
Obtaining an SDL Entity Identifier Using
SDL/SystemC Co-modeling

Pavel Morozkin
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russia
pavel.morozkin@guap.ru

Abstract

This paper describes a technical problem of obtaining a unique SDL entity identifier using
SDL/SystemC co-modeling. The problem occurs during scientific research in co-modeling field as
well as work under real projects. Solution consists in redefinition the standard function of SDL
simulation kernel for getting access to entity name and then conversion its name to a unique
identifier. The paper explains the situation where problem appears, demonstrates its application
using SDL/SystemC co-simulation and describes in practice a solution that fully solved the problem
and makes possible further research.

Index Terms: SDL, SystemC, Co-modeling.

I. INTRODUCTION

It is a well-known [1] fact that SDL [2] language is most widely used FDT [3] in the
telecommunication area. SystemC [4] is a system design language which successfully consol-
idated the design flow in use at many companies [5]. SDL and SystemC co-modeling [6] is
based on model superposition, where each model is designed using different language. One
argument in support of this technology — it focus on SDL model testing using co-simulation
[7]. Obtaining an identifier of SDL entity is one of many technical problems, which often
arise during co-simulation. Besides, in scientific work the problem also causes difficulties
for understanding co-model behaviour. In spite of fact that the problem is local, it really
complicates the analysis of the co-modeling results.

II. WAY TO PROBLEM

A. SDL model features
Understanding the problem requires an example of SDL test model of communication

protocol layer. The test system diagram is shown in Fig. 1. The model consists of two nodes
each of which has the same type and implements one data transfer protocol layer. During
SDL simulation of this system for writing log file or display diagnostic messages a special
SDL procedure SDL LogMsg is used. Goal of this procedure — provide a mechanism of
writing diagnostic messages in log file during SDL simulation. Also all messages can be of
tree types. This is INFO, WARNING and ERR types. The property if this division is different
behaviour of SDL simulator. If current message has INFO or WARNING type, simulation will
be continued. But if message has ERR type, SDL simulator will be stopped. This mechanism
helps to monitor and understand behaviour of the system, because communication protocol
specification of industrial standard usually has complex structure. The specification contains
many blocks, processes and states. Moreover, SDL system can contain several independent
protocol layers which work in parallel. Especially for debugging such systems the procedure
has been proposed. An example of using this procedure is shown in Fig. 2 and 3.

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201433826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


use SAP_UP;
use Layer;
use SAP_DOWN;

system Layer_Test 1(1)

Layer_0 : Layer Layer_1 : Layer

TX_SAP_UP_0

SAP_UP_sig.req

TX_SAP_UP

RX_SAP_UP_0

SAP_UP_sig.ind

RX_SAP_UP

TX_SAP_DOWN_0

SAP_DOWN_sig.req

TX_SAP_DOWN

TX_SAP_UP_1

SAP_UP_sig.req

TX_SAP_UP

RX_SAP_UP_1

SAP_UP_sig.ind

RX_SAP_UP

TX_SAP_DOWN_1

SAP_DOWN_sig.req

TX_SAP_DOWN

RX_SAP_DOWN_0

SAP_DOWN_sig.ind

RX_SAP_DOWN

RX_SAP_DOWN_1

SAP_DOWN_sig.ind

RX_SAP_DOWN

Fig. 1. Test for protocol layer system

process Tx 1(1)

Wait

SAP_UP_sig.req

SDL_LogMsg(INFO, 
’SAP_UP_sig.req received’)

SAP_DOWN_sig.req

Wait

Fig. 2. Tx process

process Rx 1(1)

Wait

SAP_DOWN_sig.ind

SDL_LogMsg(INFO, 
’SAP_DOWN_sig.ind received’)

SAP_UP_sig.ind

Wait

Fig. 3. Rx process

B. SDL/SystemC co-simulation features
SDL/SystemC co-simulation — efficient technology, created as result in-depth research

in SUAI university and used for SDL model testing and co-modeling with both SDL and
SystemC using features of this languages in common. Technology has been successfully used
for creation of communication co-model in such project as UniPro [8]. This model consists
of SDL model of protocol layer and SystemC model of the same layer. Communication
is performed using SystemC channel. Now proposed technology used in SpaceWire-RT [9]
project especially for testing of SDL models of SpaceWire-RT protocol stack. In this case SDL
model consists two instances of protocol layer or protocol stack which works independently.
Communication is also performed using SystemC channels. For testing of different protocol
layers special models of channels are used. They work using several algorithms of errors
generation, algorithms of signal loss, etc. SystemC test environment is master component
that fully controls of slave SDL system.

The technical organisation of described co-model consists as follows. Firstly performed
translation from original graphic SDL model to functionality equivalent C-code. Next step —
development of SystemC components which are used for conversion of SystemC primitives
to SDL signals. After that SystemC channel created according channel requirements. Next
stage is creation of SystemC test control components. Important thing is adaptation of SDL
simulation kernel for correct work with both SDL model and SystemC environment. The final

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 81 ----------------------------------------------------------------------------



stage is checking correctness of co-model architecture and writing a test cases. Test cases are
implemented as SystemC components, which work in accordance with different algorithms.
By switching between these components, developers can change test scenarios.

Architecture of a co-model is shown in Fig. 4. It includes three main parts — SystemC
test control components, an SDL part (SDL model and SDL simulation kernel [11]) and
SystemC channels. SDL model is represented by generated [12] C-code that implements
original graphic model.

Tx 0

Channel 0

SDL modeling kernel

SDL model

SystemC test control 

components

SDL part

SystemC channel

C code of SDL model

C code of SDL kernel

Data!ow

вап
Log %les

Data!ow 

generator

SystemC tester

Data!ow

Node 0 Node 1

Wrapper SystemC/SDL wrapper

Protocol implementation

Rx 0

Wrapper

Wrapper Wrapper

Channel 1

Wrapper Wrapper

Wrapper Wrapper

Tx 1 Rx 1

вап
Log %les

Data analysis, 

log %les creation

Fig. 4. Co-model architecture

Way of obtaining C-code has been described in detail in [13]. Also co-model includes
wrappers that convert SystemC primitives to SDL signals and perform a reverse conversion.

During co-simulation with SDL LogMsg procedure xPrintString function is used. The
function originally defined in SDL simulation kernel [11] and used for output information
about behaviour of model. But in co-model xPrintString has been redefined in the following
manner as it shown in Fig. 5.

Fig. 5. xPrintString function

C. Log files writing features
Usually co-model is designed as such way that each component has its own stream to

output diagnostic messages, but currently all streams are configured so that each message

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 82 ----------------------------------------------------------------------------



is written in common log file for further behaviour analysis of SDL model. The example
of a part of this log file is shown in Fig. 6. Acronym TE means Test Engine, SL — SDL
Layer and CH — Channel. The significant problem is that information about number of a

Fig. 6. Listing of part of common log file

SDL node generating diagnostic message is absent. Therefore, diagnostic messages from SDL
model are not formatted. Ascertained only fact that message has been generated, but no more.
Certainly, this situation causes difficulties for developers while analysing logs. Developers can
only assume a number of SDL instance produced a message. In the case that SDL model
is complex, the problem significance is increased. Summing it up, a method that solves the
problem and allows make a new research in analysing of co-model behaviour, is needed.

III. PROPOSED SOLUTION

On the face of it, solution is clearly simple. All that needed is get access to different
SDL entity name and then convert its name to number. But during co-modeling SDL model
that represented as C-code is similarity of black box. It includes an inputs and outputs for
sending and receiving signals and mechanisms for start SDL simulation kernel every time
that SystemC test environment has been sent the signal to SDL model. Understanding a C-
representation of SDL model — model structure hierarchy, SDL kernel scheduling algorithms
using queue of ready processes and queues of input signals, algorithms of communication
between SDL components, construction and manipulation of behaviour tree [11], etc — is a
complex [10] task. What is worse, SDL kernel is implemented using semi-obfuscated coding
style. Nevertheless, after research of structure and functionality of SDL model behaviour tree
the way of getting access to current entity name using SDL behaviour tree was found.

Research methodology of this way based on positivist research paradigm and focuses on
empirical experiments with structures of generated behaviour tree and finding an efficient
solution that solves the problem as well as satisfies the features of co-modeling. This means
that new solution should not increase the simulation time, be acceptable to developers and
should have high level of usability.

The solution consists in another redefinition of xPrintString function. The second argument
has been added — Self [11] pointer to variable of void type. After addition of new functionality
xxPrintString has been created. Part of its implementation is shown in Fig. 7.

During co-simulation SDL entity name of highest system level is obtained from behaviour
tree of SDL model. Then the name is converted to an integer number using its last character,
which used for identification. Therefore, a natural requirement for proposed solution is an
SDL name format like EntityName[identifier]. Note that in this case identifier can be within
the range 0-9. Fig. 8 illustrates the way to obtain name of SDL entity using behaviour tree.

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 83 ----------------------------------------------------------------------------



Fig. 7. xxPrintString function

Fig. 8. Entity name obtaining steps

To use xxPrintString during co-simulation the developer should redefine original function
using macro XXPRINTSTRING shown in Fig. 9. This macro should be included in the
generated C-code of the SDL model.

Fig. 9. XXPRINTSTRING macro

As a second argument xxPrintString takes address of Self field of VarP [11] structure. This
structure is a part of generated behaviour tree and it contains information about the current
SDL process instance. After all redefinitions are completed, developer can obtain current
SDL entity identifier during SDL/SystemC co-simulation and use it for different purposes,
for example for logs formatting. A part of formatted version of the common log file is shown
in Fig. 10. It’s self-evident that in case where SDL model consists of complex communication
protocol layers, formatted log file provides a clarity for scientific analysis of system.

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 84 ----------------------------------------------------------------------------



Fig. 10. Part of formatted common log file

IV. CONCLUSION

The goal of this paper — to propose and explain the solution for an SDL entity identifier
obtaining problem. The solution consists in using created xxPrintString function during co-
simulation. As a result developer can monitor the behaviour of the SDL system controlled
by SystemC test environment. Therefore, the problem is solved.

ACKNOWLEDGMENT

The investigations and results presented in the current paper are performed under the
financial support of the Ministry of Education and Science of the Russian Federation.

REFERENCES

[1] A. Mitschele-Thiel, ”Systems Engineering with SDL: Developing Performance-Critical Communication Systems”, Wiley,
1St Edition, pp. 3-5, 2001.

[2] Recommendation Z.100, ”Specification and Description Language (SDL)”, International Telecommunication Union,
2002.

[3] K. J. Turner, ”Using Formal Description Techniques – An Introduction to Estelle, LOTOS and SDL”, John Wiley &
Sons Inc, 1993.

[4] D. Black, J. Donovan, ”SystemC: From the Ground Up”, Springer; 1 edition, 2004.
[5] T. Grötker, S. Liao, G. Martin, S. Swan, ”System Design with SystemC”, Springer, 1 edition, 2002.
[6] S. Balandin, M. Gillet, I. Lavrovskaya, V. Olenev, A. Rabin, A. Stepanov, ”Co-Modeling of Embedded Networks Using

SystemC and SDL”, IJERTCS journal, Volume 2, Issue 1, 2011.
[7] M. Gillet, ”Hardware/software co-simulation for conformance testing of embedded networks”, Finnish-Russian Univer-

sity Cooperation Program in Telecommunications (FRUCT) seminar, Tampere, 2011.
[8] MIPI Alliance, http://mipi.org/specifications/unipro-specifications.
[9] SpaceWire-RT project, http://spacewire-rt.org.
[10] Daniel Dietterle, ”Efficient Protocol Design Flow for Embedded Systems”, 2009.
[11] Telelogic, ”Telelogic Tau 4.5 Users Manual”, Chapter 62, The Master Library, 2003.
[12] Telelogic, ”Telelogic Tau 4.5 Users Manual”, Chapter 58, The Cadvanced/Cbasic SDL to C Compiler, 2003.
[13] P. Morozkin, ”Possibility of SystemC code generation from SDL specification”, Finnish-Russian University Cooperation

Program in Telecommunications (FRUCT) seminar, St. Petersburg, 2012.

__________________________________________PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 85 ----------------------------------------------------------------------------




