J. Math. Fund. Sci., Vol. 50, No. 3, 2018, 221-232 221

Approximate Solutions of Multi-Pantograph Type Delay
Differential Equations Using Multistage Optimal
Homotopy Asymptotic Method

Nidal Ratib Anakiral, Ali Jameelz, Abedel-Karrem Alomaris, Azizan Saaban4,
Mohammad Almahameed® & Ishak Hashim®

>Department of Mathematics, Faculty of Science and Technology,
Irbid National University, 2600 Irbid, Jordan
243chool of Quantitative Sciences, Universiti Utara Malaysia,
Kedah, 06010 Sintok, Malaysia
*Department of Mathematics, Faculty of Science,
Yarmouk University, Irbid 211-63, Jordan

5School of Mathematical Sciences, Universiti Kebangsaan Malaysia,

43600 Bangi Selangor, Malaysia
E-mail: alanaghreh nedal@yahoo.com

Abstract. In this paper, a numerical procedure called multistage optimal
homotopy asymptotic method (MOHAM) is introduced to solve multi-
pantograph equations with time delay. It was shown that the MOHAM algorithm
rapidly provides accurate convergent approximate solutions of the exact solution
using only one term. A comparative study between the proposed method, the
homotopy perturbation method (HPM) and the Taylor matrix method are
presented. The obtained results revealed that the method is of higher accuracy,
effective and easy to use.
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1 Introduction

The pantograph equation is one of the most well-known and important types of
delay differential equations. It plays a significant role in modeling various
phenomena in applied science and engineering, such as electrodynamics,
biology, engineering, physics, and economy. For example, Aiello, et al. [1]
have proposed a stage-structured model of population growth, Ockendon &
Taylor [2] have analyzed the dynamics of the current collection system of an
electric locomotive, etc. [3-5]. In this work, the following multi-pantograph
equation is considered:

uw'(t) + a(®)u(t) + 2§=1bi(t)u(ri O+f)=0,u(0)=a;, 0<t<T (1)
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where f is a given function and 0 < 7; < 75 ... < 1] < 1. In the past few years,
several studies on delay differential equations (DDEs) have been reported. For
instance, Ahmadzadehed, et al. [6] reported analytical solutions of delay
differential equations using modified Adomian decomposition with Pad
approximation. Moreover, an approximate solution of a delay differential
equation based on the differential transform method (DTM) and the Adomian
decomposition method (ADM) has been introduced by Raslan & Sheer [7]. In
2013, the optimal homotopy asymptotic method (OHAM) was employed
successfully, and accurate approximate solutions for linear, nonlinear and
system of delay equations were obtained by Anakira, et al. [8]. Multi-
pantograph equations are among the most important types of DDEs. They have
been considered by numerous researchers analytically and numerically. For
example, an analytic study on multi-pantograph delay equations with variable
coefficients has been considered by Feng [9]. A brief review of the recent
literature on solution methods for multi-pantograph-type delay equations can be
found in [10-13].

In most real-life situations, the equation that models the problem is too
complicated to solve exactly. Therefore, methods for approximating the solution
are used to obtain a solution to an initial value problem that satisfies a given
initial condition.

The method considered in this paper is based on the optimal homotopy
asymptotic method (OHAM). OHAM was introduced in 2008 by Marinca and
Herisanu [14-17] for finding an approximate solution of nonlinear problems of
thin-film flow of a fourth-grade fluid down a vertical cylinder. In their work,
they employed this procedure to understand the behavior of nonlinear
mechanical vibration in an electrical machine. Furthermore, they used the same
procedure to obtain an approximate solution of nonlinear equations that arise in
steady state flow of a fourth-grade fluid past a porous plate, and for the solution
of a nonlinear equation arising in heat transfer. OHAM has been successfully
employed to solve different kinds of differential equations in science and
engineering [18-24].

Recently, OHAM has been modified by Anakira, et al. [25] resulting in an
effective algorithm called the multistage optimal homotopy asymptotic method
(MOHAM) to find approximate solutions of linear, nonlinear and system of
initial value problems. On the other hand, MOHAM has been successfully
applied to obtain approximate solutions for the Quadrature Riccati equation
[26]. This procedure is easy and effective in obtaining approximate series
solutions for linear and nonlinear differential equations without linearization
and discretization.
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The present study attempted to effectively employ MOHAM to solve multi-
pantograph delay equations. The results can be obtained in only one iteration
with higher degree of accuracy compared with other methods from the
literature. Moreover, the procedure is simpler.

The rest of this paper is organized as follows. Section 2 explains the basic
principles of OHAM and MOHAM. To present a clear overview of the
procedure, in Section 3 several examples with exact solutions are given and a
comparison is made with existing results. Finally, a brief conclusion is given in
Section 4.

2 Description of OHAM and MOHAM

2.1 OHAM
The basic idea of OHAM, as explained by Marinca, et al. [14] and other
researchers [15,19], is to define the map h(v(t,p),p): R x [0,1] - R
av(t,
(1 - PIL@(tp) — u0(t)] = HP) [ + a(t)w(t, p) +

L bv(it,p) + £(0)] @)
Here, t € R and p € [0,1] are embedding parameters, H (p) is a nonzero
auxiliary function for p # 0, H (0) = 0, and v(t,p) is an unknown function.
Obviously, when p=0 and p = 1 it holds that v(¢t,0) = u0(t) and v(t,1) =
u(t) respectively. Thus, as p varies from 0 to 1, the solution v(t, p) approaches

from uy(t) to u(t), where uy(t) is the initial guess that satisfies the linear
operator:

L(ue(®) = 0,u0(0) = « (3)
next, we choose the auxiliary function H (p) in the form:
Hp)= By Gthp = (Gt + Gt* +-- + Cut™)p  (4)

where C,, C,, Cs, ... are convergence control parameters that can be determined
later. To get an approximate solution, we expand v(t,p, Cy ) in Taylor’s series
about p in the following manner:

v(t,p) = up (8) + Xz we (Dpk )

Substituting Eq. (5) into Eq. (2) and equating the coefficient of like powers
of p, we obtain the following linear equations:

L[t (8) = Kt (0] = (Ziy Ci) (@imoa (8) + @)t (6) +
L Bi(O) U1 () + (1= xm) F©)), (6)
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subject to u,, (a) = 0, where

_{0, m<1
Im =11, m>1

And the m*"-order approximation is given by:
ﬁ(t, Cl' Cz, C3, caay Cn) = uO(t) + Z?=1 ul‘ (t, Cl’ Cz, 623, vaay Cn ) (7)
Substituting Eq. (7) into Eq. (1) yields the following residual:

R(t, Cl' Cz, C3,..., Cn) =
@'(t,Cy,Cy, Cop ..., Co) + a(®)ii(t, Cy, Cyy Cay ) Cr) +
Sy b (8 A(Tit, Cy, G Cape. o, Co) ®)

If R =0, then # will be the exact solution. Generally, such a case will not arise
for nonlinear problems. The values of the convergence control parameters C;
can be obtained by several methods, such as, the method of least squares
collocation method, Galerkin’s method and the Ritz method. Using the least
squares method, we obtain the following equation:

b
J(C1,Ca,Csp., €)= [ R2(C1, €5, Gy .., C)dlt (9)

where a and b are the endpoints of the given problem. The unknown
convergence controls parameters C;(i = 1,2,3,...,m ) can be identified from the
conditions

AW

ac,  oac,  oCn, (10)

Making use of these known convergence control parameters, the approximate
solution (of order m) is well determined.

2.2 MOHAM

To ensure the validity of the approximations for multi-pantograph equations, we
further developed Multistage OHAM. This development is based on dividing
the interval [0, T] into subintervals as [ty ,t1],.-., [tn—1,tn], Where t, =T and
standard OHAM is applied to each subinterval. The initial approximation of
each interval is taken from the solution of the previous one. Firstly, consider the
initial condition as:

u(ty) = a (11)

Thus, we can choose the initial approximation, ug(x) = a;. According to
OHAM we construct a homotopy, h(v(t,p),p):R > [0,1] = R, which
satisfies
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(1 - p[L(v(t,p) —uo(®)] = HE) [“S2 + a()v(p, ) +

L bi®v(it,p) + £(1)] (12)
where
H(p) = (Cyj + Cpjt+ Ca;t% + -+ Cp jt™ 1) (13)

Then, the first, second and m®™ order can be generated subject to the initial
condition, u;(t;) = uy(tj)) =--+= Uy (t;) = 0. The approximate solution
is:

ti(t,Cyj, Cajy s Cnj) = Ujo(t) + Xitiu; (6,Crj, Cojy oo, Cj)  (14)
Substituting Eq. (14) into Eq. (1) yields the following residual:
Ri(t, C1,]" CZ,j' ey Cn,j) =
di(t,Cy,j,Ca,jsCn,j .
BCusCastnl) 4 q(6)a(t, Cy gy Co o s Cry) +

dt
Z%=1 bl(t) ﬁ(‘[it, Cl,j' CZ,jl ey Cn,j) + f(t) (15)
If R = 0, then @ will be the exact solution. Generally, such a case will not
arise for nonlinear problems, but we can minimize the function
t.
Ji(6,C1j,Cojy e, Coj) = L R2(t,Cyj,Cpjy ) Cn j)dt (16)

where t; and t;,, are the endpoints of the given problem in the subinterval. The
unknown convergence control parameters C;;(i = 1,2,3,...,n)can be
identified from the conditions

o _ 9 _ .. _9
aCl’]’ - aCZJ - - aCn’]' (17)

Let h be the length of subinterval [t;,tj4;) and N = T /h the number of
subintervals. Now, we can solve Eq. (17) at j = 0,1, - -, N by changing initial
approximation a in each subinterval from the previous one. For example, in the

subinterval [t;,tj;,) we define a; = #(t;). Therefore, the approximate
analytic solution will be:

Ty(t), to <t <ty

ﬁZ(t)i tl St< t21

u(t) = ' (18)

La,\,(t ), ty1 <t<T

In this way, we successfully obtain the solution of the initial value problem for a
large value of T analytically. It is worth mentioning that when j = 0, MOHAM
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gives the standard OHAM, so the new algorithm is a generalization of standard
OHAM.

3 Examples

In this section, several examples are presented to demonstrate the efficiency of
the new algorithm.

3.1 Example 1
Given the following multi-pantograph delay equation [9]:
y'(t) ==y +4y(5t) +9y (5t) + 2 -1, 0= <1 (19)

y(0) =1

Based on OHAM formulated in Section 2, a homotopy equation is
constructed in the following form:

(1 -p) [ =

dt
H(p) [%‘t”’ +20() —4v (5t) - 9v (5t) — 2 + 1 (20)
where
v(t,p) = Xjo1 Vi (t,Crj, Cojs onns C j) P (21)
and
H(p) = (Cyj + Cyjt + C3;t% + Cy jt3)p (22)

Substituting Eq. (21) and Eq. (22) into Eq. (20), and equating the coefficients of
the same powers of p yields the following set of linear differential equations:

¥o(5) =0, yo(y) =@ (23)
yi(t;) = =3 (=6 + 73a + 6t2) (cl,j +£(Coy +(Cy + tc4,,-)))(24)
yi(4) =0

Now, by using m = 1 into Eq. (14), the MOHAM approximate of the first order
is:
Vi) = yo(® + y1(0) (25)

Substituting the solutions of Eq. (23) and (24) into Eq. (25), we obtain a first-
order approximate solution:
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~ 73 1
y(t, Cl,j' CZ,j'C3,j' C4_j) =a+ tCl,j - ?atCLj - §t361,j - tjcl.j +

L _Yes gy Leze  _DBase, = Lete, =l
P atjCLj 3tj + Zt CZ,j 12at CZ,j 4t CZ,j th C2'j+

73 at:2 1,4 Yc, = Bat3c.. —1t5c, . —1¢3
12atj CZ,j+4tj CZ,j+ 3t C3,j 186¥t C3,j Stj C3'j 3tj C3_j+

73 . 3 1, g 1,4 73 .4 1,6
Ea’t]’ Cg'j +Et] C3,j+ Zt C4,j—aa’t C4'j—gt C4_'j+

73 4 1 .6
Z(Zt]’ C4,'j +g(ltj

Cyj

Substituting Eq. (26) into Eq. (15) yields the following residual:
R(t, Cl,j' Cz'j, C3'j, C4'j) =
< 5 .,

F'(6,C1,j) oy C3, Caj) + 25" (6, Crj Co i Ca jy Caj) —
S (t L[t
45 (5, €1, Cojy CooCaj) = 95 (5, €1 oy Co Caj) — £2 + 1

Table 1 Values of C;,j for Example 1.

J Cyj Cyj Cs Cyj
1 —-0.40318 —1.67947 —1.00586 0.0813752
2 —0.220828 —0.919465 —0.555676 0.0285004
3 -0.138789 —0.57757 -0.350671 0.012845
4 —-0.0945971 —0.393436 —0.239529 0.00669195
5 —0.0680883 —0.283013 —0.172603 0.00383648
6 —0.0509878 —0.211804 -0.129327 0.00235634
7 —0.0393567 —0.16339 —0.0998435 0.00152335
8 —0.0311188 —0.129111 —0.078942 0.00102716
9 -0.0250926 —0.10405 —0.0636403 0.000714712
10 —0.0205657 —0.085245 —0.0521379 0.000508176

According to Eq. (16), we can minimize the functional:

JiC1ys oy G Cag) = I, RE(Cr s o G Cag)alt

Hence, from the solutions of the systems of equations:

aJ aJ aJ

9]

OCL]- - aCZ']' o 6C3’]- - 0C4_J-

(26)

27

(28)

(29)

The convergence control parameters, j, are obtained as presented in Table 1,

with h = 0.1 and starting with t;, =0 to t; =T = 1.

Table 2 presents a

comparison between MOHAM’s approximate solution of the first-order and
HPM’s solution of the third-order, along with the exact solution. It is obvious
that the approximate solutions obtained by our algorithm are more accurate
along with an increased number of terms in the auxiliary convergence control
functions. Table 3 displays the residual error obtained from MOHAM’s

approximate solution.
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Table 2 Numerical results for Example 1.
¢ Exact MOHAM HPM Relative MOHAM MOHAM
Solution Solution Error [9] Relative Error Absolute Error

0.1  1.00000 1.00000 4.09 x 1072 0.00000 0.00000
0.2 423893 4.23893 1.63 x 107 3.59 x 10°® 1.52 x 107
0.4  9.78923 9.78924 1.08 x 107 6.73 x 107 6.59 x 10
0.6 18.1012 18.1012 2.84 x 107 2.98 x 10°° 5.40 x 107
0.8  29.6252 29.6252 527 x 102 6.28 x 10°° 1.86 x 107
1.0 44.8114 44.8114 8.17 x 102 9.83 x 10°° 439 %10

Table 3 Residual Obtained using the Approximate Solution given by Eq. (15).

t 0.05 0.25 0.45 0.65 0.85 0.95
Rgs'd“a' 126 x10° 140x10°5 1.x10% 51x10% 126x10° 1.67x 107
rror
3.2 Example 2

Given the following multi-pantograph delay equation [10]

where

where

and

y'(© = =y + 1@y (5t) + . Oy (Gt) + 2 - 1,
0<st<1 (30)
y(0) =1

y, (t) = —e~%5tsin(0.5t),
y,(t) = —2e7%75¢c0s(0.5t)sin(0.25t)

av(t, dav(t, 05t
1-p) [%] = H(p) [% +v(t) + %e 05tsin(0.5t)v G t) +

27075t c0s(0.5¢)sin(0.25¢) (5 t)] 31)
v(t,p) = Xjo1¥i (t,Cyj, Cpjyonns Cs ) D (32)
H(p) = (Cpj + Cpjt + C3jt? + Cy jt° + Cs ;t°3)p (33)

Substituting Eq. (32) and Eq. (33) into Eq. (31) and equating the coefficients of
the same powers of p yields the following set of linear differential equations:

vo(t;) = 0,30(t;) = @ (34)

yi(tj) =a(l+1) (Cl_j +t (Cz,j +tCy; + (Cyj + tCS,,-))> (35)
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The first-order approximate solution is given by Eq. (14) for m = 1 as follows:
i) = yo (®) + (1)

Table 4 Values of C; ;for Example 2.

(36)

J Cij Gy G Cyj Cs;

1 -1.11075 1.11185 —0.016291 -0.620752  0.458202
2 —1.24657 125318 —0.060435 —0.555298  0.334237
3 —1.41437 1.43441 -0.136241 -0.478299  0.251391
4  -1.62368 1.66795 —0.245053 —0.399309  0.194177
5 -1.88781 197011 -0.390731 —0.320047  0.152874
6 —2.22633 236692 —0.588629 —0.231245  0.11867

7  —2.66825 2.89558 —0.856532 —0.128689  0.0888091
8 32466  3.56002 —1.13007 —0.0773363 0.0821022
9 397549 424009 -1.15925 -0.247713  0.137218
10 —5.22898 6.05518 —2.46661 0.358075 0.00183246

By applying the same procedure as in Example 3.1, the desired approximate
solution is obtained The values of the convergent control parameters are
displayed in Table 4. If we compare the results presented in Table 5, we can
reach the conclusion that the results obtained by MOHAM’s approximate
solutions of the first-order are more accurate than the results obtained by
Taylor’s method of order 7. This proves MOHAM’s validity and potential for
solutions of this type of differential equations. Table 6 displays the residual
error obtained from MOHAM’s approximate solution.

Table 5 Numerical Results for Example 2.

¢ Exact MOHAM MOHAM MOHAM Absolute
Solution solution Absolute Error  Relative Error Error [10]

0.1 1.00000  1.00000 0.000000 0.00000 0.00000

02 0.802411 0.802411  8.10553 x 107  8.10554x 107®  1.91535x 10°®
0.4 0.617406 0.617405  2.55076 x 1077 2.55076 x 1077 2.35133 x 10°
0.6 0.452954 0452952  4.80133x10°  4.80133x10°°  3.82097 x 107°
0.8 0.313051 0313038  4.14924 x 107°  4.14924 x 107° 272162 x 10™*
1.0 0.198766 0.198778  6.06934x 10°  6.06934 x 10°  1.23389 x 10°

Table 6 Absolute Residual Error Obtained from the Approximate Solution of

Example 2.
t 0.05 0.25 0.45 0.65 0.85 0.95
Residual ) 6. 10710 208x 107 627x10° 44x10° 1.17x10% 2.61x 10

Error
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4 Conclusion

In this paper, we have proved the potential of MOHAM for obtaining
approximate analytic solutions of multi-pantograph equations. High
approximate solutions were obtained in one iteration, which is sufficient to
achieve extremely accurate results compared with other methods from the
literature. Three numerical experiments were solved to illustrate that the present
algorithm is effective and accurate and converges rapidly to exact solutions.
Hence, we can say that these numerical results show that the MOHAM is an
acceptable and reliable technique for the solution of multi-pantograph
equations.
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