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Abstract. In this paper, a numerical procedure called multistage optimal 
homotopy asymptotic method (MOHAM) is introduced to solve multi-
pantograph equations with time delay. It was shown that the MOHAM algorithm 
rapidly provides accurate convergent approximate solutions of the exact solution 
using only one term. A comparative study between the proposed method, the 
homotopy perturbation method (HPM) and the Taylor matrix method are 
presented. The obtained results revealed that the method is of higher accuracy, 
effective and easy to use. 
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1 Introduction 

The pantograph equation is one of the most well-known and important types of 
delay differential equations. It plays a significant role in modeling various 
phenomena in applied science and engineering, such as electrodynamics, 
biology, engineering, physics, and economy. For example, Aiello, et al. [1] 
have proposed a stage-structured model of population growth, Ockendon & 
Taylor [2] have analyzed the dynamics of the current collection system of an 
electric locomotive, etc. [3-5]. In this work, the following multi-pantograph 
equation is considered: 

𝑢ᇱሺ𝑡ሻ ൅ 𝑎ሺ𝑡ሻ𝑢ሺ𝑡ሻ ൅ ∑ 𝑏௜ሺ𝑡ሻ𝑢ሺ𝜏௜ 𝑡ሻ ൅ 𝑓ሺ𝑡ሻ ൌ 0௟
௜ୀଵ , 𝑢ሺ0ሻ ൌ 𝛼௜, 0 ൏ 𝑡 ൏ 𝑇 (1) 
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where 𝑓 is a given function and 0 ൏ 𝜏ଵ ൏ 𝜏ଶ … ൏ τ୪ ൑ 1. In the past few years, 
several studies on delay differential equations (DDEs) have been reported. For 
instance, Ahmadzadehed, et al. [6] reported analytical solutions of delay 
differential equations using modified Adomian decomposition with Pad 
approximation. Moreover, an approximate solution of a delay differential 
equation based on the differential transform method (DTM) and the Adomian 
decomposition method (ADM) has been introduced by Raslan & Sheer [7]. In 
2013, the optimal homotopy asymptotic method (OHAM) was employed 
successfully, and accurate approximate solutions for linear, nonlinear and 
system of delay equations were obtained by Anakira, et al. [8]. Multi-
pantograph equations are among the most important types of DDEs. They have 
been considered by numerous researchers analytically and numerically. For 
example, an analytic study on multi-pantograph delay equations with variable 
coefficients has been considered by Feng [9]. A brief review of the recent 
literature on solution methods for multi-pantograph-type delay equations can be 
found in [10-13].  

In most real-life situations, the equation that models the problem is too 
complicated to solve exactly. Therefore, methods for approximating the solution 
are used to obtain a solution to an initial value problem that satisfies a given 
initial condition. 

The method considered in this paper is based on the optimal homotopy 
asymptotic method (OHAM). OHAM was introduced in 2008 by Marinca and 
Herisanu [14-17] for finding an approximate solution of nonlinear problems of 
thin-film flow of a fourth-grade fluid down a vertical cylinder. In their work, 
they employed this procedure to understand the behavior of nonlinear 
mechanical vibration in an electrical machine. Furthermore, they used the same 
procedure to obtain an approximate solution of nonlinear equations that arise in 
steady state flow of a fourth-grade fluid past a porous plate, and for the solution 
of a nonlinear equation arising in heat transfer. OHAM has been successfully 
employed to solve different kinds of differential equations in science and 
engineering [18-24]. 

Recently, OHAM has been modified by Anakira, et al. [25] resulting in an 
effective algorithm called the multistage optimal homotopy asymptotic method 
(MOHAM) to find approximate solutions of linear, nonlinear and system of 
initial value problems. On the other hand, MOHAM has been successfully 
applied to obtain approximate solutions for the Quadrature Riccati equation 
[26]. This procedure is easy and effective in obtaining approximate series 
solutions for linear and nonlinear differential equations without linearization 
and discretization. 
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The present study attempted to effectively employ MOHAM to solve multi-
pantograph delay equations. The results can be obtained in only one iteration 
with higher degree of accuracy compared with other methods from the 
literature. Moreover, the procedure is simpler. 

The rest of this paper is organized as follows. Section 2 explains the basic 
principles of OHAM and MOHAM. To present a clear overview of the 
procedure, in Section 3 several examples with exact solutions are given and a 
comparison is made with existing results. Finally, a brief conclusion is given in 
Section 4. 

2 Description of OHAM and MOHAM 

2.1 OHAM 

The basic idea of OHAM, as explained by Marinca, et al. [14] and other 
researchers [15,19], is to define the map ℎሺ𝑣ሺ𝑡, 𝑝ሻ, 𝑝ሻ: 𝑅 ൈ  ሾ0, 1ሿ →  𝑅 

  ሺ1 െ 𝑝ሻሾ𝐿ሺ𝑣ሺ𝑡, 𝑝ሻ  െ  𝑢0ሺ𝑡ሻሻሿ ൌ 𝐻ሺ𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
൅ 𝑎ሺ𝑡ሻ𝑣ሺ𝑡, 𝑝ሻ ൅

∑ 𝑏௜𝑣ሺ𝜏௜𝑡, 𝑝ሻ ൅ 𝑓ሺ𝑡ሻ௟
௜ୀଵ ቃ  (2) 

Here, 𝑡 ∈  𝑅 and 𝑝 ∈  ሾ0, 1ሿ are embedding parameters, 𝐻 ሺ𝑝ሻ is a nonzero 
auxiliary function for  𝑝 ് 0, 𝐻 ሺ0ሻ  ൌ  0, and 𝑣ሺ𝑡, 𝑝ሻ is an unknown function. 
Obviously, when p = 0 and 𝑝 ൌ  1 it holds that 𝑣ሺ𝑡, 0ሻ ൌ 𝑢0ሺ𝑡ሻ and 𝑣ሺ𝑡, 1ሻ  ൌ
 𝑢ሺ𝑡ሻ respectively. Thus, as 𝑝 varies from 0 to 1, the solution 𝑣ሺ𝑡, 𝑝ሻ approaches 
from 𝑢଴ሺ𝑡ሻ to 𝑢ሺ𝑡ሻ, where 𝑢଴ሺ𝑡ሻ is the initial guess that satisfies the linear 
operator: 

 𝐿൫𝑢଴ሺ𝑡ሻ൯ ൌ  0, 𝑢଴ሺ0ሻ  ൌ  𝛼 (3) 

next, we choose the auxiliary function 𝐻 ሺ𝑝ሻ in the form: 

 𝐻 ሺ𝑝ሻ ൌ  ሺ∑

 

𝐶௜ 𝑡
𝑖௡

௜ୀଵ

 
ሻ𝑝 ൌ ሺ 𝐶ଵ𝑡 ൅  𝐶ଶ 𝑡

2
 
൅ ൉ ൉ ൉  ൅  𝐶௡𝑡𝑛

 
ሻ𝑝 (4) 

where C1, C2, C3, … are convergence control parameters that can be determined 
later. To get an approximate solution, we expand 𝑣ሺ𝑡, 𝑝, 𝐶௞ ሻ in Taylor’s series 
about p in the following manner: 

 𝑣ሺ𝑡, 𝑝ሻ  ൌ 𝑢଴ ሺ𝑡ሻ ൅ ∑ 𝑢௞  ሺ𝑡ሻ𝑝𝑘 ஶ
௞ୀଵ  (5) 

Substituting Eq. (5) into E q .  (2) and equating the coefficient of like powers 
of p, we obtain the following linear equations: 

    𝐿ሾ𝑢௠ሺ𝑡ሻ െ 𝜒௠𝑢௠ିଵሺ𝑡ሻሿ ൌ  ൫∑ 𝐶௜𝑡௜௡
௜ୀଵ ൯ ቀ𝑢ᇱ

௠ିଵሺ𝑡ሻ ൅ 𝑎ሺ𝑡ሻ𝑢௠ିଵሺ𝑡ሻ ൅

∑ 𝑏௜ሺ𝑡ሻ௟
௜ିଵ 𝑢௠ିଵሺ𝑡ሻ ൅ ሺ1 െ 𝜒௠ሻ𝑓ሺ𝑡ሻቁ, (6) 
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subject to 𝑢௠ ሺ𝑎ሻ  ൌ  0, where 

 𝜒௠ ൌ ቄ
0,     𝑚 ൑ 1           
1,      𝑚 ൐ 1            

And the 𝑚௧௛-order approximation is given by: 

 𝑢෤ሺ𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, . . . , 𝐶௡ሻ ൌ 𝑢଴ሺ𝑡ሻ ൅ ∑ 𝑢௜ ሺ𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଶଷ, . . . , 𝐶௡ ሻ௡
௜ୀଵ . (7) 

Substituting Eq. (7) into Eq. (1) yields the following residual: 

 𝑅ሺ𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, . . . , 𝐶௡ሻ ൌ
𝑢෤ᇱሺ𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଶ, . . . , 𝐶௡ሻ ൅ 𝑎ሺ𝑡ሻ𝑢෤ሺ𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, . . . , 𝐶௡ሻ ൅
∑ 𝑏௜ሺ𝑡ሻ௟

௜ୀଵ 𝑢෤ሺ𝜏௜𝑡, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, . . . , 𝐶௡ሻ (8)             

If R = 0, then 𝑢෤  will be the exact solution. Generally, such a case will not arise 
for nonlinear problems. The values of the convergence control parameters 𝐶௜ 
can be obtained by several methods, such as, the method of least squares 
collocation method, Galerkin’s method and the Ritz method. Using the least 
squares method, we obtain the following equation: 

 𝐽ሺ𝐶ଵ, 𝐶ଶ, 𝐶ଷ, . . . , 𝐶௡ሻ ൌ ׬ 𝑅ଶሺ𝐶ଵ, 𝐶ଶ, 𝐶ଶ, . . . , 𝐶௡ሻ𝑑𝑡
௕

௔  (9) 

where a and b are the endpoints of the given problem. The unknown 
convergence controls parameters 𝐶௜ሺ𝑖 ൌ 1,2,3, … , 𝑚 ሻ can be identified from the 
conditions 

 
డ௃

డ஼భ
ൌ

డ௃

డ஼మ
ൌ ⋯ ൌ

డ௃

డ஼೙
ൌ 0 (10) 

Making use of these known convergence control parameters, the approximate 
solution (of order m) is well determined. 

2.2 MOHAM 
 

To ensure the validity of the approximations for multi-pantograph equations, we 
further developed Multistage OHAM. This development is based on dividing 
the interval ሾ0, 𝑇ሿ into subintervals as ሾ𝑡଴ , 𝑡ଵሿ, . . . , ሾ𝑡௡ିଵ, 𝑡௡ሿ, where 𝑡௡ ൌ 𝑇 and 
standard OHAM is applied to each subinterval. The initial approximation of 
each interval is taken from the solution of the previous one. Firstly, consider the 
initial condition as: 

 𝑢ሺ𝑡௝ሻ  ൌ  𝑎 (11) 

Thus, we can choose the initial approximation, 𝑢଴ሺ𝑥ሻ ൌ 𝑎𝑗. According to 
OHAM we construct a homotopy, ℎሺ𝑣ሺ𝑡, 𝑝ሻ, 𝑝ሻ: 𝑅 ൈ ሾ0, 1ሿ  →  𝑅, which 
satisfies 
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 ሺ1 െ 𝑝ሻൣ𝐿൫𝑣ሺ𝑡, 𝑝ሻ െ 𝑢଴ሺ𝑡ሻ൯൧ ൌ 𝐻ሺ𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
൅ 𝑎ሺ𝑡ሻ𝑣ሺ𝑝, 𝑡ሻ ൅

 ∑ 𝑏௜ሺ𝑡ሻ𝑣ሺ𝜏௜𝑡, 𝑝ሻ௟
௜ୀଵ ൅ 𝑓ሺ𝑡ሻቃ (12) 

where 

 𝐻ሺ𝑝ሻ ൌ ൫𝐶ଵ,௝ ൅ 𝐶ଶ,௝t ൅ 𝐶ଷ,௝𝑡ଶ ൅ ⋯ ൅ 𝐶௡,௝𝑡௡ିଵ൯ (13) 

Then, the first, second and 𝑚௧௛ order can be generated subject to the initial 
condition, 𝑢ଵሺ𝑡௝ሻ  ൌ  𝑢ଶሺ𝑡௝ሻ  ൌ ൉ ൉ ൉ ൌ  𝑢௠ ሺ𝑡௝ሻ  ൌ 0. The approximate solution 
is: 

 𝑢෤ሺ𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝ሻ ൌ 𝑢௜,଴ሺ𝑡ሻ ൅ ∑ 𝑢௜ ሺ𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝ሻ௡
௜ୀଵ  (14) 

Substituting Eq. (14) into Eq.  (1) yields the following residual: 

 𝑅௜൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝൯ ൌ
ௗ௨෥൫௧,஼భ,ೕ,஼మ,ೕ,…,஼೙,ೕ൯

ௗ௧
൅ 𝑎ሺ𝑡ሻ𝑢෤൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝൯ ൅

∑ 𝑏௜ሺ𝑡ሻ௟
௜ୀଵ 𝑢෤൫𝜏௜𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝൯ ൅ 𝑓ሺ𝑡ሻ (15) 

If 𝑅  ൌ  0, then 𝑢෤  will be the exact solution. Generally, such a case will not 
arise for nonlinear problems, but we can minimize the function 

 𝐽௜൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝൯ ൌ ׬ 𝑅௜
ଶ൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝൯𝑑𝑡

௧ೕశభ

௧ೕ
 (16) 

where 𝑡௝ and 𝑡௝ାଵ are the endpoints of the given problem in the subinterval. The 
unknown convergence control parameters 𝐶௜,௝ሺ𝑖 ൌ  1, 2, 3, . . . , 𝑛ሻ can be 
identified from the conditions 

 
డ௃

డ஼భ,ೕ
ൌ

డ௃

డ஼మ,ೕ
ൌ ⋯ ൌ

డ௃

డ஼೙,ೕ
 (17) 

Let h be the length of subinterval ሾ𝑡௝ , 𝑡௝ାଵ ሻ and 𝑁 ൌ  𝑇 /ℎ the number of 
subintervals. Now, we can solve Eq. (17) at 𝑗 ൌ  0, 1,൉ ൉ ൉ , 𝑁 by changing initial 
approximation a in each subinterval from the previous one.  For example, in the 
subinterval ሾ𝑡௝ , 𝑡௝ାଵሻ we define 𝑎௝  ൌ 𝑢෤ሺ𝑡௝ ሻ. Therefore, the approximate 
analytic solution will be: 

 𝑢෤ሺ𝑡 ሻ ൌ

⎩
⎪
⎨

⎪
⎧

𝑢෤ଵሺ𝑡 ሻ,   𝑡଴ ൑ 𝑡 ൏ 𝑡ଵ,   
𝑢෤ଶሺ𝑡 ሻ,   𝑡ଵ ൑ 𝑡 ൏ 𝑡ଶ ,   

.

.

.
𝑢෤ேሺ𝑡 ሻ,   𝑡ேିଵ ൑ 𝑡 ൏ 𝑇

 (18) 

In this way, we successfully obtain the solution of the initial value problem for a 
large value of T analytically. It is worth mentioning that when 𝑗 ൌ  0, MOHAM 
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gives the standard OHAM, so the new algorithm is a generalization of standard 
OHAM. 

3 Examples 

In this section, several examples are presented to demonstrate the efficiency of 
the new algorithm. 

3.1 Example 1 

Given the following multi-pantograph delay equation [9]: 

 𝑦ᇱሺ𝑡ሻ ൌ െ
ହ

଺
𝑦ሺ𝑡ሻ ൅ 4𝑦 ቀଵ

ଶ
𝑡ቁ ൅ 9𝑦 ቀଵ

ଷ
𝑡ቁ ൅ 𝑡ଶ െ 1,   0 ൑ 𝑡 ൑ 1    (19)  

 𝑦ሺ0ሻ ൌ 1 

Based on OHAM formulated in Section 2, a homotopy equation is 
constructed in the following form: 

 ሺ1 െ 𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
ቃ ൌ 

 𝐻ሺ𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
൅

ହ

଺
𝑣ሺ𝑡ሻ െ 4𝑣 ቀଵ

ଶ
𝑡ቁ െ 9𝑣 ቀଵ

ଷ
𝑡ቁ െ 𝑡ଶ ൅ 1ቃ (20) 

where 

 𝑣ሺ𝑡, 𝑝ሻ ൌ ∑ 𝑦௜ ሺ𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶௡,௝ሻଵ
௝ୀଵ 𝑝௜, (21) 

and 

 𝐻ሺ𝑝ሻ ൌ ൫𝐶ଵ,௝ ൅ 𝐶ଶ,௝𝑡 ൅ 𝐶ଷ,௝𝑡ଶ ൅ 𝐶ସ,௝𝑡ଷ൯𝑝 (22) 

Substituting Eq. (21) and Eq. (22) into Eq. (20), and equating the coefficients of 
the same powers of p yields the following set of linear differential equations: 

 𝑦଴
ᇱ ൫𝑡௝൯ ൌ 0,   𝑦଴൫𝑡௝൯ ൌ 𝛼 (23) 

 𝑦ଵ
ᇱ ൫𝑡௝൯ ൌ െ

ଵ

଺
ሺെ6 ൅ 73𝛼 ൅ 6𝑡ଶሻ ൬𝐶ଵ,௝ ൅ 𝑡 ቀ𝐶ଶ,௝ ൅ 𝑡൫𝐶ଷ,௝ ൅ 𝑡𝐶ସ,௝൯ቁ൰ (24) 

 𝑦ଵ
ᇱ ൫𝑡௝൯ ൌ 0 

Now, by using 𝑚 ൌ 1 into Eq. (14), the MOHAM approximate of the first order 
is: 

 𝑦෤ ௜ሺ𝑡ሻ  ൌ  𝑦଴ሺtሻ  ൅  𝑦ଵሺ𝑡ሻ (25) 

Substituting the solutions of Eq. (23) and (24) into Eq. (25), we obtain a first-
order approximate solution: 
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 𝑦෤൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯ ൌ 𝛼 ൅ 𝑡𝐶ଵ,௝ െ
଻ଷ

଺
𝛼𝑡𝐶ଵ,௝ െ

ଵ

ଷ
𝑡ଷ𝐶ଵ,௝ െ 𝑡௝𝐶ଵ,௝ ൅

଻ଷ

଺
𝛼𝑡௝𝐶ଵ,௝ െ

ଵ

ଷ
𝑡௝

ଷ ൅   
ଵ

ଶ
𝑡ଶ𝐶ଶ,௝ െ

଻ଷ

ଵଶ
𝛼𝑡ଷ𝐶ଶ,௝ െ

ଵ

ସ
𝑡ସ𝐶ଶ,௝ െ

ଵ

ଶ
𝑡௝

ଶ𝐶ଶ,௝ ൅
଻ଷ

ଵଶ
𝛼𝑡௝

ଶ𝐶ଶ,௝ ൅
ଵ

ସ
𝑡௝

ସ𝐶ଶ,௝ ൅  
ଵ

ଷ
𝑡ଷ𝐶ଷ,௝ െ

଻ଷ

ଵ଼
𝛼𝑡ଷ𝐶ଷ,௝ െ

ଵ

ହ
𝑡௝

ହ𝐶ଷ,௝ െ
ଵ

ଷ
𝑡௝

ଷ𝐶ଷ,௝ ൅
଻ଷ

ଵ଼
𝛼𝑡௝

ଷ𝐶ଷ,௝ ൅
ଵ

ହ
𝑡௝

ହ𝐶ଷ,௝ ൅  
ଵ

ସ
𝑡ସ𝐶ସ,௝ െ

଻ଷ

ଶସ
𝛼𝑡ସ𝐶ସ,௝ െ

ଵ

଺
𝑡଺𝐶ସ,௝ ൅

଻ଷ

ଶସ
𝛼𝑡௝

ସ𝐶ସ,௝ ൅
ଵ

଺
𝛼𝑡௝

଺𝐶ସ,௝  (26) 

Substituting Eq. (26) into Eq. (15) yields the following residual: 

 𝑅෨൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯ ൌ

𝑦෤ᇱ൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯ ൅
ହ

଺
𝑦෤ᇱ൫𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯ െ

4𝑦෤ ቀ௧

ଶ
, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝ቁ െ 9𝑦෤ ቀ௧

ଷ
, 𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝ቁ െ 𝑡ଶ ൅ 1 (27) 

Table 1 Values of 𝐶௜, 𝑗 for Example 1. 

𝒋 𝑪𝟏,𝒋 𝑪𝟐,𝒋 𝑪𝟑,𝒋 𝑪𝟒,𝒋 
1 −0.40318 −1.67947 −1.00586 0.0813752 
2 −0.220828 −0.919465 −0.555676 0.0285004 
3 −0.138789 −0.57757 −0.350671 0.012845 
4 −0.0945971 −0.393436 −0.239529 0.00669195 
5 −0.0680883 −0.283013 −0.172603 0.00383648 
6 −0.0509878 −0.211804 −0.129327 0.00235634 
7 −0.0393567 −0.16339 −0.0998435 0.00152335 
8 −0.0311188 −0.129111 −0.078942 0.00102716 
9 −0.0250926 −0.10405 −0.0636403 0.000714712 

10 −0.0205657 −0.085245 −0.0521379 0.000508176 

According to Eq. (16), we can minimize the functional: 

 𝐽௜൫𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯ ൌ ׬ 𝑅௜
ଶ൫𝐶ଵ,௝, 𝐶ଶ,௝, 𝐶ଷ,௝, 𝐶ସ,௝൯𝑑𝑡

௧ೕశభ

௧ೕ
 (28) 

Hence, from the solutions of the systems of equations: 

 
డ௃

డ஼భ,ೕ
ൌ

డ௃

డ஼మ,ೕ
ൌ

డ௃

డ஼య,ೕ
ൌ

డ௃

డ஼ర,ೕ
 (29) 

The convergence control parameters, 𝑗, are obtained as presented in Table 1, 
with ℎ ൌ 0.1 and starting with 𝑡଴  ൌ 0 to 𝑡௝ ൌ 𝑇 ൌ 1.  Table 2 presents a 
comparison between MOHAM’s approximate solution of the first-order and 
HPM’s solution of the third-order, along with the exact solution. It is obvious 
that the approximate solutions obtained by our algorithm are more accurate 
along with an increased number of terms in the auxiliary convergence control 
functions. Table 3 displays the residual error obtained from MOHAM’s 
approximate solution. 
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Table 2 Numerical results for Example 1. 

t 
Exact 

Solution 
MOHAM   
Solution 

HPM Relative 
Error [9] 

MOHAM 
Relative Error 

MOHAM 
Absolute Error 

0.1 1.00000 1.00000 4.09 × 10-12 0.00000 0.00000 
0.2 4.23893 4.23893 1.63 × 10-3 3.59 × 10-8 1.52 × 10-7 
0.4 9.78923 9.78924 1.08 × 10-3 6.73 × 10-7 6.59 × 10-6 
0.6 18.1012 18.1012 2.84 × 10-3 2.98 × 10-6 5.40 × 10-5 
0.8 29.6252 29.6252 5.27 × 10-3 6.28 × 10-6 1.86 × 10-4 
1.0 44.8114 44.8114 8.17 × 10-2 9.83 × 10-6 4.39 × 10-4 

Table 3 Residual Obtained using the Approximate Solution given by Eq. (15). 

t 0.05 0.25 0.45 0.65 0.85 0.95 
Residual 

Error 
1.26 ×10−6 1.40 × 10−5 1. × 10−4 5.1 × 10−4 1.26 × 10−3 1.67 × 10−3 

3.2 Example 2 

Given the following multi-pantograph delay equation [10] 

 𝑦ᇱሺ𝑡ሻ ൌ െ𝑦ሺ𝑡ሻ ൅ 𝑦ଵሺ𝑡ሻ𝑦 ቀଵ

ଶ
𝑡ቁ ൅  𝑦ଶ ሺ𝑡ሻ𝑦 ቀଵ

ସ
𝑡ቁ ൅ 𝑡ଶ െ 1,   

  0 ൑ 𝑡 ൑ 1 (30) 

 𝑦ሺ0ሻ ൌ 1 

where  

 𝑦ଵ ሺ𝑡ሻ ൌ െ𝑒ି଴.ହ௧𝑠𝑖𝑛ሺ0.5𝑡ሻ, 

 𝑦ଶሺ𝑡ሻ ൌ െ2𝑒ି଴.଻ହ௧𝑐𝑜𝑠ሺ0.5𝑡ሻ𝑠𝑖𝑛ሺ0.25𝑡ሻ 

 ሺ1 െ 𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
ቃ ൌ 𝐻ሺ𝑝ሻ ቂௗ௩ሺ௧,௣ሻ

ௗ௧
൅ 𝑣ሺ𝑡ሻ ൅

ଵ

ଶ
𝑒ି଴.ହ௧𝑠𝑖𝑛ሺ0.5𝑡ሻ𝑣 ቀଵ

ଶ
𝑡ቁ ൅

2𝑒ି଴.଻ହ௧𝑐𝑜𝑠ሺ0.5𝑡ሻ𝑠𝑖𝑛ሺ0.25𝑡ሻ𝑣 ቀଵ

ସ
𝑡ቁቃ (31) 

where 

 𝑣ሺ𝑡, 𝑝ሻ ൌ ∑ 𝑦௜ ሺ𝑡, 𝐶ଵ,௝, 𝐶ଶ,௝, … , 𝐶ହ,௝ሻଵ
௝ୀଵ 𝑝௜ (32) 

and 

 𝐻ሺ𝑝ሻ ൌ ൫𝐶ଵ,௝ ൅ 𝐶ଶ,௝𝑡 ൅ 𝐶ଷ,௝𝑡ଶ ൅ 𝐶ସ,௝𝑡ଷ ൅ 𝐶ହ,௝𝑡ହଷ൯𝑝 (33) 

Substituting Eq. (32) and Eq. (33) into Eq. (31) and equating the coefficients of 
the same powers of p yields the following set of linear differential equations: 

 𝑦଴൫𝑡௝൯ ൌ 0, 𝑦଴൫𝑡௝൯ ൌ 𝛼 (34) 

 𝑦ଵ
ᇱ ൫𝑡௝൯ ൌ 𝛼ሺ1 ൅ 𝑡ሻ ൬𝐶ଵ,௝ ൅ 𝑡 ቀ𝐶ଶ,௝ ൅ 𝑡𝐶ଷ,௝ ൅ ൫𝐶ସ,௝ ൅ 𝑡𝐶ହ,௝൯ቁ൰ (35) 
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 𝑦ଵ
ᇱ ൫𝑡௝൯ ൌ 0   

The first-order approximate solution is given by Eq. (14) for m = 1 as follows: 

 𝑦෤ ௜ሺ𝑡ሻ  ൌ  𝑦଴ ሺ𝑡ሻ  ൅  𝑦ଵሺ𝑡ሻ (36) 

Table 4 Values of 𝐶௜,௝  for Example 2. 

𝒋 𝑪𝟏,𝒋 𝑪𝟐,𝒋 𝑪𝟑,𝒋 𝑪𝟒,𝒋 𝑪𝟓,𝒋 
1 −1.11075 1.11185 −0.016291 −0.620752 0.458202 
2 −1.24657 1.25318 −0.060435 −0.555298 0.334237 
3 −1.41437 1.43441 −0.136241 −0.478299 0.251391 
4 −1.62368 1.66795 −0.245053 −0.399309 0.194177 
5 −1.88781 1.97011 −0.390731 −0.320047 0.152874 
6 −2.22633 2.36692 −0.588629 −0.231245 0.11867 
7 −2.66825 2.89558 −0.856532 −0.128689 0.0888091 
8 −3.2466 3.56002 −1.13007 −0.0773363 0.0821022 
9 −3.97549 4.24009 −1.15925 −0.247713 0.137218 
10 −5.22898 6.05518 −2.46661 0.358075 0.00183246 

By applying the same procedure as in Example 3.1, the desired approximate 
solution is obtained The values of the convergent control parameters are 
displayed in Table 4. If we compare the results presented in Table 5, we can 
reach the conclusion that the results obtained by MOHAM’s approximate 
solutions of the first-order are more accurate than the results obtained by 
Taylor’s method of order 7. This proves MOHAM’s validity and potential for 
solutions of this type of differential equations. Table 6 displays the residual 
error obtained from MOHAM’s approximate solution. 

Table 5 Numerical Results for Example 2. 

t 
Exact 

Solution 
MOHAM   
solution 

MOHAM  
Absolute Error 

MOHAM  
Relative Error 

Absolute  
Error [10] 

0.1 1.00000 1.00000 0.000000 0.00000 0.00000 
0.2 0.802411 0.802411 8.10553 × 10−10   8.10554× 10−10 1.91535 × 10−8 
0.4 0.617406 0.617405 2.55076 × 10−7 2.55076 × 10−7 2.35133 × 10−6 
0.6 0.452954 0.452952 4.80133 × 10−6 4.80133 × 10−6 3.82097 × 10−5 
0.8 0.313051 0.313038 4.14924 × 10−5 4.14924 × 10−5 2.72162 × 10−4 
1.0 0.198766 0.198778 6.06934 × 10−5 6.06934 × 10−5 1.23389 × 10−3 

Table 6 Absolute Residual Error Obtained from the Approximate Solution of 
Example 2. 

t 0.05 0.25 0.45 0.65 0.85 0.95 
Residual 
Error 

2.96 × 10−10 2.08 × 10−7 6.27 × 10−6 4.4 × 10−5 1.17 × 10−4 2.61 × 10−4 
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4 Conclusion 

In this paper, we have proved the potential of MOHAM for obtaining 
approximate analytic solutions of multi-pantograph equations. High 
approximate solutions were obtained in one iteration, which is sufficient to 
achieve extremely accurate results compared with other methods from the 
literature. Three numerical experiments were solved to illustrate that the present 
algorithm is effective and accurate and converges rapidly to exact solutions. 
Hence, we can say that these numerical results show that the MOHAM is an 
acceptable and reliable technique for the solution of multi-pantograph 
equations. 
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