
An Algorithm for Building an Enterprise Network
Topology Using Widespread Data Sources

Anton Andreev, Iurii Bogoiavlenskii
Petrozavodsk State University

Petrozavodsk, Russia

{andreev, ybgv}@cs.petrsu.ru
Abstract—A lot of network management tasks depend on

the description of the network topology. However, the lack of
standard methods of the network elements detection, coupled with
the incompleteness and heterogeneity of the available topology
data, complicate the network topology discovery process. In these
conditions, formal models and methods of topology discovery are
required. Contribution of the paper is an algorithm for automated
enterprise network topology discovery based on a previously
developed graph model and criteria for building graph elements.
The proposed algorithm is capable of dealing with incomplete
heterogeneous data about network topology as well as with the
presence in the network of uncooperative devices. The paper also
evaluates the algorithm and provides the testing results.

I. INTRODUCTION

Communication infrastructures of modern network service
providers (NSP) are complex multilayer systems that include a
large number of devices (switches, routers) and internal links.

Most widespread NSP are midsize enterprises that provide
services to their own employees and, possibly, to a limited
number of smaller enterprises. Such networks, containing up
to a thousand of devices and up to ten thousand of network
computers, are the subject of this study.

A lot of network management tasks in the enterprise
networks, such as capacity planning and root cause analysis,
require a complete and detailed description of both logical
and physical network topology. Such description could be
used to solve a wide range of problems: performance analysis
and topology scaling [1], ensuring reliability of the network
topology and reducing the number of internal connection [2],
etc.

Due to the large sizes of the network producing and main-
taining such description manually is very difficult. Therefore
arises the problem of the automation of the topology discovery
process [3], [4], [5], [6], [7], [8], [9]. Solving this problem is
difficult because of a number of issues. The network topology
exploration is complicated by the lack of support of standard
tools for detecting elements of the network environment and
connections between them (e. g. Link Layer Discovery Pro-
tocol) by most of the network equipment. This leads to the
need for an analysis of heterogeneous data sources including
those that are not specifically designed for network discovery
(ARP cache, Address Forwarding Tables). Data collection
and analysis is complicated by the diversity in modes of
implementation of the network device software by vendors and
by the possibility of data incompleteness or incorrectness due
to network diversity and data obsolescence. Moreover, lack

of access to certain devices (hosts and servers, transparent
switches and hubs) leads to a need to make a number of
assumptions about their properties and connections.

The network topology description is commonly represented
as a graph, vertices of which represent network devices,
their ports and end points of data transmission protocols, and
edges represent hierarchy and data exchange connections. To
solve the problem of network topology discovery automation,
the authors previously have developed a generalized graph
model of an enterprise network’s physical, link, and network
layers topology [10]. Based on this model, five criteria of the
network element interconnection detection were developed and
mathematically proven. These criteria could be used with the
most widespread heterogeneous data sources on a network
topology, such as Address Forwarding Tables (AFT), cache
of ARP, CDP, LLDP, STP and its extension (RSTP, MSTP).

The goal of this paper is development, implementation,
testing and evaluation of an algorithm for automated building
an enterprise network topology based on the model and criteria
from [10] as well as a number of new criteria provided in this
paper.

A. Organization of the paper

The rest of this paper is organized as follows. The next
section provides a short description of the related work.
Section III shortly describes the graph model of an enterprise
network topology from [10]. Section IV describes the proposed
algorithm of network topology graph building. Section V
contains description of the algorithm properties and its testing.
Section VI concludes the paper.

II. RELATED WORK

Existing algorithms of graph building are based on one data
source and describe only a limited set of topology properties
at a given network layer. For example, algorithms from [4], [5]
build graph using AFT and the algorithms from [6] — using
Spanning Tree Protocol data. These algorithms are incapable
of working in networks that include IEEE 802.1Q virtual local
area networks (VLAN).

Authors of [7], [8], [9] proposed algorithms of network
topology graph building in presence of VLAN, however, these
algorithms require AFT completeness close to 100 percent
and a small number of inaccessible devices. Furthermore, [7]
provides no result of testing, and [8] uses empirical criteria for
connection detection that have no formal proof. The algorithm

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201441562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in [9] does not differentiate between physical and logical
connections, so there is no possibility to consider different
VLANs separately in the resulting graph.

III. A GRAPH MODEL OF THE NETWORK TOPOLOGY

Let us provide a short description of the model from [10]
for the purposes of using its elements in a description of the
network topology graph building algorithm.

All elements of the developed model will be presented
using the sample network (Fig. 1), which consists of three
IP-subnetworks containing one workstation each. Each subnet-
work is implemented within a separate VLAN. The isolation
of the broadcast domains by VLANs is done by two switches,
to which the workstations are physically connected. The router
interfaces providing connections between the subnetworks are
also physically connected to the switches.

VLAN: 1 2 3

Fig. 1. The layout of the sample network

A. Physical layer

Let us take a nonempty finite set of network devices D. A
set of all ports of any device d ∈ D we will call Pd and a set
of all of the ports of all of the devices — P . For any d ∈ D,
a set Pd is nonempty and finite. For any two d1, d2 ∈ D,
Pd1 ∩Pd2 = ∅. Let us define the association relation between
the ports and the devices A(1) in such a manner that (p, d) ∈
A(1) and (d, p) ∈ A(1) when and only when p ∈ P , d ∈ D, and
p ∈ Pd. The relation A

(1) is binary, symmetric and irreflexive.

On the given set P , let us take a physical connection
relation L(1), which is binary, symmetric, transitive and ir-
reflexive. Two ports p1, p2 ∈ P that are associated with
different devices are L(1)-related if they are connected by the
same data transmission media.

A graph of the physical layer of the sample network (that
was introduced in the Fig. 1) is presented in the Fig. 2. On this
graph, squares represent devices and circles represent ports.

B. Link layer

Let us define a finite set of labels V ID ⊂ N0, which
correspond to the VLAN identifiers that used in network. In
purpose of link layer data transmission using one or more (in
case of link aggregation) physical ports each device d ∈ D
creates link layer interface (u, v) where u ⊂ Pd, v ∈ V ID.
A set of all link interfaces is noted as I(2). For an interface
i = (u, v) let us define set V IDi = {v}. In a case when a

d1 d2 d3

d4 d5 d6

p24

p23

p25

p21

p22

p52

p51 p53

p32

p31

p33

p11

p41 p61

Edges: A(1) L(1)

Fig. 2. Graph of the physical layer of the sample network

device associated with the ports from the set u does not support
the VLAN technology, V IDi = {0}.
Let us define the association relation between link in-

terfaces and devices as A(2), so that (i, d) ∈ A(2) and
(d, i) ∈ A(2) if and only if i = (u, v), d ∈ D and for all
p ∈ u accomplishes (p, d) ∈ A(1). The relation A(2) is binary,
symmetric and irreflexive. A set of all link interfaces associated

with a certain device d we will call I
(2)
d .

Two device can communicate at the link layer via not
blocked (e. g. with a STP) link interfaces, ports of which are
connected on a physical layer. On the set I(2), let us define
the link layer connection relation L(2) so that two not blocked

link interfaces i1 = (u1, v1) ∈ I
(2)
d1 , i2 = (u2, v2) ∈ I

(2)
d2 ,

associated with different devices, are L(2)-related, if p1 ∈ u1,
p2 ∈ u2 exist, where (p1, p2) ∈ L(1). The relation L(2) is
binary, symmetric, transitive and irreflexive.

On the set I(2), let us look at the commutation relation
F (2), which is binary, symmetric, transitive and irreflexive.
The interfaces that are F (2)-related to each other must be
associated with the same device and be different. Let us inter-
pret the relation F (2) as the following: the configuration of a
device provides for a possibility to forward transit data frames
between two different link layer interfaces (i1, i2) ∈ F (2).

A graph of the link layer of the sample network is presented
in the Fig. 3. Vertices representing link interfaces are depicted
as ellipses with ports and VLAN identifiers (refer to Fig. 2)
noted inside.

Let us take a look at a graph Ĝ(2) = 〈I(2), F (2) ∪ L(2)〉.
The presence of a path between the link layer interfaces in this
graph corresponds to the possibility of their communication at
the link layer either directly or via a chain of switching devices.
As such, the sets of vertices of connected components of the

graph Ĝ(2) turn out to be the broadcast domains of the network.
Partition of the set I(2), each element of which represents one
broadcast domain, will be called BD.

For an edge-simple path in the graph Ĝ(2) that does not
have two consecutive commutation edges, we will use the term
link layer path. According to the IEEE 801.1D standard, there
cannot be more than one link layer path between any two link
layer interfaces in the graph.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 35 --

d1 d2 d3

d4 d5 d6

p24, 2

p23, 1

p25, 3

p21, 1

p22, 2 p22, 3

p32, 2

p31, 1

p33, 3

p11, 0

p41, 0 p61, 0p51, 2 p53, 3

p52, 2 p52, 3

Edges: A(2) F (2) L(2)

Fig. 3. Graph of the link layer of the sample network

Property 1. In the link layer graph, between two link layer
interfaces, a link layer path exists if and only if the interfaces
belong to the same broadcast domain.

C. Network layer

Let us introduce a set of identifiers of all the network’s
IP-subnets N . For each subnet n ∈ N , there is a finite set
of all possible identifiers of the subnet’s hosts — Hn. To
transmit and receive data packets at the network layer via link
interfaces, the OS of each device d ∈ D creates a network
interface (S, n, h), where S ⊂ I

(2)
d , n ∈ N , h ∈ Hn. Let

us call a set of all of the network interfaces of all network’s
devices I(3). Let us define the association relation between
network interfaces and devices A(3) so that (t, d) ∈ A(3) and
(d, t) ∈ A(3) if and only if t = (S, n, h) ∈ I(3), d ∈ D and
for all i ∈ S, (i, d) ∈ A(2) is accomplished. The relation A(3)

is binary, symmetric and irreflexive.

On the set I(3), let us define the network layer con-
nection relation L(3) so that two network interfaces t1 =
(S1, n1, h1) ∈ I(3) and t2 = (S2, n2, h2) ∈ I(3), associated
with different devices, are L(3)-related to each other if n1 = n2
and exist b ∈ BD, i1 ∈ S1, i2 ∈ S2 so that i1, i2 ∈ b. The
relation L(3) is binary, symmetric, transitive and irreflexive.

In each subnet there may be devices (routers) that can
forward transit datagrams between all connected subnets. Let
us look at the routing relation F (3) on the set I(3) that is binary,
symmetric, transitive and irreflexive. The interfaces that are
F (3)-related to each other must be associated with the same
device. Let us interpret the relation F (3) as the following: the
configuration of a device d ∈ D provides for a possibility of
datagram transmission between two network layer interfaces
(t1, t2) ∈ F (3).

A graph of the network layer of the sample network is
presented in the Fig. 4. Vertices representing network inter-
faces are depicted as rectangles with link interfaces, subnet
identifiers and host identifiers defining each interface noted
inside. There i11 = (p11, 1), i12 = (p12, 2), i13 = (p13, 3),
i21 = (p21, 0), i51 = (p51, 0), i61 = (p61, 0).

The structure of any given network can be described with
a connected undirected graph G = 〈V,E〉 — the network
topology graph — in which the set of vertices is V = D ∪

d1 d3

d4 d6

i31, n1, h2

i33, n3, h4i32, n2, h3

i11, n1, h1

i41, n2, h5

i61, h3, h6

Edges: A(3) F (3) L(3)

Fig. 4. Graph of the network layer of the sample network

P ∪I(2)∪I(3) and the set of edges is E = A(1)∪L(1)∪A(2)∪
F (2) ∪L(2) ∪A(3) ∪F (3) ∪L(3). The network topology graph
does not contain loops and multiple edges, it may, however,
contain cycles.

D. Link layer reachability sets

Within the network, one link layer interface is reachable
from another link layer interface if the first interface is an
endpoint for data transmission at the link layer for the second
interface.

We will use the term reachability path for a link layer
path in which the first and the last edges are not commutation
edges. On the set I(2), we will introduce a reachability relation
↔ so that i1 ↔ i2 if from i1 to i2 in the graph G exists a
reachability path. In this case we will say that i2 is reachable
from i1. The relation ↔ is binary, symmetric and irreflexive.

We will say that a port p ∈ P is reachable from an interface
i1 ∈ I(2) if exists such an interface (u, v) ∈ I(2) reachable
from i1 for which p ∈ u.
For each i ∈ I(2), we will introduce a set RSi ⊂ I(2) that

includes all interfaces reachable from i. The set of interfaces
reachable from the interfaces that are F (2)-related to the i, we
will define as CRSi.

Most data sources provide information about reachability
of the network’s ports from the network’s interfaces. Following
the definition of reachability and the Property 1, in order for
a port p to be reachable from an interface i1, it is necessary
that the interface i1 = (u1, v1) and some i2 = (u2, v2) (where
p ∈ u2) belong to the same broadcast domain. If there are no
data as to whether the reachable port belongs to a VLAN, we
will assume that either v1 = v2 (if it is known that the device
supports VLAN) or v2 = 0.

IV. AN ALGORITHM OF NETWORK TOPOLOGY GRAPH
BUILDING

The algorithm of the network topology graph building
process based on the dataset received during network device
polling consists of four stages:

1) polling of network devices and obtaining from them
data on the structure of the network using SNMP (or

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 36 --

other satisfying tool) and storing these data for further
processing;

2) building graph fragments that describe the devices
(with their ports and interfaces), existence of which
follows directly from the results of the input data
analysis;

3) building reachability sets for existing link interfaces
using the input dataset and inferring missing records
in them;

4) building link layer connection edges based on the
analysis of the reachability sets, as well as building
physical and network layer connection edges based
on the definitions of the model. Additionally, this
stage includes inference of the devices, data about
which are missing from the network input data.

A. Data collection

The data necessary for building a network topology graph
is possible to obtain from Management Information Bases
(MIB) of the network devices using Simple Network Man-
agement Protocol (SNMP). SNMP protocol is a standard data
access tool for network equipment and is enabled for use by
default.

The data on the network ports is available in standard
IF-MIB and includes their assigned MAC-addresses, names,
bandwidth and type: Ethernet, virtual, aggregated etc.

Data on VLANs including their names and tables of port-
to-VLAN assignment is available, depending on the vendor,
in different MIBs. Standard MIBs are Q-BRIDGE-MIB and
SMON-MIB. On Cisco Systems devices, there could also be
CISCO-VTP-MIB and CISCO-VLAN-MEMBERSHIP-MIB.

Data on IP-subnets and network interfaces is available in
IP-MIB or RFC1213-MIB and includes subnet addresses and
masks, along with correspondence of IP-addresses to device
interfaces.

The source of data on the contacts within broadcast do-
mains is the device’s Address Forwarding Table (AFT), which
is maintained for every port of the switch and contains every
MAC-address that appear as a source of data frames received
on this port. AFT are available in BRIDGE-MIB and Q-
BRIDGE-MIB.

The source of data on the contacts within IP-network is Ad-
dress Resolution Protocol (ARP) cache which contains corre-
spondence of IP-addresses to MAC-addresses within broadcast
domain along with a number of interface through which these
addresses are reachable. Cache is available in RFC1213-MIB
and IP-MIB.

During the work of the Spanning Tree Protocol (STP),
network devices determine their direct neighbors, data on
which (MAC-addresses and port numbers) is being stored in
BRIDGE-MIB.

Cisco Discovery Protocol (CDP) and Link Layer Discovery
Protocol (LLDP) are designed to be used exclusively for net-
work topology discovery. Devices that support these protocols
send frames with data about themselves through all their ports
in predetermined time intervals. These data are stored by
neighboring devices in CISCO-CDP-MIB and LLDP-MIB.

Data on routing could be obtained from IP-MIB, OSPF-
MIB, BGP-MIB etc.

Data on link aggregation is available in IEEE8023-LAG-
MIB, CISCO-LAG-MIB, etc. These data include descriptions
of aggregated interfaces on the link layer (MAC-address etc.)
and sets of aggregated physical ports.

Network device polling is done by using SNMP and
IP-addresses on the condition that authorization parameters
are known. When all IP-addresses are known then the data
collection process is trivial: sequential polling of the devices
and saving the collected data. However, if the full set of
manageable devices is unknown and the network polling is
conducted from a single known node (e. g. the central router),
it is necessary to discover foreign IP-addresses and poll them
as well. In this case, during polling of some devices, it is
necessary to distinguish and poll previously unvisited IP-
addresses. Main sources of foreign addresses are cache of ARP,
LLDP, CDP and routing tables. The following algorithm 1
polls network devices and accumulates IP-addresses. Input data
for this algorithm is the initial list IPs with IP-addresses
for polling. Output data is the CData list with the retrieved
datasets.

Algorithm 1 Cumulative algorithm of data collection
V isited = IPs
CData = ∅
while IPs 	= ∅ do
ip = first element of IPs
Remove ip from IPs
if ip ∈ V isited then
Continue

end if
Put ip into V isited
if Device with address ip is accessible then
data = data from device with address ip
oIPs = own IP-addresses of device from data
sIPs = side IP-addresses from data
Add elements of oIPs to V isited
Add elements of sIPs to IPs
Add data into CData

end if
end while

return CData

Computational complexity analysis for the algorithm 1 and
further algorithms will be provided in section V-A.

B. Graph vertex building

The input data for the vertex building process are the
datasets received from the network devices during the first
stage of the algorithm. The process can be divided into two
steps.

The first step includes creation of vertices describing de-
vices that have provided information about themselves along
with information about their environment. From that data is
derived the information about the device itself, its ports, link
and network interfaces, association, commutation and routing
edges.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 37 --

And the second step includes creation of vertices for
devices that have not provided data about themselves but
existence of which is directly derived from the data received
from other devices. It is possible to discover such devices using
data on the link and network layers interactions: AFT, routing
tables, cache of ARP, CDP, LLDP, STP. CDP and LLDP cache
provide names of neighboring devices and their ports along
with their IP and MAC addresses. STP cache provides MAC
addresses of neighboring ports and their belonging to VLAN.
Using AFT and ARP cache it is possible to find MAC and IP
addresses of neighboring and remote devices along with their
belonging to VLAN.

During the second step of this stage it is possible to create
vertices describing such devices as hosts, servers and devices
that do not support SNMP or have denied access to themselves
(e. g. devices from foreign administrative domains).

C. Reachability set building

The input data of the stage of building reachability sets is
the incomplete graph built during the previous stage and the
datasets received during the first stage. Initial filling out of
the sets is conducted using data form sources described in the
section IV-A. During this process it is required to determine the
interface corresponding to the reachability data of the current
device as well as a reachable remote interface, using methods
that depend on a particular data source. As a result for every
existing link layer interface i ∈ I(2) there will be created a
potentially empty reachability set RSi.

The next step of this stage is the process of inferring data
of reachability sets possibly containing incomplete data. The
algorithm 2 describes the inference process using the methods
from section III-D.

Algorithm 2 Reachability set inference
Found = true
repeat
Found = false
for all i1 ∈ I(2) do
for all i2 ∈ RSi1 do
if i1 /∈ RSi2 then
Add i1 into RSi2

Found = true
end if
for all i3, for which (i2, i3) ∈ F (2) do
for all i4 ∈ RSi3 do
if i4 /∈ RSi1 then
Add i4 into RSi1

Found = true
end if
if i1 /∈ RSi4 then
Add i1 into RSi4

Found = true
end if

end for
end for

end for
end for

until Found

The algorithm 2 is executed while at least one pair of
previously unknown to be reachable interfaces is found. After
this algorithm is executed, the reachability sets will contain all
records that are possible to detect with the provided dataset and
known link layer interfaces and commutation edges.

D. Graph edge building

The input data from the edge building stage is the graph
with vertices built during the previous stages and the reacha-
bility sets of link layer interfaces.

Let us provide a number of the edge building criteria that
were proved in [10].

Criterion 1. If from an interface i1 ∈ I(2) only one interface
i2 ∈ I(2) is reachable and RSi2 = CRSi1 ∪ {i1}, then
(i1, i2) ∈ L(2).
Criterion 2. If two interfaces i1 and i2 are reachable from
each other, and RSi1 = CRSi2 ∪ {i2} and RSi2 = CRSi1 ∪
{i1}, then (i1, i2) ∈ L(2).
Criterion 3. If two ports p1 and p2 are L(1)-related, then
exist such VLAN identifier v ∈ V IDp1 ∩ V IDp2 and u1 ⊂ P ,
u2 ⊂ P so that p1 ∈ u1 and p2 ∈ u2, and link interfaces i1 =
(u1, v), i2 = (u2, v) that are not blocked, then (i1, i2) ∈ L(2).

Using the criteria 1–3 it is possible to search and build
the link layer connection edges L(2) with the knowledge of
reachability sets or physical layer topology.

Criterion 4. If two link interfaces i1 = (u1, v1) and i2 =
(u2, v2) are L(2)-related, then for each p1 ∈ u1 exists such
p2 ∈ u2, so that (p1, p2) ∈ L(1) and vice versa.

With the knowledge of the link layer topology, the crite-
rion 4 allows to seek and build the physical layer connections
L(2).

Criterion 5. If for two net interfaces t1 = (S1, n, h1) and
t2 = (S2, n, h2) exist link interfaces i1 ∈ S1 and i2 ∈ S2 that
belong to the same broadcast domain, then (t1, t2) ∈ L(3).

With the knowledge of the link layer topology, the crite-
rion 5 allows to seek and build the network layer connection
edges L(3).

Let us provide a new criterion of F (2) commutation edge
detection in addition to the existing criteria set.

Criterion 6. If for device d ∈ D and two reachable from each
other link layer interfaces i1 and i2 it is true that:

1) i3 ∈ I(2)d is reachable from i1, i4 ∈ I(2)d is reachable
from i2;

2) from i1 and i2 there are no reachable interfaces from
I
(2)
d other than i3 and i4 respectively;

3) from interfaces in F (2) relation with i1 or i2 there
are no reachable interfaces that are associated with
d;

then i3 and i4 are F (2)-related.

Proof: Following to proposition 3 from [10], the in-
terfaces i3 and i4 are located on the reachability path

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 38 --

w = (i1, . . . , i3, . . . , i4, . . . , i2). Following to the definition of
reachability, subpaths w1 = (i1, . . . , i3) and w2 = (i4, . . . , i2)
of path w have L(2) edges from both ends. As i3 and i4 are
associated with the same device d, they cannot be L(2)-related
with each other. Let us suppose that they are not F (2) related.
Then subpath w3 = (i3, . . . , i4) of path w must pass through

one more interface i5 ∈ I(2)d because i3 and i4 are already
included in L(2) edges in subpaths w2 and w3 and they could

be F (2)-related only with interfaces from I
(2)
d . To be certain,

let us say that (i3, i5) ∈ F (2). Then following to the definition
of a link layer path, the subpath w4 = (i5, . . . , i2) of path w
could not start with F (2) edge. But then path w4 satisfies the
definition of reachability path and i5 ↔ i2 which contradicts
the conditions of the criterion. So then, (i3, i4) ∈ F (2).

Detection of a new commutation edge may lead to infer-
ence of new reachability data between link layer interfaces.
This may lead to detection of new connection edges. Taking
this into account let us provide the following algorithm 3 of
graph edge building.

Algorithm 3 Edge building
Found = false
repeat
Found = false
Call algorithm 2
for all i1 ∈ I(2) do
for all i2 ∈ I(2) \ {i1} do
if For i1 and i2 one of criteria 1,2,3 is true and
(li1, li2) /∈ L(2) then
Add (i1, i2) to L(2)

Found = true
end if
if ∃ d ∈ D such that (i1, d), (i2, d) ∈ A(2) and
(i1, i2) /∈ F (2) then
for all i3 ∈ RSi1 do
for all i4 ∈ RSi2 do
if For i3 and i4 criterion 6 is true then
Add (i1, i2) to F (2)

Found = true
end if

end for
end for

end if
end for

end for
for all p1 ∈ P do
for all p2 ∈ P \ {p1} do
if For p1 and p2 criterion 4 is true and (p1, p2) /∈
L(1) then
Add (p1, p2) to L(1)

Found = true
end if

end for
end for

until Found

Detection of network layer connection edges will not
impact on the search for other graph edges and vertices, so the
search for these edges could be conducted with the algorithm 4
after the algorithm 3 is executed.

Algorithm 4 L(3) edge building
for all t1 ∈ I(3) do
for all t2 ∈ I(3) \ {t1} do
if For t1 and t2 criterion 5 is true and (t1, t2) /∈ L(3)
then
Add (i1, i2) to L(3)

end if
end for

end for

Once the algorithms 3 and 4 finish their work, the graph
will contain all edges between the existing vertices that are
possible to detect using the input dataset on the condition that
there are no devices that have not been found during the vertex
building process.

E. Border device building

Possible incompleteness of the input data or presence in
the network of uncooperative devices that are do not provide
data about themselves may lead to ambiguous situations during
the network topology graph building process. In such situations
reachability sets indicate the presence of previously undirected
graph edges or vertices but it is impossible to build such
elements using any of the criteria provided earlier.

Fig. 5 provides an example of network topology where
ambiguous situation may appear. In the ambiguous situation of
the first type, device d2 (gray) is uncooperative and unknown
and existence of the link interfaces i2, i3, i4 is unknown.
Reachability set of the interface i1 contains two elements: i5
and i6. Devices d3 and d4 are also uncooperative and it is
known only that RSi5 = RSi6 = {i1} ∪ RSi0 following the
reachability relation properties. Such situation could appear if
d2 is a transparent switch or hub and d3 and d4 are hosts.

d1 d2

d3

d4

i0 i1 i2

i3

i4

i5

i6

Fig. 5. An example of an ambiguous situation

In the ambiguous situation of the second type, device d2
is uncooperative but known and it is unknown if the link
interfaces i3, i4 exist. Reachability set of the interface i1
contains three elements: i2, i5 and i6. Devices d3 and d4 are
also uncooperative and it is known only that RSi5 = RSi6 =
{i1}∪RSi0 following the reachability relation properties. Such
situation could appear if SNMP-access to d2 is unavailable and
d3 and d4 are hosts.

Let us propose a method of resolution of such ambiguous
situations. Let us note that data sources used for reachability
set construction should not be viewed as equal. Data of CDP,
LLDP and STP describes connections with direct neighbors.
AFT and ARP cache provides data on reachability that does
not necessarily describe direct connections. Herewith AFT and
STP cache provides data on VLAN while others do not.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 39 --

To categorize the reachability data, let us introduce the
concept of reachability record priority. Let us define set RSS
of ordered pairs of link layer interfaces so that (i1, i2) ∈ RSS,
if i1, i2 ∈ I(2) and i1 ↔ i2. For each interface i ∈ I(2)

let us define set RSSi ⊂ RSS so that ∀(a, b) ∈ RSSi it
is true that a = i, b ∈ RSi. Let us also define a function
PR : RSS → N using the following rule with dependence on
certain data source:

PR((i1, i2)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, source – RS inference

1, source – ARP

2, source – AFT

3, source – CDP or LLDP

4, source – STP

Let us name function PR as a reachability priority.
Knowing this priority allows us to differentiate reachability
data sources and use this knowledge to resolve ambiguous
situations.

If data on reachability between two interfaces is found
using several data sources then the source with highest priority
is chosen.

Let us take the first type of ambiguous situations. We
assume that for all r ∈ RSSi1 it is true that PR(r) < 3.
Let us name device d2 as a border hub and define criterion of
such situation detection.

Criterion 7. If |RSi1| > 1 and ∀r ∈ RSSi1 it is true that
PR(r) < 3 and also ∀i ∈ RSi1 it is true that RSi = {i1} ∪
CRSi1 then interface i1 along with every interface i ∈ RSi1

are connected with border hub.

This situation will be resolved as follows (based on the

example from Fig. 5): creation of device d2, interface i2 ∈ I(2)d2
connected with i1, interfaces i3 and i4 connected with i5 and
i6 respectively.

Let us take the second type of ambiguous situations. We
assume that there exists r1 ∈ RSSi1 for which PR(r1) >= 3
and for all r ∈ RSSi1 \ {r1} it is true that PR(r) < 3. Let
us name device d2 as a border switch and define criterion of
such situation detection.

Criterion 8. If |RSi1| > 1, there exists r1 ∈ RSSi1 for which
PR(r1) ≥ 3 and ∀r ∈ RSSi1 \{r1} it is true that PR(r) < 3
and also ∀i ∈ RSi1 it is true that RSi = {i1} ∪CRSi1, then
interface i1 along with every interface i ∈ RSi1 are connected
to border switch.

This situation will be resolved as follows (based on the

example from Fig. 5): connection of interface i2 ∈ I
(2)
d2 to

i1, creation of interfaces i3 and i4 connected with i5 and i6
respectively.

The algorithm 5 describes a method of resolving ambiguity
of both types with possibility that the connection to border
device is passing through several VLANs.

The algorithm 5 returns an indicator of success of ambigu-
ity resolution. After this algorithm is executed, every known
ambiguous situation of the first and the second types will

Algorithm 5 Border ambiguity resolving
Found = false
for all p ∈ P for which � p1 ∈ P : (p1, p) ∈ L(1) do
LEAF1 = {i1 = (u, i) ∈ I(2) : p ∈ u and for i1
criterion 7 is true}
LEAF2 = {i1 = (u, i) ∈ I(2) : p ∈ u and for i1
criterion 8 is true}
if LEAF1 	= ∅ or LEAF2 	= ∅ then
Found = true

end if
if LEAF1 	= ∅ then
if LEAF2 	= ∅ then
leaf = FIRST (LEAF2)
i2 = i ∈ RSleaf for which PR((i1, i)) ≥ 3
d2 = d ∈ D that is associated with i2

else
Create d2 and add to D

end if
end if
for all i1 ∈ LEAF1 � LEAF2 do
i2 = i ∈ RSi1 for which PR((i1, i)) ≥ 3
if i2 = NULL then
Create and add to I(2) interface i2, for which
V IDi2 = V IDi1

end if
Add (i1, i2) to L(2) and (i2, d2) to A(2)

for all i ∈ RSi1 do
Create and add to I(2) interface i3, for which
V IDi3 = V IDi

Add (i, i3) to L(2) and (i3, d2) to A(2)

end for
end for

end for

return Found

be resolved. Missing F (2), L(1) and L(3) edges could be
discovered and built with use of algorithms 3 and 4

For simplicity of the algorithm 5 the following moment
is omitted from it. During the creation of new ports and
interfaces of border devices, it is necessary to take into account
connections within different VLANs: if the device is connected
to a border device through several link layer interfaces then for
new interfaces of this border device the set of ports should be
equal.

F. General algorithm

The algorithm 6 describes a general process of building
a network topology graph and includes all four stages. The
input data for this algorithm are sets of IP-addresses for data
collection process and the output is a network topology graph.

V. EVALUATION AND TESTING

A system for automated network topology graph building
based on the proposed algorithm has been implemented in Java
platform with use of Java, Kotlin and Groovy languages. It has
4591 lines of code.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 40 --

Algorithm 6 General algorithm of network topology graph
building

Call algorithm 1 and put result to CData
Build graph vertices using CData
Initialize reachability sets using CData
repeat
Call algorithm 3 for edge building
Call algorithm 5 and put result to r

until r = true
Call algorithm 4 for L(3) edge building

A. Computational complexity

To estimate the (asymptotic) time complexity of this entire
developed algorithm of the network topology graph building
let us consider each of its stages individually.

During the first stage (algorithm 1) the poll of unique
IP-addresses is done with purpose of data obtaining. Each
unique IP-address corresponds to a single network interface
and must be visitied mandatory. So the time complexity of the
algorithm 1 could be estimated as Θ(|I(3)|).
The second stage (vertex building) includes handling the

dataset obtained during the first stage and creating correspond-
ing vertices. The complexity of this could be estimated as
Θ(|CData|), where CData is the output set of the data
collected with algorithm 1.

Construction of the reachability sets using data on remote
devices is done during the third stage of the algorithm. For
every element of data about remote devices every interface
is being checked to establish a conformity. Thus the time
complexity of initial reachability set construction could be
estimated as Θ(N ∗ |I(2)|) where N is an amount of data
items about remove devices.

The algorithm 2 is used for reachability set inference.
During each of its iterations every link layer interface is
handled, for which, in turn, reachable interfaces are handled.
Then all interfaces F (2)-related to the latter are handled, and
then all reachable from them interfaces are handled. Therefore,
the time complexity of each iteration could be estimated as
O(|I(2)|4). The iterations are run until at least one previously
unknown record in reachability set is found. The maximum
amount of such records is C2

|I(2)| (a number of two-element

combinations). Note that C2
n = n!

2!(n−2)! = n2−n
2 , which is

asymptotically close to n2. Further we will use n2 as an
asymptotic equivalent of C2

n. Therefore the time complexity
of the algorithm 2 could be estimated as O(C2

|I(2)| ∗ |I(2)|4) =

O(|I(2)|6). However, in most cases most of the previously
unknown records are found during first or second iteration so
time complexity could also be estimated as Ω(|I(2)|4).

The fourth stage of the algorithm is building of graph
edges. It starts with the call of the algorithm 3 so let us
estimate the complexity of its iterations which start with the
call of the algorithm 2. Next the search for L(2) edges is done
using criteria 1, 2, 3 during which a comparison of reachability
sets of two interfaces is done. The time complexity of each
criterion test could be estimated as O(|I(2)|) since complexity
of set comparison is O(N) where N is the set size. Next,

for each interface, a search for F (2) edges is done using
criterion 6. The complexity of this criterion test is O(|I(2)|)
since it requires handling reachability sets of taken interfaces.
The whole complexity of the stage of F (2) edge search could
be estimated as O(|I(2)|3) since it requires handling pairs of
reachable interfaces and testing criteria for them. Therefore
the time complexity of this joint stage of search for L(2) and
F (2) edges could be estimated as O(|I(2)|5). However, if most
of the F (2) edges were found during input data handling or
reachability sets are near to be complete (then F (2) edge is
found during first iteration) then this stage complexity could
be estimated as Ω(|I(2)|3).

Next the search for L(1) edges is done within the algo-
rithm 3. Every pair of ports is examined with criterion 4.
The time complexity of testing this criterion is O(|V ID|)
because every interface based on the current port is being
considered and Ω(1) since criteria could be proved during the
first iteration. The entire stage of L(1) edge search is could be
estimated as O(|P |2 ∗ |V ID|) and Ω(|P |2).

Iterations of the algorithm 3 are executed while at least one
L(1), L(2) or F (2) edge is found. Considering that the amount
of L(2) edge is significantly larger than L(1) (in case when
VLAN spans whole network |L(2)| = |L(1)| ∗ |V ID|) and not
discovered previously F (2) edges (most of them are discovered
on vertex building stage) the maximal number of iterations
could be estimated as C2

|I(2)| since edges are indirected. And
the minimal number of iterations is 1 if no edges were found
and 2 if most edges were found during the first iteration.

Therefore the complexity of the entire algorithm 3 is could
be estimated as O(C2

|I(2)|∗(|I(2)|6+|I(2)|5+|P |2∗|V ID|)) =

O(|I(2)|8 + |I(2)|7 + |I(2)|2 ∗ |P |2 ∗ |V ID|) = O(|I(2)|8) and
Ω(1 ∗ (|I(2)|4 + |I(2)|3 + |P |2)) = Ω(|I(2)|4).

The next step of the algorithm is discovery and resolution
of ambiguous situations using the criteria 7 and 8. The com-
plexity of each of these criteria could be estimated as O(|I(2)|)
because during testing with these criteria it is required to
examine reachability sets of a given interface.

In algorithm 5, for every port, the search for interfaces
matching the criteria 7 or 8 is done. New devices and edges
are created after that. Therefore, the time complexity of this
algorithm could be estimated as Θ(|P | ∗ |V ID| ∗ |I(2)|).
As a result, the time complexity of a single iteration

of the main cycle of the algorithm 6 could be estimated
as O(|I(2)|8 + |I(2)| ∗ |P | ∗ |V ID|) = O(|I(2)|8) and
Ω(|I(2)|4 + |I(2)| ∗ |P | ∗ |V ID|) = Ω(|I(2)|4). Iterations of
the main cycle of the algorithm 6 are done while at least
one ambiguous situation is discovered and resolved. Such
situations are resolved on the base of ports, therefore the
maximal amount of possible ambiguous situations could be
estimated as |P | and the minimal amount is 0.
After resolving all ambiguous situations, the search for L(3)

edges using the criterion 5 and the algorithm 4 begins. With
criterion 5, every pair of link layer interfaces is examined to
see whether they are in the same broadcast domain. Following
to the property 1, two interfaces are in the same broadcast
domain if there is a link layer path between them. It is possible
to find such path with depth-first search that has the complexity

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 41 --

O(|I(2)|+ |L(2)|+ |F (2)|), which, due to the link layer graph
properties, could be rewritten as O(|I(2)|). Thus, the time
complexity of testing the criterion 5 could be estimated as
O(|I(2)|), and the overall complexity of the algorithm 4 is
O(|I(2)|3).

Due to the low time complexity of the data collection,
vertex building, reachability set construction and L(3) edges
building, the general complexity of the algorithm 6 could
be estimated by the complexity of the main cycle of this
algorithm, which could be estimated as O(|P | ∗ |I(2)|8) and
Ω(|I(2)|4).

B. Data presence influence

The algorithm uses data from network devices which could
have only a limited set of information about other devices: their
names, MAC-address and name of one of its ports, one IP-
address. Therefore, to work successfully the algorithm requires
to have an SNMP access to all possible service devices. If this
condition is not achieved, the graph will not be totally accurate.
Moreover, as has been noted in [4], [10], the data obtained
from devices could be incomplete or inaccurate. Despite the
ability of the algorithm for data inference, it is not possible to
obtain a completely accurate graph in some cases.

In the best case scenario, when a network contains no
uncooperative service devices and data between all devices are
consistent and complete, then the graph built by the algorithm
exactly matches the true network topology graph. But this case
is unlikely.

To explore the impact of data incompleteness on the graph
building process, we used a network topology graph generator
as well as imitated data from the graph devices. Generated data
was used to build a graph with the algorithm and after that
the newly built graph was compared with the original graph.
During this research the following parameters were changed:
the size of the generated graph, the number of VLANs, and
the AFT completeness. All service network devices were
considered as cooperative during the graph generation process.

The AFT completeness for a certain interface is considered
to ba a containment of every record on every foreign interface
with which it is possible to exchange data on link layer
from the current interface. During their data generation, the
desired completeness was set in the range from 0 to 1. This
rate was used as a possibility of certain record inclusion for
AFT of a certain interface. For border switches that have
directly connected hosts, the records about these hosts have
been included anyway.

The diagram on Fig. 6 was built as a result of 2250 tests
with a data generator. It shows dependency of the average
rate of correctly discovered physical layer connection edges
on the rate of the AFT completeness. Brighter columns here
represent an average part of discovered connections between
service devices, and darker columns represent the part of total
set of connections.

Following the provided data, we can conclude that for the
test conditions used, the number of correctly discovered phys-
ical layer edges is close to 100% when the AFT completeness
is at 60% and more. Also, when the AFT completeness is low

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

Fig. 6. Dependency of the average number of discovered edges on the AFT
completeness

it is still possible to discover more than 80% of edges between
service devices due to data inference.

C. Testing in real enterprise network

This algorithm was tested in the network of Petrozavodsk
State University (PetrSU) which provided some of its service
devices for discovery. There was one router Cisco 7600,
four layer 3 switches (which is able to route data between
VLANs) Cisco 3750 and Cisco 3850, six different Cisco
layer 2 switches. The network had 101 VLANs configured.
For every VLAN there was an individual IP-subnet. Moreover,
the network contained a lot of uncooperative switches, hosts
and servers.

The primary data sources on interconnections in this net-
work appeared to be CDP, STP and AFT. There was no support
for LLDP in this network while ARP cache was impossible to
use in presence of VLAN for a reachability set construction.
Data about uncooperative service devices was obtained using
CDP. During the discussion with the network administrators
of PetrSU it was confirmed that the built graph completely
matched the structure of the explored network segment and its
surroundings.

Influence of particular data sources on the accuracy of a
graph building process was also studied during tests in the
network of PetrSU. Table I provides the number of discovered
graph elements depending on the data sources used. First
column contains a list of considered sets of graph elements.
Here Leaf-1 and Leaf-2 denote ambiguous situations of first
and second type respectively. The second column represents
the amount of discovered elements when all available data
sources were used. Since it has been confirmed that the built
graph is correct, the second column represents the actual
amount of graph elements. The third column represents the
number of discovered elements using all data sources but with-
out reachability set inference using algorithm 2. Columns 4–
6 represent the number of discovered elements using one
particular data source each: CDP, STP, AFT. The seventh
column represents the number of discovered elements with the
use of AFT but without reachability set inference.

Based on the data collected during this study, we can
conclude that most of the connections could be found using
only AFT. However, to obtain a more accurate graph it is
necessary to use other data sources as well. CDP and STP
data provide an ability to discover connections only with

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 42 --

TABLE I. ELEMENTS FOUND DEPENDING ON THE SOURCES USED

Data
sources

All All
without
RS
inference

CDP STP AFT AFT with-
out RS in-
ference

D 945 907 907 907 915 907
P 1923 1151 1151 1151 1814 1151

L(1) 832 63 63 15 796 1

I(2) 4483 3512 3452 3452 4337 3452

L(2) 1570 672 612 560 1399 101

F (2) 14738 8229 8229 8229 14071 8229

I(3) 962 962 962 962 962 962

L(3) 9679 672 767 103 9061 1

F (3) 3717 3717 3717 3717 3717 3717
Leaf-1 6 0 0 0 5 0
Leaf-2 33 0 0 0 29 0

service devices and do not provide any information about
hosts. Additionally, using reachability set inference is highly
important for building accurate graphs.

VI. CONCLUSION

The description of the logical and physical topology of
the enterprise network is required for many network man-
agement tasks. The problem of automation of building such
description in form of a graph is complicated due to the size
and complexity of the network as well as the incompleteness
and heterogeneity of available data about network topology.
Thereby, to solve this problem, utilization of formal models
and methods of the network topology building is required.

The algorithm for building an enterprise network topology
graph provided in this paper is based on the formal graph
model of the network topology as well as the mathematically
proven criteria of graph element discovery and methods of
missing data inference from [10]. During the process of
developing this algorithm, additional criteria for the discovery
of commutating devices, not provided in [10], were designed
and proven.

The algorithm tests described in this paper show high
accuracy of the network topology graph building even when
data is incomplete. This, as well as the polynomial time
complexity of the algorithm proven in this paper, shows that
the algorithm is suitable for use in practice.

In the future the authors plan to evaluate the actual time
complexity and performance of the algorithm when building
the topology of real life networks.

REFERENCES

[1] S. Ravindran, C. Huang, K. Thulasiraman, “A dynamic managed VPN
service: architecture and algorithms”, 2006 IEEE International Confer-
ence on Communications. 2006, Vol. 2, pp. 664–669.

[2] L. Sivakumar, J. Balabaskaran, K. Thulasiraman, S. Arumungam, “Vir-
tual topologies for abstraction service for IP-VPNs” 2016 17th Interna-
tional Telecommunications Network Strategy and Planning Symposium
(Networks). 2016,pp. 213–220.

[3] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri,
A. Silberschatz, “Topology discovery in heterogeneous IP networks”,
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE. 2000,
Vol. 1. pp. 265–274.

[4] H. Gobjuka, Y. Breitbart, “Ethernet topology discovery for networks with
incomplete information”, Networking, IEEE/ACM Transactions on. 2010.
vol. 18, no. 4. pp. 1220–1233.

[5] Y. Sun, Z. Shi, Z. Wu, “A discovery algorithm for physical topology in
switched ethernets”, Local computer networks, 2005. 30th anniversary.
the IEEE conference on. IEEE, 2005. pp. 311–317.

[6] M.-H. Son, B.-S. Joo, B.-C. Kim, J.-Y. Lee, “Physical topology discovery
for metro ethernet networks”, ETRI Journal. 2005. vol. 4, no. 27.
pp. 355–366.

[7] H. Gobjuka, “Topology discovery for virtual local area networks” IN-
FOCOM, 2010 Proceedings IEEE. 2010, pp. 1–5.

[8] L. Zichao, H. Ziwei, Z. Geng, M. Yan, “Ethernet topology discovery
for virtual local area networks with incomplete information”, Network
infrastructure and digital content (ic-nidc), 2014 4th IEEE international
conference on. 2014. pp. 252–256.

[9] M. Xiaobo, Y. Tingting, “An algorithm of physical network topology
discovery in multi-VLANs”, TELKOMNIKA. 2016. vol. 14, no. 3A.
pp. 375–379.

[10] A. A. Andreev, A. S. Kolosov, A. V. Voronin, I. A. Bogoiavlenskii,
“A graph model of the topology of physical, link and network layers
of an enterprise network”, Proceedings of the 19th Conference of Open
Innovations Association FRUCT. 2016, pp. 3–9.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 43 --

