include the significant difference
and the effect size analysis. During the channel comparisons,
the significant differences and large effect were found among the
three conditions using one-way ANOVA (p < 0.05, f = 0.93).
Moreover, the efficiency of the feature set selection in the FE-
BCI system was also estimated under three different conditions:
wavelet energy-only, wavelet variance-only and the combination
of these features. The respective grand average accuracies were
76.80 ± 4.40, 74.33 ± 4.55, and 81.28 ± 4.5%. In addition, the
performance of the combined feature set showed the highest
classification rate for all subjects. One-way ANOVA was used
to compare the performances of the three feature set conditions
(p < 0.05, f = 0.86). These results validated that the proposed
approach of computing the temporal feature set was efficient and
that the combined set of WT coefficients was the most valuable
condition for detecting the characteristics of facial expressions.

Overall, the offline analysis result proved that the FE-BCI
system was capable of practical applications.

Online Analysis
The offline experiment analyses demonstrated the effectiveness of
the proposed FE-BCI system. Hence, our online experiment used
the proposed system to control a 2-DOFs prosthesis with four

discrete gestures: Hand Opening (HO) by raising of the brow,
Hand Closing (HC) by furrowing of the brow, Wrist Rotation
Right (WRR) by left-side smirking, and Wrist Rotation Left
(WRL) by right-side smirking.

During the online experiment, each subject performed ten
sessions. In each session, the subjects were instructed to finish
a complete prosthesis movement, i.e., HO-HC-WRR-WRL-HO-
HC, which imitated a disabled person drinking water.

As seen in Figure 7, it presents an example of a single session
from subject S5 where a decision was generated at the end of
4 s. Before a decision was generated, the prosthesis remained in
the previous gesture. This example shows the feasibility of the
FE-BCI for prosthesis control.

For the online experiment, all offline data were applied to train
the BPNN classifier. Each subject had their own classifier. The
average accuracy for each subject across all sessions is shown
in Figure 8A. When using the FE-BCI system to control the
prosthesis, the subjects achieved an overall accuracy of 81.31 ±

5.82% across all subjects and sessions, which was significantly
higher than the chance level (the chance level was 35%). Most
of the subjects showed good performance, with the exception
of S1. It is difficult to identify reasons for this subject’s low
accuracy, although the most likely causes might be mental fatigue
and inattention. Notably, S6 and S11 showed good performances
for both offline and online experiments, with accuracies up to
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FIGURE 7 | Example of the online experiment for each session in one representative subject (S5).

FIGURE 8 | Online performance of prosthesis control. (A) Classification accuracies and standard deviations of each subject and the averaged accuracy. Dotted line is

the criterion of 70%. (B) Classification accuracies and standard deviations of each session.

87.90 ± 11.65 and 88.34 ± 10.67%. The result of the one-way
ANOVA for the sessions indicated that there was no significant
differences in the accuracy of prosthesis controlled by FE-BCI
system during the experiment (p > 0.05). To further analyse
the effects of fatigue over the whole experiment, the accuracy
of each session was calculated for each of the eighteen subjects,
and the average accuracy across all subjects for each session is
presented in Figure 8B. The averaged accuracy for the grasping
task increased from 83.34 ± 16.16% in the first session to 85.18
± 12.63% in the fourth session and remained at an average
of 80.25 ± 12.56% across the last three sessions. There were
no significant fluctuations were found over the time in terms
of average accuracy and its variances (p > 0.05). These results
demonstrated that the efficiency of the FE-BCI was stable and
suitable for controlling prostheses.

DISCUSSION

The aim of this study was to assess the efficiency of a novel FE-
BCI system and the feasibility of controlling a prosthesis with
this system. Four facial expressions were selected as targets for

emerging brain responses, and NA-MEMD+ SampEn combined
with a WT+ BPNN was selected as the processing algorithm.
The experimental results support the hypotheses that the FE-BCI
system could yield good performance and could feasibly control
a prosthesis.

The Significance of Facial Expression
Mechanisms
In this study, we hypothesized that the prefrontal and motor
cortices are responsible for facial expression presentation. It is
widely acknowledged that the processing of facial expression in
the cortical regions of the brain is complicated, involving diverse
neural pathways, different information sources and expressions.
It is difficult to show that the synchronous brain responses
involved in facial expressions are unique to the prefrontal or
motor cortices, as these responses can be found elsewhere in
brain, to varying degrees and in various modalities, such as
the limbic system (Miller and Cohen, 2001). However, there
is no doubt that the prefrontal cortex combined with the
motor cortex provides critical contributions to facial expression
processing. Neurophysiological studies have explained several
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detailed properties of the prefrontal cortex, including that
prefrontal areas coordinate neural activity from other cortices
(Stuss and Benson, 1984; Morecraft et al., 2001). In addition,
assessments of the function of the motor cortex in recent
studies also provide convincing explanations for the relationship
between activity in this area and the representation of facial
expressions (Marinkovic et al., 2000; Keltner et al., 2003; Mandal
and Awasthi, 2015). Unfortunately, the typical ERD/ERS was
not found and the energy changes in alpha and theta rhythms
still existed. One of the possible reasons for this phenomenon
is that the movements of facial expressions are far away
from the body movement, including the accurate projection
area in sensorimotor cortex, the nervous system transmissions,
motor neuron activity generation, facial nerve transmissions and
realizations.

The Performance of the FE-BCI System
Even though the neural mechanisms of facial expressions are not
yet fully understood, different facial expressions induce distinct
brain responses in the prefrontal and motor cortices. One of the
major problems in BCI systems is the artifact contamination.
Due to each neurological phenomenon has its unique motivation
as well as spatiotemporal characteristics. Hence, this fact should
be taken into consideration when addressing the presence of
artifacts. In the FE-BCI system, the common artifacts influencing
the quality of EEG signals are facial EMGs, which are sensitive
to varieties of facial expression processes. Therefore, our study
focused on EMG artifacts removal. The results of (Fatourechi
et al., 2007; Mowla et al., 2015) showed that the NA-MEMD
algorithm was able to alleviate the effects of mode mixing
and is more suitable for attenuating EMG artifacts in a few-
channel BCI system. In information theory, SampEn represents
the complexity of a signal. Because the randomness of EMG
artifacts is stronger than that of EEG signals, the value of the EMG
artifacts is much higher than that of EEG signals (Teng et al.,
2014). Hence, NA-MEMD combined with SampEn is appropriate
to remove EMG artifacts in the facial expression paradigm
(Figure 4). Moreover, since the EMG activity generally consist
of high-frequency components and have some overlapping
frequency with beta rhythm (Pfurtscheller et al., 2000b). Hence,
the FE-BCI system that uses multiple neurological phenomena
from the theta and alpha bands may become more robust
to present the characteristics of different facial expressions.
To better verify the effectiveness of the proposed system, the
characteristics of four specific facial expressions were carefully
investigated. Topographic maps of correlation coefficients were
used to evaluate the discriminative ability of the FE-BCI system
and the efficiency of the selected electrodes (Figure 5A). A series
of time-frequency analyses based on STFTs and classification
accuracies confirmed that the alpha and theta rhythms played an
important role in facial expression descriptions (Figures 5B,C).
These analyses are consistent with previous reports of facial
expression processing mechanisms (Marinkovic et al., 2000;
Keltner et al., 2003; Paradiso et al., 2005; Mandal and Awasthi,
2015; Ross et al., 2016). Most importantly, the analysis of
the EEG characteristics denoted by facial expressions further
demonstrated the efficiency of the selected characteristics.

Customizing the features used for classification is important in
a BCI system.

The recognition accuracy assessments also demonstrated the
efficiency of the FE-BCI system. We assessed 240 trials for 4
targets classified in the offline experiment and a total of 60 trials
in the online test. Theoretically, the chance level performances for
these experiments were 29.58 and 35%, respectively. Specifically,
the offline accuracy across 18 subjects was 81.28 ± 4.5%, and the
average online accuracy was 81.31± 5.82% (Figures 6, 8), both of
which were significantly higher than the empirical chance level
(Müller-Putz et al., 2008; Combrisson and Jerbi, 2015). Among
all the subjects, S6 and S11 obtained significantly high accuracies
that exceed 87%. In BCI practical applications, the accuracy of a
BCI system is defined as the ability to avoid unintended and false
communications and is required to be above 70% (Kübler et al.,
2001). This criterion has also been used in most of the previous
literature (Brunner et al., 2010; Hwang et al., 2013). In addition,
Cohen has provided the benchmarks of effect size conventions in
ANOVA for accessing experimental effects into small (f = 0.1),
medium (f = 0.25), and large effect (f = 0.40). Based on these
benchmarks, the actual effect size of our experiment was higher
than o.4, which also demonstrated good effect in the practical
significance as well as the stability of the proposed system. Hence,
these recognition results indicated that the developed BCI system
could be used for prosthesis control. It is also demonstrated that
the signal processing approach in the proposed BCI system is
effective at classifying users’ intentions. When considering these
results together, this study provides convincing evidence of the
validity and reliability of the FE-BCI system and the feasibility of
its use in daily life.

Comparison With Other FE-BCI System
and Brain Controlled Prostheses Methods
As briefly introduced in section Introduction, the current brain
controlled prostheses methods are mainly focused on MI-BCI
system, P300-BCI and SSVEP-BCI system (Pfurtscheller et al.,
2010; Li et al., 2017; Samuel et al., 2017a). Pfurtscheller et al.
were the first to use a MI-BCI system to help a tetraplegia patient
operating his prosthesis. Mall used a MI-BCI system in monkeys
to control a mechanized arm. The MI-BCI system do not easily
facilitate the execution of prostheses tasks due to the long training
period, the number of available commands and the portability of
the BCI system. Specifically, the available commands of most MI-
BCI systems are limited to three, and the recognition accuracy
is not entirely satisfactory (Pfurtscheller et al., 2000b). Even
though classification has been significantly improved by SSVEP-
BCIs and P300-BCIs, long time stimulation by normal stimulus
easily lead to visual fatigue and increases risk of triggering a
photosensitive epileptic seizure for subject.

To improve the limitation between BCI performance and its
stimulus reliance, a novel BCI system based on facial expression
have been developed. Most studies related to FE-BCI system
usually focusing on face-based video or face-based image induced
systems (Bakardjian et al., 2011; Jin et al., 2012; Vinding et al.,
2014). For example, a study by Jin and colleagues proposed
a FE-BCI system with an emerging stimulus, which used the
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images of facial expressions to evoke ERPs (Jin et al., 2014). This
facial expression paradigm yielded better performance than the
canonical visual stimulus approach. In another study, Kashihara
used a face-based video paradigm to reduce subject fatigue
and enhance visual attention (Kashihara, 2014). Although these
visual attention-based FE-BCI systems improved the responses
of evoked potentials, the obstacle between the good performance
of BCI system and the independence on stimulus are not
completely solved. This phenomenon could further limits the
mobility of FE-BCIs in daily life applications. To overcome this
limitation, we proposed a novel FE-BCI system based on real
facial expression, which does not required an additional hardware
device to present stimulus. In contrast to previous studies, we
recorded brain response triggered by real facial expressions,
which yielded effective performance. More recently, Chin et al.
reported a similar method based on real facial expressions system
(Chin et al., 2008). However, the system was not a complete BCI
system due to record EEG and EMG signals. As EEG signals are
very sensitive to EMG signals, the contributions of each kind of
signal was not clear. Additionally, the selection of the channels
was not investigated. In contrast, our study only used four EEG
electrode concerning the mechanism of facial expression. Hence,
our research can provide another option for disabled people in
addition to the traditional BCI systems (MI-BCI, SSVEP-BCI,
P300-BCI). The benefits of using a FE-BCI system may be its
high classification accuracy and high mobility. A system that can
be used without extensive training and additional hardware is
appealing since it requires less initial effort on the part of both
the subject and the system operator.

For daily-life application, decoding the EEG signals from
a few channels is challenging for BCI systems, and most
previous studies have used sophisticated electrode selections
when controlling prostheses (Fatourechi et al., 2008; Stan et al.,
2015; Vidaurre et al., 2016). In our study, only four electrodes
were used. The use of the wireless EEG acquisition system
Neuracle rather than SynAmps 2 may motivate the use of the
FE-BCI in daily life environments. Minimizing the number
of required recording electrodes is vital for any EEG-based
command system to be practical for everyday use. The FE-BCI
system had a low cost and used a simple electrical montage
compared with other brain-controlled prostheses. From the user’s
perspective, systems with simple electrodes and lower costs are
more user-friendly style. These metrics make FE-BCI-controlled
prostheses practical for disabled users.

The Limitations of the Study and Further
Work
Despite the aforementioned advantages of FE-BCI, several
limitations should be taken into account. One of the limitation
is that only healthy subjects were studied. There is no doubt
that the main motivation for our study is to provide a novel
facial expression based BCI system for controlling a prosthesis,
which solve the obstacle between the good performance of BCI
system and the independence on stimulus. The results presented
in our study were investigated the feasibility of FE-BCI usage
in disabled people and contribute to a better understanding of
the performance of the proposed system. To the best of our
knowledge, there are no comparative works reported that the

significant differences existed between the healthy and amputee
during the facial expressions. One of the possible reasons is
that the mechanism of facial expressions are far away from the
mechanism of handmovement, including the accurate projection
area in sensorimotor cortex, the nervous system transmissions
et al. (Miller and Cohen, 2001; Mandal and Awasthi, 2015).
Even if the patient is amputated, his/her mechanism of facial
expression may not be influenced significantly. Thus, we
speculate that the proposed system could be effective for disabled
persons. Further study will involve disabled people using FE-
BCI system to control a prosthesis. Another limitation of this
study is the samples size that only contained 18 subjects and
there was a gender imbalance among subjects. Even though the
size of experimental group was not large enough, the number
was sufficient to demonstrate the effectiveness of proposed
method and highlight some significant statistical evidences. The
offline accuracy across 18 subjects was 81.28 ± 4.5%, and the
average online accuracy was 81.31 ± 5.82%, both of which were
significantly higher than the empirical chance level. Moreover,
no significant differences was found between male and female
subjects in the experimental results. Thus, large sample and a
balance between male and female subjects are desired to fully
evaluate the robustness of the proposed system. Furthermore,
it is important to have beginning and stopping commands in
brain-controlled prostheses, and the time required to remove
artifacts also needs improvements. In our future work, another
BCI paradigm will be added to build a hybrid BCI system for an
“idle states” detection.

CONCLUSION

This paper presented a novel BCI system based on facial
expressions that was used to control a prosthesis. The
synchronous brain responses from four types of facial expressions
were used to control a 2-DOFs prosthesis. Both online and
offline experiments were conducted. The experimental results
demonstrate the effectiveness of our method and system. Thus,
our proposed FE-BCI system can provide another option for
patients suffering from amputations.
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