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Abstract. The article is devoted to the theoretical analysis the problem of acoustic emission signals application for the detection of 
self-accelerated crack development. The acoustic emission signal model has been proposed which takes into account the change of 
crack propagation velocity in the process of material loading. The process of self-accelerated crack development results in growth of 
acoustic emission signal amplitude and compression the signal in time. 
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Introduction 
 

During the loading of the material, as is well 
known, gradual development of plastic deformation proc-
esses appearance and growth of cracks occur [18, 13]. 
The results of experimental research [3, 4, 5] show that 
these processes are the source of acoustic emission signal 
radiation (AE) [15, 6, 4]. One of the directions in investi-
gating the AE phenomenon is studying the form of the 

AE signals registered. A considerable number of works 
have been dedicated to their study [7, 2, 1]. At the same 
time, published material do not always contain research 
related to the theoretical description of AE signals and 
explaining the difference between the signals registered 
during plastic deformation and growth of cracks in the 
material. The models available, for example [16] and 17], 
show that a primary AE signal  represents a video pulse. 
They however do not take into account the real conditions 
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of  the behavior developing in the material and do not ex-
plain the existence of their complex form. Therefore the 
real AE signal is shown as follows  

)()( ii
i

i ttFAtU −∑= ,                 (1) 

where iA is a random amplitude of the pulse appearing in 
a random moment of time it ; iF  — characteristics of a 
single-pulse form. Summing up is produced along the to-
tal of the pulses n, registered by an AE sensor. 

In other words, an AE signal is presented as a 
sum of primary signals having random amplitude and 
time of appearance. It is thus considered that the signal 
form is initially considered common for all signals [17, 5, 
3].     

At the same time, experimental research shows 
that AE signals for the processes of plastic deformation 
and crack growth differ from each other in form. In works 
[11] and [12], with certain assumptions taken into ac-
count, the models of forming AE signals when a fragile 
crack is developing in the material and plastic deforma-
tion is progressing have been developed. The results of 
AE signal modeling carried out, in accordance with the 
models developed, allowed their complex form to be ex-
plained It was thus shown that the transformation of  AE 
signal form is considerably influenced by the speed of 
processes developing in the material at their loading.   

In considering the AE signal model from a frag-
ile crack developing in some heterogeneous area and in 
modeling the forming signal, some works state that the 
destruction of elementary volumes takes place with con-
stant speed or speed of destruction at some instants of 
time changes, i.e. it can increase or decrease [11, 9]. It is 
in accord with the existing ideas about the development 
of the destruction process and is related to random distri-
bution of elementary volume characteristics in their 
strength [22]. At the same time, when a crack is develop-
ing, the destruction of every elementary volume results in 
redistribution of tensions in the heterogeneous area and 
increase of local tension applied to non-destructed vol-
umes remaining in the heterogeneous area. Such an in-
crease by all means must influence the acceleration of the 
destruction process, i.e. the destruction process (crack 
growth) can have a self-accelerated nature of develop-
ment. 

Mathematical description of AE signal  from a 
fragile crack, appearing in a local heterogeneous area, 
with self-congruent character of its development taken 
into account, will be performed. Besides, its influence on 
the parameters and form of an AE signal will be shown. 

 
Model of acoustic emission signal  

 
Let us assume that in the ideal homogeneous 

specimen of material there is some local heterogeneous 
area, which is located in a plane. Its size is much smaller 
than the model size, i.e. the heterogeneous area (SТ) is 
considerably smaller than the specimen cross-section (S), 
SТ<<S (Fig.1). We will presume that when the increasing 
stretch forming tension to the specimen of the material 
that is applied perpendicularly to the plane of existing 

heterogeneity, in the area it occupies, a crack appears. As 
in previous research [16], we will consider that the area 
of heterogeneity consists of separate minor volumes 
(Fig.1), their degree ( l ) being considerably smaller than 
the degree of the smallest internal heterogeneity ( λ ) in 
the area TS , i.e. λ<<l . Crack in plane 

T
S  appears by 

means of mechanical destruction of its small volumes 
which possesses different levels of strength (we mean lo-
cal strength of separate volumes). Their destruction takes 
place when the value of the tension applied achieves the 
value of the local tension of separate elementary volume 
destruction. 

 

 
Fig 1. Crack growth in  the material model with structural het-
erogeneity: S — cross-section area of the specimen; ST — area 
of heterogeneity; О — elementary volume in the area of hetero-
geneity; )(0 tσ  — change of external tension (external lade); 

)(tσ — change of local tension in the area of heterogeneity 
 

In this case, at some tension σ applied, the 
number of local volumes destructed will be determined 
by the integral 

∫=
σ

σσ
0

)(0 dpNN рP
,                 (2) 

where N0, NP, – total number of volumes in the area of 
heterogeneity and the number of volumes destructed; 
р(σр) — function of distributing volumes in the area of 
heterogeneity relative to strength.     

The type of function р(σр) is determined ex-
perimentally when  testing the material specimens of 
identical size on destruction. The distribution )( Pp σ  
looks like [21, 22] 

)bexp(c)(p ppp σσσ −= ,                (3) 

where c, b — empiric distribution coefficients. 
The increment of the number of destructed vol-

umes for the time dt will be equal to 
)]([)]([0 tdtpNdN P σσ= ,               (4) 

where )]([ td σ  — increment of tension in the area of 
heterogeneity, which complies with the specified period 
of time dt.  From expression (4) we find that the destruc-
tion speed, i.e. the number of destructed volumes in the 
unit of time, is determined by the expression 

])()][([)( 0 dt
tdtpNdNt

dt
P σσ==Φ ,                (5) 

As in the work [11], we will consider that de-
struction of every elementary volume is accompanied by 
forming a perturbation single-pulse, bell-like form. Per-



 V. Babak, S. Filonenko, V. Kalita /AVIATION, Vol IX, No 3, 2005, 3-8 
 

 - 5 - 

turbation duration single-pulse δ  being short and much 
less than the time of all the destruction process (crack de-
velopment).  We are not going to consider relaxation 
processes in perturbation pulse extension, i.e. we will 
consider that the perturbation pulse is not distorted and 
spreads without fading. There is no doubt that the pertur-
bation pulse amplitude is determined by the value of local 
tension σ  applied, which is equal to critical tension that 
causes destruction. The more critical tension, the greater 
the amplitude of perturbation pulse is. We will therefore 
consider that proportion )(~)(0 ttA σ  is implemented, or 

)()(0 ttA ζσ= ,                  (6) 

where 0A — amplitude of perturbation pulse indignation; 
ζ  — proportion coefficient; )(tσ — dependence of local 
tension change in time. 

Then the perturbation pulse formed at destruc-
tion of one elementary volume will be written as a of 
product of its amplitude and the function of form 

)()(),( 0 ττ atAtA = ,                (7) 
where )(τa — function that determines the form of per-
turbation pulse; τ — time of perturbation pulse develop-
ment, which is considerably less than the time of crack 
development. 
It is thus assumed that the function )(τa  is identical for 
all destructed elementary volumes and has a single ampli-
tude [11]. 

The resulting shift that is formed in the arbitrary 
moment of time is equal to the sum of perturbations from 
elementary volumes destroyed at a given moment of time. 
If perturbation duration single-pulse δ  is much shorter 
than the time of crack formation, the expression for gen-
eral formed shift at a given moment of time t, in accor-
dance with, will be written down  

s)t()t(A)t(UT δΦ= 0 ,                               (8) 

where UT (t) — resulting shift; Sδ  — integral parameter 
of the form of perturbation pulse, its  numeral value being 

equal to ∫
−

=
2

2

)(
δ

δ
ττδ daS

 [11]. 

Putting expressions (5), and (6) into (8) we will 
obtain the resulting displacement in the moment of time t, 
which is described by the correlation  

dt
tdtpNttU ST
)()]([)()( 0

σ
σδζσ= .                (9) 

Let us assume that the external load applied to 
the model (Fig 1) changes under the linear law 

tασ =0 ,                (10) 
where α — speed of loading, which is constant. 

Because of random distribution of elementary vol-
umes concerning strength, their destruction will have un-
even character. Local tensions in area of heterogeneity 
( )(tσ ) will therefore not be equal (10) but will change 
depending on the progress of  elementary volume de-
struction process. With an increase in the amount of de-
structed elementary volumes, local tension in the area of 

heterogeneity, where destruction takes place, will in-
crease. The speed of the growth of tension in the area of 
the heterogeneity depends not only on speed of inputting 
external tension, but also on the amount of the elementary 
volumes destructed. In other words, the more destructed 
volumes, the greater local tension ( )(tσ , Fig 1) is applied 
to other volumes. For speed of local tension growth that 
results in destruction of elementary volumes in the area of 
heterogeneity it is therefore possible to write down the 
expression 

))(1(
)(

0
σσκαα

σ

dp
t

T ∫+= ,               (11) 

where κ — proportion coefficient. 
 With (10) and (11) taken into consideration the 
expression for temporal dependence of tension change in 
area of heterogeneity acquires rather complex appearance 
and is presented by the equation 

))(1()(
)(

0

σσκασ
σ

dptt
t

∫+=  .              (12) 

Let us take the derivative from the equation (12) 
and we will obtain  

dt
tdtpdp

dt
td t )())(()()( )(

0

σσακσσακασ σ

++= ∫ .       (13) 

Solving equation (13) in relation to the deriva-
tive, we will get the expression for the tension derivative 
in the area of the heterogeneity 

)(1

)(1
)(

)(

0
σακ

σσκ

ασ

σ

p

dp

dt
td

t

−

+

=
∫

.              (14) 

The expression (14) shows, that a denominator can not be 
equal to zero, i.e. inequality 1-ακр(σ)>0 must be ob-
served (σ)>0.  

Putting into (12) the expression for distributing 
elementary volumes according to strength (3), we will 
see, that tension dependence on time is expressed by the 
integral 

tdсt
t

b }1{)(
)(

0
)exp( σκασ

σ

σσ∫ −+= .             (15) 

After calculating the integral in (15), this expression will 
be rewritten as follows     

1( ) { [1 exp( ( ))]

( )exp( ( ))}.

сt t t b t
b b

t b t

κσ α α σ

σ σ

= + − − −

− −

               (16) 

Thus, it is seen from expression (15), that local 
tension change is found in solving the transcendent equa-
tion.  

If correlations (9) - (13) are taken into account, 
the expression for resulting displacement will look like 

0

( )

0

( )

0

( )

             

{1 ( ) }

1 ( )
[ ( )] .

1 ( )

T

t

s

t

U t t p d

p d
t

p

N

p

σ

σ

ζ δα κ σ σ

κ σ σ
σ α

ακ σ

= ×

×

+

+

−

∫

∫

              (17) 



 V. Babak, S. Filonenko, V. Kalita /AVIATION, Vol IX, No 3, 2005, 3-8 
 

 - 6 - 

Putting into (17) the distribution function (3), we 
will see that the expression for resulting shift now ac-
quires the form 

))(exp(1

)exp(1
             

))exp(1(exp(

))exp(             

1(])exp(1[

)(

0

)(

0

)(

0

)(

0

)  

0)(

tbc

dbc

dbct

dbc

tdbсt

t

t

t

s

t

b

NtU T

σκσα

σσσκ

σσσκα

σσσκ

ασσσκα

σ

σ

σ

σ

α

δζ

−−

−+
×

−+×

×−+

+−+

∫

∫

∫

∫

×−

=

     (18) 

After calculating the integrals in (18) with reference to 
(16), we will get the following expression  

))](exp()(1[

))]}(exp()())(exp(1(1[

1exp))]}(exp()(             

))(exp(1(1[1

/

/)

( {

{)(

3

23
0

tbtc

tbttb
bb

с

ttbt

tb
bb

сt

b

NstU T

σκσα

σσσ
κ

ασσ

σ
κ

α δζ

−−

−−−−+

+−−

−−−+

−

=

  (19) 

It is quite obvious that investigation of (19) is 
rather complicated problem. Therefore we will consider 
some approximations.  

The simplest is the case, when value κ is small, 
i.e. κ<<1. Taking into account this approximation, the 
expression (20) is simplified and assumes the type 

))](exp()(1[

))]}(exp()())(exp(1(1[  

1exp())]}(exp()(           

))(exp(1(1[1

)

{

{)(

3

23
0

tbtc

tbttb
bb

с

ttbt

tb
bb

сt

b

NstU T

σκσα

σσσκ
ασσ

σ
κ

α δζ

−+

−−−−+

+−−

−−−+

×

×

−

=

  (20) 

Moreover, when value κ is small it is possible to find so-
lution of equation (16) by presenting dependence of ten-
sion on time as a row on κ: 

...)( 2
2

1 +++= uutt κκασ               (21) 
where the first sum is zero approximation, tt ασ =)(0 , а 
u1(t), u2(t) — unknown functions. If we limit ourselves 
only to the first infinitesimal order, we will find depend-
ence u1(t), which we will write down as 

)}exp()]exp(1[1{)(1 tbttb
b

t
b
сtu αααα −−−−= .  (22) 

Now expression for tension in the area of heterogeneity 
will look like 

)}exp()]exp(1[1{)( tbttb
b

t
b
сtt αααακασ −−−−+=     (23) 

In Fig 2, dependencies of local tension change are pre-
sented in the area of the heterogeneity, in obedience to 
expression (23), in relative units. Dependencies were 
built for conditions when k is equal to zero (k=0), i.e. 
self-acceleration of destruction process is absent (change 
of local tension is equal to external tension change), and 
when  k = 0,4, i.e. there is self-acceleration of the destruc-
tion process. In drawing graphs, the values α=40, b=15 
were accepted. Value с in distribution (3) was determined 
from the normalization condition, i.e. с= b2.  

It is apparent from the results obtained that destruction 
process self-acceleration results in non-linearity in the 
dependence of changing local tension in time, local ten-
sion in relation to external tension being increased. 
         We will find the derivative from expression (23) 

3 2

( ) 1(1 { [1 exp( )]

            exp ( )}) exp( ).

d t с b t
d t b b

t b t ct b t

σ
α κ α

α α α κ α

= + − − −

− − + −

        (24) 

 We will put (23) into (20) and obviously obtain 
the dependence of resulting shift on time, which acquires 
the form  

0

3 2

3

2

( ) {

{

11 [ (1 exp( )

1          exp( )]} exp 1 [ (1

          exp( ) exp( )]}

[1 exp( )],

(

)

T sU t Ut с b t
b b

t b t t с
b b

b t t b t
c t b t

b

δ
κ

α α

κ
α α α

α α α

α κ α

= + − − −

− − + −

− − − −

× + −

−

×

    (25) 

where designation 00 NU ζ= , which is the peak value of 
the shift resulting pulse, is entered (AE signal). We are 
talking about AE signal, because in case of a broad-band 
transducer the output electric signal repeat the pulse of 
mechanical shift )t(U T

. 
 We will write down expression (25) in a differ-
ent way 

)}exp(             

)]exp()exp(1(1[1

)]}exp()exp(             

1(1[1exp()]}exp(           

)exp(1(1[1

22

2

23

{

{

{)(

)

0

tbtc

tbttb
bb

с

tbttb
bb

сttbt

tb
bb

сt

b

UtU sT

ακα

ααακ
ααα

κααα

ακα δ

−+

+−−−−+×

−−−−

−+−−

−−−+

×

−

=

    (26) 
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Fig 2. Dependencies of tension change (in relative units) in lo-
cal area of heterogeneity with constant speed of specimen load-

ing: 1 − κ=0,4; 2 − κ=0. For both graphs α=40, b=15 
 
 In case of independent destruction of elementary 
volumes in the area of heterogeneity, i.e. if self-
acceleration of destruction process is absent, parameter 
value k will equal zero, κ=0. If this parameter value k is 
put into (25), we will receive the expression  

)exp(23
0)( tbtsUtU T ααδ −= .              (27) 
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Expression (27) corresponds to the model of the AE sig-
nal when a fragile crack is formed in the material [16], on 
the condition that dependence of tension change in the  
 

0.002 0.004 0.006 0.008 0.01 0.012 0.014

0.1

0.25

0.4

0.55

0.7

0.85

1.0

1

2
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~
unrelatU

unrelatt .
~

 
Fig 3. Dependencies of change of resulting shift in relative 
units: 1 − calculations according to expression (26), if κ=0,4; 2 
— calculations according to expression (27), if κ=0. For both 
graphs α=40, b=15 is accepted. ..

~
unrelatU — rationed value on 

maxU . ..
~

unrelatt  — rationed value on consttmax =  
 
area of the heterogeneity (local tension) corresponds to 
the dependence of change in the external tension applied.    
          The calculation results in change dependencies 

oU/)t(U)t(U~ T= in relative units, according to expres-
sions (26) and (27), are shown in Fig 3. When drawing 
graphs (Fig 3) time rationed for time of loading which 
has constant value ( maxt ). Parameters α and b are reduced 
to dimensionless values. For curve 1, Fig 3 the value of k 
was accepted equal k=0,4. 
 It can be seen in Fig 3 that self-acceleration of the-
destruction process of elementary volumes in the area of 
the heterogeneity results in growth of local tensions, and 
leads to compression of AE signal and increase of its am-
plitude. It is well coordinated with the results of AE sig-
nal modeling from crack , when the conditions of uneven 
growth of speed in the final stages of its development 
have been modeled [9].  
 
Conclusions 

 
The results of the research carried out show, that 

self-acceleration of the process of destruction develop-
ment leads to compression of AE signal. It should be 
noted that this compression in the growth of self-
acceleration degree is accompanied by symmetrization of 
the shape of the signal formed and the degree of self-
acceleration of the destruction process gradually in-
creases. As calculations show, the transformation of the 
AE signal into a of triangular form signal which is also 
observed in the results of experimental research], takes 
place [12, 9]. According to the results obtained, it is in-
fluenced by the acceleration of the process of destruction 
at the final stage of its development, when, as is seen in 
Fig 2, deviation of temporal dependence of tension 
change in the local area of heterogeneity from linear mo-
tion takes place. 
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