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Grid cells and place cells are believed to be cellular substrates for the spatial navigation

functions of hippocampus as experimental animals physically navigated in 2D and 3D

spaces. However, a recent saccade study on head fixated monkey has also reported

grid-like representations on saccadic trajectory while the animal scanned the images on

a computer screen. We present two computational models that explain the formation of

grid patterns on saccadic trajectory formed on the novel Images. The first model named

Saccade Velocity Driven Oscillatory Network -Direct PCA (SVDON—DPCA) explains how

grid patterns can be generated on saccadic space using Principal Component Analysis

(PCA) like learning rule. The model adopts a hierarchical architecture. We extend this

to a network model viz. Saccade Velocity Driven Oscillatory Network—Network PCA

(SVDON-NPCA) where the direct PCA stage is replaced by a neural network that can

implement PCA using a neurally plausible algorithm. This gives the leverage to study the

formation of grid cells at a network level. Saccade trajectory for both models is generated

based on an attention model which attends to the salient location by computing the

saliency maps of the images. Both models capture the spatial characteristics of grid

cells such as grid scale variation on the dorso-ventral axis of Medial Entorhinal cortex.

Adding one more layer of LAHN over the SVDON-NPCA model predicts the Place cells

in saccadic space, which are yet to be discovered experimentally. To the best of our

knowledge, this is the first attempt to model grid cells and place cells from saccade

trajectory.

Keywords: saccades, grid cells, salience map, hippocampus, principal component analysis-PCA, oscillator

INTRODUCTION

A map that aids (Andersen et al., 2009) spatial navigation of an animal was believed to be
represented in the hippocampal-entorhinal complex (O’Keefe and Dostrovsky, 1971; Taube et al.,
1990a,b; Rolls, 1999; Solstad et al., 2008). Grid cells reported in the dorso-caudal medial entorhinal
cortex (MEC), fire periodically such that the firing fields of the neuron form a hexagonal grid-like
structure in the physical space in which the animal navigates. There is a general consensus that grid
cells code for the distance of movement and hence they have been assigned the function of path
integration which is essential for spatial navigation (Hafting et al., 2005). There are other spatial
cells, fewer in number, like the place cells, border cells, view cells, speed cells etc., that code for one
or other aspect of the ambient space (O’Keefe and Dostrovsky, 1971; Taube et al., 1990a,b; Rolls,
1999; Franzius et al., 2007; Solstad et al., 2008; Kropff et al., 2015). The aforementioned neurons are
thought to collectively form an internal map of the external space in which the animal navigates.

Killian et al. (2012) reported hexagonal grid-like representations in the MEC of monkeys
during mere visual exploration of a scene, even when the animal was not performing active
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navigation in the external space. Recordings were taken from
neurons in Entorhinal Cortex (EC) and hippocampus of
three head fixed monkeys, performing a free-viewing visual
recognition task, the visual preferential looking task (VPLT;
Jutras et al., 2009; Jutras and Buffalo, 2010). Monkeys were
shown a sequence of novel images on a computer screen. The
displayed images consisted of diverse themes like art, animals,
landscape, and people. These static images were scanned by
the monkey using a dynamic sequence of fixation. Neurons in
MEC emitted action potentials on the multiple fixation points,
as the monkey scanned the images; the firing field resembled
the canonical grid cells in navigation with distinct hexagonal
firing fields (Hafting et al., 2005; Killian et al., 2012). The grid
representations generated by the saccadic movements resembled
those of spatial navigation in many respects. Gridness scores of
saccade grids were comparable with those of the navigation grids.
Saccade grids also exhibited theta modulation in its activity. The
gradient of the grid scale along the dorso-ventral axis ofMECwas
reported in the case of saccade grid too and Local Field Potentials
(LFPs) showed theta band oscillations (Killian et al., 2012).

Apart from the grid representations on saccade trajectory,
experimental studies reported neurons coding for the direction
of saccade movement viz. saccade direction (SD) cells (Killian
et al., 2015). These cells are analogous to head direction
cells, corresponding to spatial navigation, reported in the rat
postsubicular region (Taube et al., 1990a,b). SD cells were
reported from the posterior EC of two monkeys performing
a visual recognition memory task (Manns et al., 2000; Jutras
and Buffalo, 2010). During the tasks, the monkeys were allowed
to freely scan the complex visual images. These neurons were
reported to be preferentially active when the eye movement was
made in a particular direction. SD cells showed a gradient in their
tuning width such that with the increase in distance from rhinal
sulcus, the width of tuning of individual neuron to preferred
saccade direction also increased.

There exists a large corpus of literature on the computational
models of the grid representation during active navigation.
Models of grid cells generally fall into two categories: oscillatory
interface models (OI) and attractor network models. Proposed
by O’Keefe and Recce (1993), spatial periodicity in OI models
arises as a result of the interference between velocity-controlled
dendritic and constant somatic oscillations (Burgess et al., 2007)
or from purely velocity-driven oscillators (Zilli and Hasselmo,
2010; Burgess and O’Keefe, 2011). In the case of neural attractor
model, spatial periodicity arises due to the intrinsic symmetry
of the attractor network (Fuhs and Touretzky, 2006; Burak and
Fiete, 2009). A hybrid approach has also been used wherein
these two methods were combined to explain spatial periodicity
(Bush and Burgess, 2014). However, the aforementioned models
are based on a biologically unrealistic assumption such as 60◦

phase difference in the head direction inputs of the oscillatory
interference model, or the assumption of the weight connectivity
of the attractor network having special symmetry conditions
(Mhatre et al., 2012).

The proposed model for the neural representations on the
saccade trajectory is built on the principles derived from a recent
model that usedmultisensorymodalities to explain the formation

of spatial representations during active navigation (Soman et al.,
2018a). It was a hybrid neural model that used both oscillatory
and rate coded dynamics. The model captured the empirically
reported spatial cell representations and the influence of multiple
sensory modalities on such representations. We take the general
principle of this model and currently adapt it to explain the grid
cell representations in saccade trajectory.

We present Saccade Velocity Driven Oscillatory Network
(SVDON) model that captures the empirically reported neural
representations on saccade trajectories and also makes novel
predictions on saccade representation. The input image
presented to the SVDON is passed through four stages viz:
saccade generation, saccade direction encoding, path integration,
and unsupervised neural network stage which are explained in
detail in the methods section.

METHODS

In this Section, we present two versions of Saccade Velocity
Driven Oscillatory Network (SVDON) model (Shown in
Figure 1): SVDON Direct PCA (SVDON-DPCA) and SVDON-
Network PCA (SVDON-NPCA). Both the models capture the
responses of grid cells to saccadic trajectories. SVDON-DPCA
model consists of a Saccade Generating stage (SG), Saccade
Direction encoding layer (SD), Path Integration layer (PI), and
Spatial Cell layer (SC). SVDON-NPCA model shares a similar
architecture except SD layer and SC layer, where it uses the
self-organizing map (SOM) and Lateral Anti-Hebbian Network -
Spatial cell layer (LAHN-SC) as the output layer. SVDON-NPCA
is a network extension of SVDON-DPCA.

SVDON-DPCA Architecture
The information flow in the model can be described as follows.
The images to be scanned are given as input to the SG stage
of the SVDON model to produce saccade trajectory. Velocity
vectors are computed from the generated saccade trajectory.
These velocity vectors are further passed on to the SD layer,
where each neuron encodes for saccadic direction. Responses
from the SD layer are passed on to the PI layer via one-
to-one connection. Each neuron in the PI layer is a phase
oscillator that receives SD response as its input. This further
encodes the saccade position information along that direction
component as the phase of the respective oscillator. The PI
layer projects to the output SC layer which exhibits grid-
like pattern by extracting the principal components of the
oscillatory response. Each stage of the model is described
below.

Saccade Generation (SG) Stage
The model used for saccade generation is a bottom-up model of
attention that is based on locating the single most salient location
on the saliency map. Given the input color image, different
feature maps are produced by applying linear filters to a specific
stimulus property like color, orientation, or intensity. The feature
maps are then combined to give three Conspicuity Maps and
finally, a saliency map is computed for the Conspicuity maps
(Walther and Koch, 2006). A winner-take-all (WTA) mechanism
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FIGURE 1 | Model Architecture of SVDON: The model consists of a saccade

generation stage, Saccade Direction Encoding stage, Path Integration stage

and the output SC layer. (No copyright permission is required).

finds the coordinates of the most salient location after scanning
the saliency map. Inhibition of return (IOR) of a circular shape
with fixed radius is applied around the attended location in the
saliency map. Subsequent iteration of the WTA network attends
to the locations in decreasing order of saliency. The model is
verified in several human psychophysical experiments (Itti, 2005;
Peters et al., 2005).

Saliency-Based Bottom-up Attention Model
The input image I is first sub-sampled into a Gaussian pyramid.
The Gaussian pyramid is created by convolution of input image I
with a set of Gaussian filters and subsampling with a decimation
factor of 2 to generate a sequence of reduced resolution images.
This process is repeated and a total of 9 different scales are
created σ = [0, .., 8] (level: 0 corresponds to the original input
image; Walther and Koch, 2006). At level σ , the resolution
of the image is 1/2σ of the original image. For level eight
i.e., σ = 8, the resolution equals to 1/256th of the input
image I and (1/256)2 of the total no of pixels of the input
image.

The intensity map MI is computed by adding the r (red), g
(green), b (blue) values of the color image (Walther and Koch,
2006).

MI = (r + g + b) /3 (1)

Intensity Pyramid MI(σ ) is created by repeating the same
operation at different levels.

Using the Image Pyramid, blue-yellow (BY), and red-green
(RG) opponency maps are created at every level (Walther and
Koch, 2006).

MRG =
r − g

max(r, g, b)
(2)

MBY =
b − min(r, g)

max(r, g, b)
(3)

Orientation maps Mθ are obtained from intensity maps by
convolving the various levels of Intensity pyramids with Gabor
filters (Walther and Koch, 2006):

Mθ (σ ) = ||MI (σ ) ∗ G0 (θ) || + ||MI (σ ) ∗ Gπ/2 (θ) ||, (4)

Multiscale feature extraction is done by across scale subtraction
2 between two maps levels c and s in these pyramids. Across
scale subtraction 2, is defined as interpolation to the finer
scale, followed by point-to-point subtraction between maps. In
other words, it is the difference between fine and coarse scale
features of an image. Using many different values for c and s
provides truly multiscale feature extraction (Walther and Koch,
2006).

Fl,c,s = (|Ml (c)2Ml (s)|)∀l ∈ L = LI ∪ LC ∪ LO (5)

where
LI = {I}, LC = {RG, BY} , LO = {0o, 450, 900, 1350}

(·) is a non-linear iterative operator, which promotes
local completion among neighborhood salient
locations. At each iteration step, self-excitation and
neighbor-induced inhibition is implemented with a
“difference of Gaussians” filter and then followed by
rectification.

Using across scale addition⊕ features maps are then summed
over then normalized again.

Fl = (⊕4
c=2 ⊕

c+4
s=c+3 Fl,c,s)∀l ∈ L (6)

Three conspicuity maps of general features are created: one for
intensity, one for color and one for orientation (Walther and
Koch, 2006).

CI = FI , (7)

CC = (
∑

l∈Lc
Fl), (8)

Co = (
∑

l∈Lo
Fl). (9)

Then, a single saliency map is created by combining all the three
conspicuity maps (Walther and Koch, 2006).

S =
1

3

∑

k∈{I,C,O}
Ck (10)

Within the saliencymap, different locations compete for saliency.
The most salient location is selected for attention. Inhibition of
Return (IOR) is applied to the selected area for some time within
a given radius. In the second iteration, the remaining locations
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FIGURE 2 | Two sample images used (A1,A2) and overlapped trajectory (Yellow) generated on them (B1–B2) by bottom-up model of attention. Sample images are

taken from: Caltech-256 Object Category Dataset. (No copyright permission is required).

compete for saliency and the second most salient location is
selected. Thus, a saccadic scan path is created on the image in
order of decreasing saliency (Walther and Koch, 2006).

In the simulation, to match with the experimental paradigm,
we used 36 novel images wherein each image is presented twice,
for 10 s each to produce the saccade trajectory (Killian et al.,
2012). Two sample figures with trajectories superimposed on
them are shown in Figures 2A,B. Image Source: Caltech-256
Object Category Dataset (Griffin et al., 2007).

Saccade Direction Layer (SD) Layer
Saccade trajectory generated from the SG stage is passed to
the saccade direction layer (SD). SD layer encodes the animal’s
current saccade direction as given in Equation (11). The response
of ith cell of SD layer is computed as the animal’s current saccade
direction projection on the ith preferred direction given as.

αi = cos(θ − θi) (11)

θ , θi are the current direction and the preferred direction of ith

SD cell, respectively.

Path Integration (PI) Layer
SD layer connects to PI layer via one-to-one connections. The
response of the ith PI cell is given as,

ηi = A ∗ sin[

∫

2π(fo + βsαi)dt] (12)

β is a spatial scaling parameter, A = Amplitude of oscillations.
s is the speed of the Saccade. fo is the base frequency of the PI
neuron. The ith PI neuron is then thresholded by the following
equation.

ηThri = H
(

ηi − εη
)

.ηi (13)

where, H is Heaviside function and εηthe threshold value.
Power of oscillation is given in decibel as:

P = 20 ∗ log10(A) (14)

Output Layer (SC)
PI values project to SC layer via the weight stage (W–PC).Weights
(WPC) from PI layer to SC layer are computed by performing
Principal Component Analysis (PCA) over η Thr. PCA was done
by extracting the top few eigenvectors of the covariance matrix
of the ηThri . The response of the ith neuron in the SC layer is
computed as:

Oi =
N

∑

j=1

H
[(

WPC
ij .ηThrj

)

− εSC
]

(15)

where, H is Heaviside function.
N is the number of PI neurons, εSC is the threshold value.
The top few components of the computed principal

component (PC) will be shown to reveal a variety of spatial cell-
like responses including grid cells (Figure 3). Spatially periodic

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 107

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chauhan et al. Saccade Model of Grid Cells

FIGURE 3 | Spatial representations from SC layer: (A–F) Firing fields (Left): Blue is the trajectory of the Saccade and red dots are the spike locations; Firing Rate map

(Middle): red is peak rate and blue is no firing; Autocorrelation map (Right) of SC layer neuron in SVDON-PCA model.

firing emerges due to the inherent periodicity in the PC weights.
Hexagonal grid-like activity is shown by the neurons whose peaks
are separated by≈ 60◦ (PC= 6).

SVDON-NPCA Architecture
SVDON-NPCA model has a similar architecture to SVDON-
DPCA. Here a neural network implementation of PCA is
used instead of direct PCA, we replaced 1D SD layer with a
Self-Organizing Map (SOM) where a two-dimensional layer of
neuron is used to represent saccade direction. Lateral Anti-
Hebbian Network (LAHN) is the network implementation of
PCA (Foldiak, 1989) which is used to extract the optimal features
from the input data by variance maximization principle. The
changes made in this model permit us the leverage to study grid
cells from network perspective.

Below we explain the SOM architecture of SD layer and the
LAHN layer in detail.

Saccade Direction Layer
Like in SVDON-DPCA, here also saccade velocity vectors are
passed on to the SOM in the next layer to obtain a direction map.
SOM neuron response is given as:

θSD = ψTW (16)

ψT = [sin(θ), cos(θ)] where θ is current direction of navigation,
is given as input given to SOM.

W= Normalized afferent weight matrix of SOM.

Lateral Anti Hebbian Network (LAHN) Layer
LAHN is an afferent Hebbian and lateral anti-Hebbian
unsupervised neural network, which extracts the variance feature
from the input.

The network is described as

ξi(t) =
∑m

j=1
qijχj (t)+

∑n

k=1
wikξk(t − 1) (17)

q is the weight of the afferent connection
χ is input PI value
m is the input dimension
n is the number of LAHN neurons, ξ is the network response
Hebbian rule is used to update afferent connection and a anti-

Hebbian rule is used to update lateral connection as described
below

1wik=−ηLξi (t) ξk (t − 1) (18)

1qij = ηF[χj (t) ξi (t)− qijξi
2(t)] (19)

Where ηL and ηF lateral and forward learning rate, respectively.
After training network weights of LAHN network converges to
subspace of principal components of input vector.
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Gridness Measure
The hexagonal gridness measure is quantified using Hexagonal
Gridness score (HSG) on firing fields of each neuron. HGS
is computed using Equations 20, 21 (Hafting et al., 2005).

r(τx, τy) =
M

∑

x,y
λ(x, y)λ(x− τx, y− τy)−

∑

x,y
λ(x, y)

∑

x,y
λ(x− τx, y− τy)

√

{M
∑

x,y
λ(x, y)2 − [

∑

x,y
λ(x, y)]2]}{M

∑

x,y
λ(x− τx, y− τy)2 − [λ(x− τx, y− τy)]2}

(20)

r is an autocorrelation map, λ (x, y) is firing rate at (x,y) location
of the rate map, M is the total no of pixels in the rate map, τx and
τy correspond to x and y coordinates with a spatial lag

HGS = min[cor(r, r60
0
), cor(r, r120

0
)]−max[cor(r, r30

0
),

cor(r, r90
0
), cor(r, r150

0
)] (21)

HGS stands for Hexagonal Gridness Score;
r◦ is the autocorrelation map rotated by θ degree;
cor(·) stands for correlation function;
min(·) function returns the minimum of its two arguments.

RESULTS

SVDON-DPCA
SC neuron activity is mapped onto saccadic trajectory. Figure 3
shows the firing field, firing rate map and autocorrelation map

of the six SC layer neuron receiving the first six principle
components.

Hexagonal Firing field is shown by the neuron which received
the sixth principal component (Figure 4). A neuron is considered
to be canonical if it had a HGS>0 (Hafting et al., 2005).

Oscillation Power and β Modulation
Necessity of oscillations to produce grid patterns was contested
by varying the oscillatory power in the PI layer. Power is a
function of amplitude of oscillations (Equation 14). Hence by
changing the amplitude variable (Equation 12), we were able
to change the power of the oscillations. By reducing oscillation

FIGURE 4 | Spatial representations from sixth SC layer neuron: Firing field (A): Blue is the trajectory of the Saccade and red dots are the firing locations; Firing map

(B): red is peak rate and blue is no firing; Autocorrelation map (C) of the sixth SC layer neuron in SVDON- PCA model.

FIGURE 5 | Oscillation power modulation (A): loss of grid field formation on reducing oscillation power (A1); grid field reemerged as the oscillation power was restored

(A2). β modulation (B): loss of grid field when β = 0 (B1), grid field reemerged when β = 0.2.
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power there was a loss of Grid Field formation, but grid field
reemerged as the oscillation power was restored (Figure 5A).

We also analyzed the criticality of the modulation of
oscillations in the PI layer by varying the β parameter (Equation
12). Similar loss of grid field is seen with β modulation
(Figure 5B).

SVDON-NPCA
LAHN (SC) network of the model shows the spatially periodic
firing in Figure 6. The firing fields of LAHN (SC) neurons have
more heterogeneity compared to PCA.

Spatial Characteristics of Grid Cells
Grid Scale variation across the dorso-ventral axis of MEC has
been demonstrated in experimental studies of rodent navigation
(Brun et al., 2008; Stensola et al., 2012). A similar gradient was

observed in the case of saccadic trajectories also (Killian et al.,
2012). To capture this in the model, we varied the β parameter
as shown in Figure 7A. This variation is shown in Figure 7B1

contrasted with the experiment results in Figure 7B2. Grid scale
was quantified by computing the distances between the six inner
hexagonal vertices from the central peak in the autocorrelation
map, minimum of these values represents the grid scale. (Burn,
Solstad et al., 2008).

Predicting Place Cells Activity
SVDON-NPCA model is capable of exhibiting place cell like
activity on saccadic space when a second LAHN (place cells)
layer is added after the first LAHN (SC Layer in Figure 1).
Experimental Studies have shown that the number of neurons
(Akdogan et al., 2011) in rat CA1 region is about 90 percent of
EC (considering only layer 2 and layer 3 of MEC as they form

FIGURE 6 | Spatial representations of three different neurons (A–C) from LAHN (SC) layer. Left Column is firing field of the neurons (A1–C1); Middle Column is the

firing rate of the neurons (A2–C2); and the Right column is autocorrelation map of the neurons (A3–C3).
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FIGURE 7 | Effect of modulation factor β. (A) Grid Scale gradient is captured by varying spatial scale parameter β. (B) Comparison between the model and the

experiment. (B1) Grid scale variation in the model by varying β (Grid scale is averaged for 10 trajectories). (B2) Empirically observed grid scale variation at different

locations of medial to dorsal rhinal sulcus axis (Killian et al., 2012).

major afferent synapse with CA1). Accordingly, a similar ratio
of neurons is kept in LAHN (SC) and LAHN (PC) layers. The
output the LAHN (SC) is passed on to LAHN(PC) layer and the
activity of the LAHN(PC) layer is observed, LAHN(PC) neurons
showed a highly localized firing activity similar to that of place
cells. To qualify a neuron as a place cell, the number of peaks
in autocorrelation map is examined. A cell is characterized as
a place cells if the number of peaks in autocorrelation is one
(Soman et al., 2018b) due to its localized firing field and lack of
spatial periodicity. LAHN (PC) layer also predicted spatial cells
that showed spatial periodicity as shown in Figure 8.

Place Activity on Single Image
In the simulations described in the previous sections, the
trajectories were obtained from a large number of images and
grid and place cell responses are generated from that combined
trajectory. In this section, we generate a trajectory from single
images and superimpose the place cells generated from that
trajectory back on the original image. The objective is to see if
the grid and place cells obtained from the trajectory correspond
to salient features/objects in the image. To produce saccade
trajectory, we presented a single image for 125 s to the saccade
trajectory generating model. The trajectory is then used to train
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FIGURE 8 | LAHN (PC) layer activity of six different neurons. (A1–F1) firing field (blue is the trajectory of the Saccade and red dots are the spike locations) and

(A2–F2) firing maps (red is peak rate and blue is no firing) of 6 different neurons in LAHN(PC). Characterization of LAHN (PC) layer showing the % of cells type vs. the

number of neurons in layer. Here PC is Place cells, GC is Grid Cells and NC is non-spatial cells.

the model of Figure 1 with the added module of LAHN (PC).
Figure 9 shows results from two images. Place cells obtained
from these images are indeed localized on salient objects in the
image such as face of the person (Figure 9A3) or the bat of the
batsman (Figure 9B3). Image source : ImageNet: A large scale
hierarchical Image Database (Deng et al., 2009).

DISCUSSION

We present two models: SVDON-DPCA and SVDON-NDPCA
to capture the saccadic representation based on the input saccadic
trajectory formed on a series of images. In the SVDON-DPCA,
we have shown the formation of hexagonal grid cell periodicity
using Direct PCA. The model is simple and transparent and gives
an insight into the origins of the grid cell spatial periodicity.

In SVDON—NPCA, we used LAHN layer instead of direct
PCA to produce hexagonal grid cells. This substitution is
made since LAHN is based on a biologically more plausible
learning mechanisms viz. lateral anti-Hebbian and afferent
Hebbian learning, than the PCA. LAHN weight vectors have
been shown to converge to the principal component subspace
(Foldiak, 1989). Such a connectivity pattern is critical for a self-
organization process because the excitatory Hebbian connections
to a neuron could essentially correlate its activity to the input
features and the lateral inhibitory connections could ensure
competition among the ensemble of neurons to extract out
diverse features of the input. This sort of connectivity pattern
is biologically plausible and is consistent with the empirically
reported GABArgic interneuron connections between the stellate
cells in the superficial layer of the medial entorhinal cortex
(Couey et al., 2013). In addition to this, anti-Hebbian network
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FIGURE 9 | Spatial cell response to a single image. (A1,B1) Images given as the input. (A2,B2) are the outputs of LAHN(SC) and (A3,B3) are the outputs of

LAHN(PC). Red dots are the firing locations on the image (Images source is ImageNet: A Large-Scale Hierarchical Image Database).

has been previously shown to encode the input data optimally by
minimizing a representation error/multidimensional scaling cost
function (Pehlevan et al., 2015). Hence the model gives insight
to the self-organization among the grid/quasi-grid units and
the relevance of such a connectivity pattern for optimal spatial
representation.

The primate visual system scanning a complex visual scene
seems to employ a serial search strategy. In primates, object
identification and spatial analysis of the image is achieved
by a series of rapid saccadic eye movements. Saccades occur
reflexively whenever the eyes are open and also can be elicited
voluntarily (Liversedge and Findlay, 2000). Different visual
locations compete for activity and the strongest response draws
the visual attention. These are called visually salient locations
(Slllito et al., 1995; Sillito and Jones, 1996; Levitt and Lund,
1997). The bottom-up model used in our architecture for
saccade generation is based on a similar approach that generates
a two-dimensional saliency map of the visual environment.
Experimental evidence has shown the existence of neural maps in
the pulvinar, the superior colliculus, and the intraparietal sulcus
which encode for the saliency for visual stimulus (Robinson and
Petersen, 1992; Gottlieb et al., 1998; Colby and Goldberg, 1999;
Rockland et al., 1999). The results from the models discussed
above are similar to the grid cells that have been reported
in the rat and bat during locomotion (Hafting et al., 2005;
Yartsev et al., 2011). These results imply that ideas of spatial
representation for navigation also apply to complex visual scene

analysis because these results show that visual exploration of
space can give rise to representations for that space even without
performing active navigation over the corresponding physical
space.

The results produced by our model are consistent with the
experimental literature. The variation in the gradient of the grid
scale along the dorso-ventral axis of the entorhinal cortex is
reported in the experimental literature (Brun et al., 2008; Stensola
et al., 2012). It is shown that the grid scale varied from low
to high value with the distance from the rhinal sulcus (Killian
et al., 2012), which is consistent with a dorsal-ventral gradient in
rodents and bats for navigation (Hafting et al., 2005; Yartsev et al.,
2011). To incorporate this in our model, we varied the parameter
β in Path Integration layer. β determines the modulation factor
for the path integration neuron. Even though the model captures
gradient in the grid scale by varying the β parameter, it does
not explain the modular formation of grid cells along the dorso-
ventral axis of MEC where, in each module, grid cells with the
same grid scale and grid orientation and different grid phases
occur and the grid scale varies across the modules in a geometric
progression fashion with a scale ratio of

√
2. Here, the grid scale

can be fitted to any ratio by varying the β parameter accordingly.
From the model results it is understood that oscillations are

critical for the grid cell generation. Oscillations introduce the
first spatial periodicity by encoding the position information in
their respective phase. This periodicity is further transformed to
grid-like representations in the higher layer. It was empirically
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shown in rats that abolition of theta activity in the MEC causes
the grid representations to fade out (Giocomo et al., 2007). In the
model, we tested the same by decreasing the oscillatory power
of the path integration neurons and found a corresponding
disruption in the grid representations (Figure 5A). However, we
would like to pose this oscillation and grid cell phenomenon
as a prediction from the model since this phenomenon has
not been reported yet in saccade studies. Further analysis
also showed the criticality of modulation in oscillation for
the grid formation. Modulation is set to off by making β

set to zero. No grid fields are observed in that condition.
When β is set to a non-zero value, grid fields start to appear
(Figure 5B).

Place cell like activity is predicted by the model on the
scaddic space upon adding an extra layer of LAHN(PC) on top
of LAHN(SC). Although place cell like activity have not been
experimentally reported yet. On giving saccadic trajectory of
single images as a input to the model, LAHN(PC) neurons fired
on naturally significant locations on image like the face and the
bat of the batsman shown in Figure 9. These predictions are
consistent with the recent observation that navigation in physical
space can be just one of the many roles played by place cells, grid
cells and other hippocampal spatial cells.

Taken together, these models computationally try to
explain the generation of grid cell representations in the
entorhinal cortex based on the saccade trajectory generated
during visual exploration of a natural scene. They also
predicts the place cells like activity on saccadic space. The
grid field generated by the SVDON—DPCA does not have
the central firing field which we consider as the limitation of
this model, this limitation is overcome by the second model
viz. SVDON—NPCA. In the future work, we would like to
extend this model by including visual and locomotor input
along with the saccadic input and search for the possible
existence of joint representations arising out of the spatial
navigation of the physical space and saccadic exploration
of the image space. Virtual Reality (VR) environments
offer a convenient setting for conducting such simulation
studies.
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