PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

RoDaFlow: A Framework for Development of
Dataflow Network Agents in Smart-M3 with
Substitution Method

Denis Laure, Ilya Paramonov
P.G. Demidov Yaroslavl State University
Yaroslavl, Russia
den.a.laure @gmail.com, ilya.paramonov @fruct.org

Abstract—The paper describes RoDaFlow—a framework for
development of dataflow network agents on Smart-M3 platform.
The agents created with the use of the framework support the
substitution mechanism that allows to keep the dataflow network
based systems in working conditions when some of its agents fall
out. The RoDaFlow framework is implemented in Java with the
use of Smart-M3 Java KPI library. It allows to develop primary
and substitute agents by implementing only their programs,
which define how agents process incoming information. The paper
also describes a prototype of home light control system based on
the dataflow network that allows to effectively control the light
in a home. This system uses a number of sensors, actuators,
remote control units and computational agents. The agents use
information from remote control units and sensors to control
the actuators and thus the light level in the home rooms. The
agents for the prototype were developed with the use of proposed
framework.

Keywords—Framework, Dataflow network, Agent substitution,
Smart-M3.

I. INTRODUCTION

The dataflow network is an architecture for distributed
computing systems [1]. It consists of computational units
called nodes. Each node retrieves information from some other
nodes, processes it and forwards further to next layers of the
network. This activity forms the flow of the data that passes
from an information source (for example, sensor) through a
number of computational nodes to the network unit that uses
processed data (for instance, to control some physical entities
or display the data).

In some cases the computational node can be disconnected
from the dataflow network, for example due to breakage of
the device that hosts this node. Such situation may lead to
the rupture of the dataflow that results in the whole system
disfunction.

As a result of our previous researches we developed the
substitution mechanism for dataflow networks [2]. Its im-
plementation based on Smart-M3 platform [3]. The goal of
the mechanism is to prevent dataflow disruption and to keep
system based on dataflow network in working conditions even
when some of its nodes were disconnected.

The main idea of the substitution mechanism is that the
dataflow network along with the usual computational agents

also consists of agents of special type, called substitute agents.
In case when primary agent disconnects from the network,
because of connection loss or lack of the energy, it is being
substituted by the substitute agent. This agent performs same
or almost the same computations and does not allow the
dataflow to be ruptured.

In this paper we introduce RoDaFlow—a framework for
creating primary and substitute agents for dataflow network
implementation on Smart-M3 platform. As the behavior and
basic operations of the agents are always the same, there is
no need to implement them each time again. The framework
allows to create agents by implementing only agent programs.
The program determines what type of information is processed
by the agent and the way of this processing. It is the only thing
that differs between the agents.

The rest of the paper is organized as following. In Section
IT we describe the aspects of primary and substitute agents
implementation in Smart-M3. Section III contains a detailed
description of the framework architecture. Section IV gives a
closer look on the process of creating agents with the use of the
introduced framework. In Section V we describe the prototype
of the home light control system, which agents were developed
with the use of the framework. Section VI concludes the paper.

II. DATAFLOW NETWORK AGENTS IMPLEMENTATION IN
SMART-M3

This section briefly overview common behavior of primary
and substitute agents, which was described in our previous
papers including [2].

In the dataflow network implementation on Smart-M3
platform agents correspond to knowledge processors (KPs).
They subscribe to input triples and produce output and state
triples as the input updates. The implementation of primary and
substitute agents in Smart-M3 differs and is described below.

A. Primary Agent

KP initializes as the primary agent by inserting a set of
description triples into data storage after joining the network.
This triples with their description are shown in Table I. All
the triples have the same subject that is the id of the primary
agent. The strings in apostrophes are the values of the certain
triple components.

ISSN 2305-7254

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

TABLE 1.

PRIMARY AGENT DESCRIPTION TRIPLES

Triple subject Triple predicate Triple object

Triple description

‘Type’ ‘DataflowAgent’ defines that current agent is a node of the dataflow network
‘Description’ URI determines URI with the description of the agent’s operations
primary_agent_id SubstituteProgramType’ program_type defines the type of the substitute program. The explanation of the meaning of this triple is

given in section II-B

‘SubstituteProgram’ substitute_program

defines the code of the program that will be performed by the substitute agent during the
substitution of the current agent

‘Active’ active

defines whether the agent is active or not. The active value can be either ‘yes’ or ‘no’

The substitute program consists of two parts: header and
body. Program header contains three sets of triples’ templates
for substitute agent’s input, output and state triples. The body
of the program defines what calculations the substitute agent
performs.

The (agent_id, ‘Active’, active) triple is used by Semantic
Information Broker (SIB) to determine whether the agent is
able to work. Active agent performs its operations as usual.
If the agent is deactivated, then it is not functioning. Agent
deactivation can be performed in two cases. The first one
is when the SIB detects breakage of agent’s connection. In
the other case the agent can deactivate itself right before it
disconnects from the network. For example, if the battery level
of the device, which runs the agent, is low and it is needed to
stop all agent calculations to save the energy. When the agent
returns to the network after disconnection, it activates itself.
The activation/deactivation of the agent leads to start/stop of
its substitution correspondingly.

After the initialization the KP subscribes for its input
triples. Each time the input is updated the KP recalculates
the output and state triples.

B. Substitute Agent

Description triples of the substitute agent differ from pri-
mary agent ones. They are shown in Table II.

After initialization the KP subscribes for its ‘Substitutes’
triple and starts waiting for its changes. As the SIB detects the
failure of some primary agent, it searches for the appropriate
(i.e., with the same program type) substitute agent. The SIB
changes the object of the found agent ‘Substitutes’ triple from
‘None’ to the id of the broken primary agent. It is a signal
for the substitute agent to start substitution. The substitute
agent retrieves the substitute program from the primary agent
description triple, subscribes for input triples stated in there
and then activates itself. Each time the input changes, the
substitute agent executes the program to calculate new output
and state triples.

If the substituted primary agent returns to the dataflow
network, the SIB changes the object of the ‘Substitutes’ triple
back to ‘None’. The substitute agent notices it and stops the
substitution. It unsubscribes from all input triples, deactivates
itself and starts waiting for another call for substitution.

The behavior of primary and substitute agents, which is
described above, is always the same. This fact motivated us to
create a framework that contains all the general logic of both
types of agents.

58

III. FRAMEWORK ARCHITECTURE

We implemented the RoDaFlow framework in Java. It uses
Smart-M3 Java KPI library [4] for communication with the
smart space. The class diagram of the framework is shown in
Fig. 1.

The RDF triple entity is represented in the framework with
the Triple class. It stores triple’s subject, predicate, object
and types of subject and object. It also contains getters and
setters for these triple components. The Triple’s toVector
method converts triple to a form of Vector of Strings.
Such form of triple is used in Smart-M3 Java KPI library.

The Triple class also allows to create triple templates.
It is done by setting triple subject and/or object to the
null, which means that this component is arbitrary. Another
methods of the Triple class — equalsToTemplate and
equalsToOneOfTemplates — allow to match the triple
against one or more templates correspondingly. The former
method returns true if the triple matches given template and
false otherwise. The latter one returns the first template from
the given list of the templates, which is matched by the triple.

The TriplesCouple class represents a container of two
triples. These triples represent the new and the obsolete values
of the triple that is updated in the smart space.

The core of the framework is the group of four agent
classes. The first on is the Agent class. It is a layer between
the framework and Smart-M3 Java KPI library. It provides
basic operations to smart space (query, insert, remove, update,
subscribe and unsubscribe) with the use of triple representation
as an instance of the Triple class. In addition this class
also provides methods to setup and remove triples protection
[5]. This protection is used to restrict changing of agent
description, its output and state triples by other dataflow
network nodes.

Any smart space operation can fail due to various reasons
(e.g., agent disconnection from the smart space, attempt to
change protected data, etc.). To handle such errors the instance
of the OnAgentErrorListener interface can be set for
the Agent. The onAgentError method of the interface is
called each time the error occurs during the operations.

The DataflowAgent class inherits the Agent class
and represents agent of the dataflow network. It provides
common operations and properties of these agents, such as
agent id and URI that are used to identificate the agent.
This class allows to activate and deactivate the agent by
calling corresponding methods and to handle incoming sub-
scription messages. The DataflowAgent class has abstract
handleSubscription method that is called in a separate
thread each time the agent receives subscription message.

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Smart-M3 Java KPI \

@ OnAgentErrorListener

+onAgentError(String):void

1

© Agent
-sib : KPICore

+errorHandler : OnAgentErrorListener

query(Triple): ArrayList<Triple>

insert(Triple):void

remove(Triple):void

update(TriplesCouple):void

subscribe(Triple):String

unsubsribe(String):void

setupTriplesProtection(String, Collection<String>):void
removeTriplesProtection(String, Collection<String>):void

© DataflowAgent

-agentUri : String @ Substitute AgentProgram
-agentld : String

+parseProgramBody(String):void

activateAgent()-void +calculateOutTriples():Collection<TriplesCouple>

deactivateAgent():void
handleSubscription(String):void

1

1
© Primary Agent © SubstituteAgent

+joinSIB():void

-initializePrimary Agent():void
-returnPrimary AgentIntoSIB():void
+shutdown():void
+suspendOperation():void

+joinSIB():void
-startSubstitution(String):void
-stopSubstitution():void
+shutdown().void

) 1

1 1

® AgentProgram © SubstituteProgramParser

+InTriplesTemplates : Collection<Triple>
+StateTriplesTemplates : Collection<Triple>
+OutTriplesTemplates : Collection<Triple>

InputTriples : Collection<Triple>
StateTriples : Collection<Triple>
OutputTriples : Collection<Triple>
+calculateOutTriples():Collection<TriplesCouple> ProgramBody : String
+calculatelnitialOutTriples():Collection<Triple>

Fig. 1. Framework class diagram
59

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

TABLE II. SUBSTITUTE AGENT DESCRIPTION TRIPLES
Triple subject Triple predicate Triple object Triple description
“Type’ ‘DataflowAgent’ | defines that current agent is a node of the dataflow network

substitute_agent_id ‘SubstituteProgramType’ program_type

defines what type of substitute program this agent can run. The substitute agent is able to
substitute the primary agent only in case their substitute program types are equal

‘Active’ ‘no’

defines whether the agent is active or not. Substitute agent initially is deactivated

‘Substitutes’ ‘None’

defines what agent is substituted by this one

The PrimaryAgent and the SubstituteAgent
classes inherit the DataflowAgent class and represent
primary and substitute agents correspondingly. These classes
are used by the developer to create dataflow agents that support
substitution mechanism. More closely the process of creation
of agents is described in the following section.

IV. AGENTS IMPLEMENTATION

The process of agents implementation starts with the
defining of agent’s programs. For this purpose there are
the AgentProgram and the SubstituteAgentProgram
interfaces in the framework (see Fig. 1).

The AgentProgram interface represents a program
for the primary agent. To implement this interface one
should define output, input and state triples for the agent
program. It is done by implementing methods that return list
of corresponding triples templates. Input triples are used as
incoming information for calculation of output triples. State
triples describe current calculation status of the program.
Another two methods that are defined by the AgentProgram
interface are calculateInitialOutTriples and
calculateOutTriples. The first one is used to calculate
initial state and output triples using input triples. It is called
only once, when the primary agent starts its work. The second
method is called each time one of the input triples is updated
in smart space by another agent and calculate new output and
state triples.

The SubstituteAgentProgram interface represents a
program for the substitute agent. This program performs the
calculations that depend on the substitute program code, which
is received by the substitute agent. According to this fact the
SubstituteAgentProgram interface defines two meth-
ods: parseProgramBody and calculateOutTriples.
First one is called each time the substitute agent starts substitu-
tion, when it receives the code of the substitute program. The
method parses the body of the received substitute program and
determines what will calculateOutTriples method do.
The last one performs calculations each time some of the input
triples, pointed in the substitute program header, is updated.

After implementation of the agent program developer just
needs to create an instance of the PrimaryAgent or the
SubstituteAgent class (see Fig. 1) passing implemented
program and other additional information to it and call its
joinSIB method. After that the agent automatically starts
its work. The primary agent:

1) joins the smart space;

2) initializes itself inserting description triples;

3) inserts protection triples for its description, output and
state triples;

4) calculates and inserts initial output and state triples;

5) subscribes to its input triples.

60

If this primary agent (the primary agent with the same
id) already was in smart space, but was disconnected from it
by some reason (for instance, due to lack of the energy), then
during the initialization it only subscribes to input triples. After
the initialization the primary agent will calculate new output
and state triples each time it receives subscribe message about
input triples update from the smart space.

After calling the joinSIB method on the
SubstituteAgent class instance it:

1) joins the smart space;

2) initializes itself inserting description triples;

3) inserts protection triples for its description triples;

4) subscribes to triple that indicates what primary agent

is substituted by this one.

As the substitute agent receives subscription message with
the id of the agent it must substitute, it starts the substitution.
This operation consists of following steps:

1) query from smart space triple with the substi-
tute program code and parse this code using
SubstituteProgramParser class;

2) query from smart space input, output and state triples;

3) pass the body of the substitute program to the
SubstituteAgentProgram instance;

4) subscribe to input triples;

5) activate agent.

Both the PrimaryAgent and the SubstituteAgent
classes contain the shutdown method that can be used by
the developer to finish agent work. This method:

1Y)

removes all the input, state and description triples of

the agent;

2) removes all protection triples, which were added by
the agent;

3) leaves smart space.

In addition, the PrimaryAgent class contains the
suspendOperation method that deactivates the agent pro-
voking it to be substituted. It can be used by the developer
to:

e test the work of the substitution and substitute agents;

e preventively deactivate the agent before it disconnects
from the smart space for some reason.

Therefore, to create developer’s own agent he or she
needs to implement one of the agent program interfaces,
create instance of the agent class, pass this program to the
agent and call agent’s joinSIB method. So the creation
process is simple and does not require from the developer to
implement operations that are equal for all agents. Moreover,
the developer is not communicating straight with the smart

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

space. He or she just defines what triples the agent uses and
what calculations it performs.

In such a way it saves the developer’s time and simplifies
the development of the agents and hence the development of
dataflow network based systems. The framework also does
not require from the developer any additional knowledges of
substitution mechanism implementation to create agents that
support this mechanism.

V. CASE STUDY

In this section we describe the prototype of the home light
control system based on dataflow network implementation for
Smart-M3 platform. It can be used as part of the smart home
along with other systems [6], [7]. The system is designed to
remotely control the light in the whole home or apartment. Its
primary and substitute agents are developed with the use of the
proposed framework. The example of the system dataflows in
one room is shown in Fig. 2.

Home light control system consists of following compo-
nents:

indoor illuminance sensors in each house room;
e outdoor illuminance sensors on each house window;

e sensors that count the number of people that entered
or left the room (in each room entrance);

e actuators that manage blinds level (i.e., control the
amount of light comes through the windows) on each
home window;

e actuators that set the brightness of each lamp or other
electrical light source;

e remote control unit, with which the user can set the
preferable light level in each house room;

e agent that uses information from room sensors and re-
mote control unit to control the actuators in particular
room (one agent per room);

e substitute agents for each of the system’s primary
agents.

The system prototype works as follows. The user sets the
preferable light level in each room using remote control unit.
The primary agents in each room receive information from
the room sensors and remote control unit and set the optimal
parameters for the room actuators. Parameters that allow the
electricity consumption of the system to be the minimal
possible considered as the optimal. If there are people in the
room, then the parameters applied immediately. Otherwise the
parameters are applied only after someone enters the room.
If everybody, who was in the room, left it and the room
stays empty for 5 minutes then the light in the room is
automatically switched off. The light is automatically switched
on as someone enters the room.

As a primary agent falls out, the substitute agent starts
to work. It provides the same functionality as the substituted
agent, but it cannot control the blinds actuators. In this case
the user is assumed to control the level of the blinds as he or
she wishes.

61

The system prototype uses the following triples:

e Each illuminance sensor generates the triple that con-
tains sensor id and the measured value.

e Each room entrance sensor generates the triple that
contains sensor id and the number of the people inside
room.

e The remote control unit generates triples that contain
the id of the room and user set value of the illuminance
in this room.

e Each actuator subscribes for the triple that contains its
id and the parameters for this actuator.

Each primary agent subscribes to the triples generated by
the sensors in the room and also to the triple that contains user
set light level in the room. The room actuators subscribe to the
triples that are output of room’s agent.

The framework allowed us to not implement the whole
agent logic including initialization, subscription handling, shut-
down, etc. All we had to implement were just the agent
programs. The implementation of such program consists of:

e definition of output and input agent triples sets, which
were described above;

e implementation of the calculation method that uses
input triples to determine the output triples.

This case study shows that the RoDaFlow framework
allows to save the time and significantly simplify the develop-
ment of dataflow network based systems.

VI. CONCLUSION

The RoDaFlow framework was implemented in Java and
used to develop agents for the home light control system
prototype. The framework allows to create agents for the
systems based on dataflow network implementation in Smart-
M3. These agents support substitution mechanism described
in [2], which allows to make dataflow networks more robust.
The creation of the agents is very simple and requires from
the developer to implement only the programs for the agents.
The RoDaFlow framework can be downloaded from its home
page: https://yar.fruct.org/projects/rodaflow.

As the framework is written in Java it allows to create
agents for all popular desktop platforms, such as Windows,
Linux and Mac OS. Moreover, it is also possible to use the
proposed framework for creating native mobile agents for
Android devices, which currently have about 79 percent of the
whole smartphones market share [8]. In future the RoDaFlow
framework can be used to create dataflow agents for devices
based on Oracle’s Internet of Things platform [9].

ACKNOWLEDGMENT

The study was supported by The Ministry of education and
science of Russia, project 14.B37.21.0876. The authors would
like to thank Andrey Vasilev for his valuable feedback and
fruitful discussions.

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

/Outdoor illuminance\

S sensor 2) Blinds actuator 2

[Outdoor illuminance\
sensor 1 Blinds actuator 1

) Lamp intencit
Computational KP P Y
S actuator 1

\

Indoor illuminance
sensor

-

/

Remote control [Lamp intencity

device computational KP | actuator 2)
Entering/leaving Lamp intencity\
room sensor actuator 3)

Fi

g. 2. The example of the light control system dataflows for one room

REFERENCES

[1] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs,” Journal of
Signal Processing Systems, vol. 63, no. 2, pp. 241-249, 2011.

[2] 1. Paramonov, A. Vasilev, D. Laure, and I. Timofeev, “Agent substitution
mechanism for dataflow networks: Case study and implementation in
smart-m3,” in Internet of Things, Smart Spaces, and Next Generation
Networking, ser. Lecture Notes in Computer Science, S. Balandin,
S. Andreev, and Y. Koucheryavy, Eds. Springer Berlin Heidelberg,
2013, vol. 8121, pp. 60-71.

[3]1 J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-M3 information
sharing platform,” in JEEE Symposium on Computers and Communica-
tions (ISCC). 1EEE, 2010, pp. 1041-1046.

[4] (2013, April) Smart-M3 Java KPI library. [Online]. Available:
http://sourceforge.net/projects/smartm3-javakpi/

[5] A. DElia, J. Honkola, D. Manzaroli, and T. S. Cinotti, “Access control
at triple level: Specification and enforcement of a simple RDF model
to support concurrent applications in smart environments,” in Smart
Spaces and Next Generation Wired/Wireless Networking. Springer Berlin
Heidelberg, 2011, pp. 63-74.

[6] J.-h. Song and S.-f. Hou, “Infrared application in smart home system-
based on intelligent air conditioning design,” in Proceedings of 3rd In-
ternational Asia Conference on Industrial Engineering and Management
Innovation (IEMI2012), R. Dou, Ed. Springer Berlin Heidelberg, 2013,
pp. 721-728.

[71 M. Jahn, M. Jentsch, C. R. Prause, F. Pramudianto, A. Al-Akkad,
and R. Reiners, “The energy aware smart home,” in 5th International
Conference on Future Information Technology (FutureTech), 2010, pp.
1-8.

[8] (2013, August) Gartner says smartphone sales grew 46.5 percent in
second quarter of 2013 and exceeded feature phone sales for first time.
[Online]. Available: http://www.gartner.com/newsroom/id/2573415

[9]1 (2013, October) Oracles internet of things platform. [Online]. Available:
http://www.oracle.com/us/solutions/internetofthings/index.html

62

