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Abstract
In this work we present a comprehensive formal specification of an

idealized formulation of Android’s permission model. Permissions in
Android are basically tags that developers declare in their applications,
more precisely in the so-called application manifest, to gain access
to sensitive resources. Several analyses have recently been carried
out concerning the security of the Android system. Few of them,
however, pay attention to the formal aspects of the permission enforcing
framework. We provide a complete and uniform formulation of several
security properties using the higher order logic of the Calculus of
Inductive Constructions and sketch the proofs that have been developed
and verified using the Coq proof assistant. We also analyze how the
changes introduced in the latest version of Android, that allows to
manage permissions at runtime, impact the presented model.
Keywords: Android, security properties, formal verification, Coq.

1 Introduction
Android [39] is an open platform for mobile devices developed by the Open
Handset Alliance led by Google, Inc. Android smartphone OS has cap-
tured more than 80% of the total market-share, leaving its competitors
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iOS, Windows mobile OS and Blackberry far behind [33]. With increasing
capabilities in mobile devices and posterior consumer adoption, these devices
have become an integral part of how people perform tasks in their work
and personal lives. Unfortunately, the benefits of using mobile devices are
sometimes counteracted by security risks.

Concerning security, Android embodies mechanisms at both OS and
application level. Being a Linux system, Android behaves as a multi-process
system and therefore the security model resembles that of a multi-user server.
Access control at the application level is implemented by an Inter-Component
Communication reference monitor that enforces mandatory access control
(MAC) policies regulating access among applications and components.

Application security is built primarily upon a system of permissions,
which specify restrictions on the operations a particular process can perform.
Permissions are basically tags that developers declare in their applications,
more precisely in the so-called application manifest, to gain access to sensitive
resources. At installation time the user of the device is requested to grant
the permissions required by the application or otherwise the installation of
the application is canceled. After a successful installation, an application
will be able to access system and application resources depending on the
permissions granted by the user.

Several analyses have recently been carried out concerning the security
of the Android system. Some of them [26, 38] point out the rigidity of the
permission system regarding the installation of new applications in the device.
Other studies [22, 31] have shown that many aspects of Android security,
like avoiding privilege escalation, depend on the correct construction of
applications by their developers. Additionally, it has been pointed out [31, 32]
that the mechanism of permission delegation offered by the system has
characteristics that require further analysis in order to ensure that no new
vulnerabilities are added when a permission is delegated. Few work, however,
pay attention to the formal aspects of the permission enforcing framework.

Reasoning about implementations provides the ultimate guarantee that
deployed mechanisms behave as expected. However, formally proving non-
trivial properties of code might be an overwhelming task in terms of the effort
required, especially if one is interested in proving security properties rather
than functional correctness. In addition, many implementation details are
orthogonal to the security properties to be established, and may complicate
reasoning without improving the understanding of the essential features for
guaranteeing important properties. Complementary approaches are needed
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where verification is performed on idealized models that abstract away the
specifics of any particular implementation, and yet provide a realistic setting
in which to explore the security issues that pertain to the realm of those
(critical) mechanisms.

Security models play an important role in the design and evaluation
of high assurance security systems. Their importance was already pointed
out in the Anderson report [1]. The paradigmatic Bell-LaPadula model [18],
conceived in 1973, constituted the first big effort on providing a formal
setting in which to study and reason on confidentiality properties of data in
time-sharing mainframe systems. State machines, in turn, are a powerful
tool that can be used for modeling many aspects of computing systems. In
particular, they can be employed as the building block of a security model.
The basic features of a state machine model are the concepts of state and
state change. A state is a representation of the system under study at a given
time, which should capture those aspects of the system that are relevant
to the analyzed problem. State changes are modeled by a state transition
function that defines the next state based on the current state and input.
If one wants to analyze a specific safety property of a system using a state
machine model, one must first specify what it means for a state to satisfy
the property, and then check if all state transitions preserve it. Thus, state
machines can be used to model the enforcement of a security policy on a
system.

Contribution

The main contribution of the work presented in this paper is the devel-
opment of a comprehensive formal specification of the Android security
model and the machine-assisted verification of several security properties.
Most of those properties have been discussed in previous work where they
have been presented and analyzed using a variety of formal settings and
approaches. In this work we provide a complete and uniform formulation of
multiple properties using the higher order logic of the Calculus of Inductive
Constructions [27, 40], and the formal verification is carried out using the
Coq proof assistant [19, 48]. Furthermore, we present and discuss proofs of
properties that have not been previously given a formal treatment. The
idealized security model formalizes behavior of the security mechanisms of
Kitkat [2] (as of June 2015 the single most widely used Android version)
according to the official documentation and available implementations. We
claim that our results also apply to Lollipop, the version 5 of Android, and to
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Marshallow, the latest version of Android4. The formal security model and
the proofs of the security properties presented in this work may be obtained
from [34].

The Coq proof assistant facilitates theoretical confirmation of security
properties when the system is updated, when there are new security require-
ments, or when more constrains are added to the model. This may help to
ascertain the security level of the Android permission scheme regarding se-
curity certification standards (e.g., Common Criteria), which require formal
descriptions for higher-level assurance.

Organization of the paper

This article builds upon and extends a previously published paper [21]. The
rest of the paper is organized as follows. Section 2 describes the architecture
and basic components of Android, and its security model. Section 3 overviews
the formalization of the Android security framework and Section 4 presents
and discusses some of the verified security properties. Section 5 extends the
analysis of the security model to the latest version of Android that allows to
manage permissions at runtime. Section 6 considers related work and finally,
Section 7 concludes with a summary of our contributions and directions for
future work.

2 Background

Architecture of Android The architecture of Android takes the form of a
software stack which comprises an operating system, a run-time environment,
middleware, services and libraries, and applications. Figure 1 provides a
visual outline of this architecture.

The Linux kernel is positioned at the bottom of the software stack,
providing a level of abstraction between the hardware and the upper layers
of the software stack.

The multitasking execution environment provided by Linux allows
multiple processes to execute concurrently. In fact, each application running
on an Android device does so within its own instance of the Dalvik virtual
machine (DVM)5. The applications running on a DVM are sandboxed, that

4Section 5 makes some special considerations about managing permissions on the latest
version of Android.

5The successor of Dalvik is Android Runtime (ART). This new runtime environment is
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Figure 1: Android’s architecture [12].

is, they can not interfere with the operating system or other applications,
nor can they directly access the device hardware.

The Application Framework is a set of services that collectively form
the environment in which Android applications run and are managed. This
framework implements the concept that Android applications are constructed
from reusable, interchangeable and replaceable components. This concept
is taken a step further in that an application is also able to publish its
capabilities along with any corresponding data so that they can be found
and reused by other applications. The Android framework includes several
key services, or components, like the Activity Manager which controls all
aspects of the application lifecycle and activity stack; and the Content
Providers which allow applications to publish and share data with other
applications.

Located at the top of the Android software stack are the applications.
These comprise both the native applications provided with the particular
Android implementation (for example web browser and email applications)

presented as the replacement of Dalvik in the latest version of Android. The permission
mechanism analyzed in this work, and the obtained results, also apply for Android platforms
running ART.
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and the third party applications installed by the user after purchasing the
device.

Application components An Android application is built up from com-
ponents. A component is a basic unit that provides a particular functionality
and that can be run by any other application with the right permissions.
There exist four types of components: Activities, Services, Content Providers
and Broadcast Receivers [3]. An activity is essentially a user interface of
the application. Typically, each application has a principal activity which
is the first screen the user sees when the application is started. Even if
applications usually have a principal activity, any activity can be started if
the initiator has the right permissions. In a same session multiple instances
of the same activity can be running concurrently. A service is a component
that executes in background without providing an interface to the user.
Any component with the right permissions can start a service or interact
with it [3]. If a component starts a service that is already running no new
instance is created, the component just interacts with the running instance
of the service [5, 11]. A content provider is a component intended to
share information among applications. A component of this type provides
an interface through which applications can manage persisted data [45]. The
information may reside in a SQLite data base, the web or in any other
available persistent storage [3], and it can be presented by a content provider
in the form of a file or a table. Finally, a broadcast receiver is a compo-
nent whose objective is to receive messages, sent either by the system or an
application, and trigger the corresponding actions. Those messages, called
broadcasts, are transmitted all along the system and the broadcast receivers
are the components in charge of dispatching those messages to the targeted
applications.

Three out of the four preceding types of components: activities, services
and broadcast receivers, are activated by a special kind of message called
intent. An intent makes it possible for different components, belonging to
the same application or not, to interact at runtime [3]. Typically, an intent is
used as a broadcast or as a message to interact with activities and services.

Android’s security model Android implements a least privilege model
by ensuring that each application executes on a sandbox, enforcing then that
each application only has unrestricted access to the resources it owns. For
an application to access other components of the system it must require, and
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be granted, the corresponding access permission. The sandbox mechanism is
implemented at kernel level and relies on the correct application of a Manda-
tory Access Control policy which is enforced by a reference monitor using a
user identifier (UID) [30] assigned to each installed application. Interaction
among applications is achieved through Inter Process Communication (IPC)
mechanisms [14]. Even if the kernel provides traditional UNIX-like IPC
(like sockets and signals), it is recommended that applications use higher
level IPC mechanisms provided by Android. One such mechanism is intents,
that allow to specify security policies that regulate communication between
applications [10].

Every Android application must be digitally signed and be accompanied
by the certificate that authenticates its origin. These certificates, however,
are not required to be signed by a trusted certification authority. Indeed,
current practice indicates that certificates are usually self-signed by the devel-
opers. The Android platform uses the certificates to establish that different
applications have been developed by the same author. This information is
relevant both to assign signature permissions (see below) or to authorize
applications to share the same UID to allow sharing their resources or even
be executed within the same process [6].

Permissions Applications usually need to use system resources to execute
properly. Since applications run inside sandboxes, this entails the existence
of a decision procedure (a reference monitor) that guarantees the authorized
access to those resources. Decisions are made by following security policies
using a simple notion of permission. The permission system of Android
implements the following procedure: i) an application declares the set of
permissions it needs to acquire further capacities than the default ones; ii) at
installation time, the required permissions are granted or refused, either
automatically by the system depending on the type of permission and the
certificate attached to the application, or, as it’s more frequently the case, by
direct authorization of the user of the device; iii) if a requested permission
is refused, the application should not be installed on the device. This is
typically the case, but there are ways to install an application with non
granted permissions [7].

In the general case, if an application is installed then it may exercise
all the permissions it requests. Note that it is not possible to dynamically
assign permissions in Android. Every permission is identified by a name/text
and has a protection level. There are two principal classes of permissions:
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the ones defined by the application, for the sake of self-protection, and those
predefined by Android, which are intended to protect access to resources and
services of the system. Depending on the protection level of the permission,
the system defines the corresponding decision procedure [9]. There are four
classes of permission levels: i) Normal, assigned to low risk permissions
that grant access to isolated characteristics, ii) Dangerous, permissions of
this level are those that provide access to private data or control over the
device, iii) Signature, a permission of this level can be granted only if the
application that requires it and the application that defined it are both
signed with the same certificate, and iv) Signature/System, this level is
assigned to permissions that regulate the access to critical system resources
or services.

In addition, an application can also declare the permissions that are
needed to access it. The granularity of the system makes it possible to require
different permissions to access different components of the application.

It is also possible for a developer to force the system to execute a
verification at runtime. For doing that, Android provides methods that can
verify the permissions of an application at runtime. This mechanism might
be used, for instance, to force the system to check that an application has
specific privileges once a certain internal counter has reached a given value.

Since version Honeycomb, a component can access any other component
of the same application without being required to have explicitly granted
access to that component.

Permission delegation Android provides two mechanisms by which an
application can delegate its own permissions to another one. These mecha-
nisms are pending intents and URI permissions. An intent may be defined by
a developer to perform a particular action, for instance to start an activity.
A PendingIntent is an object which is associated to the action, a reference
that might be used by another application to execute that action. The
object might be used by authorized applications even if the application that
created it, which is the only one that can cancel the reference, is no longer
active. The URI permissions mechanism can be used by an application that
has read/write access to a content provider to (partially) delegate those
permissions to another application. An application may attach to the result
returned by an activity owned by another application an intent with the URIs
of resources of a content provider it owns together with an operation identifier.
This grants the privileges to perform the operation on the indicated resources
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to the receiving application, independently of the permissions the application
has. The Android specification establishes that only activities may receive
an URI permission by means of intents. These kinds of permissions may
also be explicitly granted using the grantUriPermission() method and
revoked using the revokeUriPermission() method. In any case, for this
delegation mechanism to work, an explicit declaration authorizing the access
to the resources in question must be added in the application that owns the
content provider.

The Android Manifest Every Android application must include an XML
file in its root directory called AndroidManifest. All the components in-
cluded in the application, as well as some static attributes of them are
declared in that file. Additionally, both the permissions requested at instal-
lation time and the ones required to access the application resources are
also defined. The authorization to use the mechanism of URI permissions
explained above is also specified in the manifest file of an application. One of
the most important elements of a manifest is <application>: it describes
the attributes of the application and also the elements that describe the
components owned by the application. Each component is declared using
one of the following elements: <activity>, <service>, <provider>, and
<receiver>. Additionally, the body of the manifest includes: i) <uses-
permission>, that specifies the permissions, defined by the system or an
application, which shall be required at installation time; ii) <permission>,
that defines statically an application level permission and its protection
level. There must be one declaration for each defined permission; and
iii) <permission-tree>, which is used to reserve a name space that can
be used to define application level permissions at runtime. It defines pre-
fixes to attach to any permission defined dynamically using the method
addPermission(). Several declarations of this kind of element are allowed
to define different prefixes. Additionally, the element <application> has
the attribute android:permission which is used to specify, if any, the
permission required to access any component of the application [4]. As
for the elements declared by the components included in the application,
there are two common attributes: i) android:permission, similar to the
one defined for the application, but this one has precedence over it, and
ii) android:exported, if this attribute is set to true, the component shall
be available to be accessed from an external application.
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3 A Formally Verified Android Security Model

In this section we outline the formalization of the idealized Android security
model. We first provide a brief description of the specification setting and
the proof-assistant Coq, then we describe the model states and provide an
axiomatic semantics of successful operations in the Android system. The
operations are specified as state transition functions.

3.1 The Proof Setting

The Coq proof assistant is a free open source software that provides a
(dependently typed) functional programming language and a reasoning
framework based on higher order logic to perform proofs of programs. Coq
allows developing mathematical facts. This includes defining objects (sets,
lists, functions, programs); making statements (using basic predicates, logical
connectives and quantifiers); and finally writing proofs. The Coq environment
supports advanced notations, proof search and automation, and modular
developments. It also provides program extraction towards languages like
Ocaml and Haskell for execution of (certified) algorithms [36, 37]. These
features are very useful to formalize and reason about complex specifications
and programs.

As examples of its applicability, Coq has been used as a framework
for formalizing programming environments and designing special platforms
for software verification: Leroy and others developed in Coq a certified
optimizing compiler for a large subset of the C programming language [35];
Barthe and others used Coq to develop Certicrypt, an environment of formal
proofs for computational cryptography [16]. Also, the Gemalto and Trusted
Logic companies obtained the level CC EAL 7 of certification for their
formalization, developed in Coq, of the security properties of the JavaCard
platform [24, 20, 13].

We developed our specification in the Calculus of Inductive Construc-
tions (CIC) using Coq. The CIC is a type theory, in brief, a higher order
logic in which the individuals are classified into a hierarchy of types. The
types work very much as in strongly typed functional programming lan-
guages which means that there are basic elementary types, types defined
by induction, like sequences and trees, and function types. An inductive
type is defined by its constructors and its elements are obtained as finite
combinations of these constructors. Data types are called Sets in the CIC
(in Coq). On top of this, a higher-order logic is available which serves to
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predicate on the various data types. The interpretation of the propositions
is constructive, i.e. a proposition is defined by specifying what it means for
an object to be a proof of the proposition. A proposition is true if and only
if a proof can be constructed.

3.2 Model States

Applications An application, as depicted in Figure 2, is defined by its
identifier, the certificate of its public key, the AndroidManifest, and the
resources that shall be used at run-time.

Application identifiers, which must be unique, correspond to names of
applications in Android6. Although Android applications do not statically
declare the resources they are going to use, we decided to include this
declaration in the current version of our model for the sake of simplicity.

Manifest The type Manifest is an abstraction of the AndroidManifest
file. Manifests are modelled as 6-tuples that respectively declare application
components, the set of permissions it needs, the permissions that will be
required by the application at runtime and those that are delegated.

An application component (Comp) is either an activity, a service, a
broadcast receiver or a content provider. All of them are denoted by a
component identifier of type CompId. A content provider (ContProv), in
addition, encompasses a mapping to the managed resources (of type Res)
from the URIs (of type Uri) assigned to them for external access. We omit
the definition types Uri and Res, which are formally defined in the Coq
specification. While the components constitute the static building blocks of
an application, all runtime operations are initiated by component instances,
which are represented in our model as members of the abstract type iComp.

The first element of a manifest (of type Comps) stores the set of ap-
plication components included in the application. The second element (of
type Perms) stores the set of permissions the application needs to be exe-
cuted properly. A permission (Perm) is defined as a tuple comprised of a
permission identifier (PermId) and the permission level (PermLvl) that indi-
cates the security level, which can be either dangerous, normal, signature, or
signature/system. The third and fourth elements store the set of permissions
that are defined in the application and the application components that

6These identifiers must not be confused with the user identifiers (UIDs) mentioned in
Section 2.
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ContProv ::= CompId× Uri→ Res
Content provider

Comp ::= Activity | Service | BroadReceiv | ContProv
Application component

Comps ::= {Comp}
Set of components

PermLvl ::= dangerous | normal | signature | signature/system
Permission level

Perm ::= PermId× PermLvl
Permission

Perms ::= {Perm}
Set of permissions

OptionPerm ::= Some(p) | none
A possible empty permission

CompPerms ::= Comp→ Perms
Components permissions

CPPerms ::= ContProv→ Perms
Content providers permissions

ExtPerms ::= OptionPerm× CompPerms× CPPerms× CPPerms
External permissions

UriPerms ::= ContProv→ Perms
URI permissions

DelPerms ::= ContProvs× UriPerms
Delegated permissions

Manifest ::= Comps× Perms× Perms× Comps× ExtPerms× DelPerms
Manifest

AppRes ::= {Res}
Application resources

App ::= AppId× Cert×Manifest× AppRes
Application

Figure 2: Formal definition of applications
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are exported, respectively. The fifth element (of type ExtPerms) stores the
information that is required to access the application, namely the permission
required (if any) to access any component of the application, the permission
required to access a particular component and the permissions required for
performing a read or write operation on a content provider. Finally, the sixth
element (of type DelPerms) stores the information concerning the delegation
of permissions for accessing content providers and their resources as the
result of using the URI permissions mechanism.

States The states of the platform are modelled as 8-tuples that respectively
store data about the set of installed applications and their permissions,
running components, a registry of temporary and permanent delegated
permissions and information about the applications installed in the system
image of the platform; the formal definition appears in Figure 3.

The first and second elements of a state record the set of installed
applications and the permissions granted to them by the system or the
user, respectively. The third stores the permissions defined by each installed
application, while the fourth stores the set of running component instances.
The fifth and sixth elements keep track of the permanent and temporary
permissions delegations, respectively. A permanent delegated permission
(of type DelPP) represents that an application has delegated permission
to perform either a read, write or read/write operation (of type OpTy) on
the resource identified by an URI of the indicated content provider. A
temporary delegated permission, in turn, refers to permission that has been
delegated to a component instance. The seventh element stores the values of
resources of applications. The final element stores the applications installed
in the Android system image, information that is relevant when granting
permissions of level signature/system.

We use some functions and predicates to manipulate and observe the
components of the state. Some of these operations, used in this paper, are
presented and described in Table 1.

Valid state The model formalizes a notion of valid state that captures
several well-formedness conditions. It is formally defined as a predicate
validState on the elements of type AndroidST. This predicate holds on a
state s if the following conditions are met:

• the applications installed in s and their corresponding components
have unique identifiers;
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InstApps ::= {App}
Installed applications

AppPS ::= {AppId× Perms}
Permissions granted at install time

AppDefPS ::= {AppId× Perms}
Permissions defined by each application

CompInstance ::= CompId× iComp
Component instance

CompInsRun ::= {CompInstance}
Running component instances

OpTy ::= read | write | rw
Access type

DelPP ::= AppId× ContProv × Uri× OpTy
Delegated permanent permission

DelPPS ::= {DelPP}
Delegated permanent URI permissions

DelTP ::= iComp× ContProv × Uri× OpTy
Delegated permanent permission

DelTPS ::= {DelTP}
ARV ::= AppId× Res× Val

Value of application resource
ARVS ::= {ARV}

Values of applications resources
ImgApps ::= {App}

Applications in system image

AndroidST ::= InstApps× AppPS× AppDefPS× CompInsRun
× DelPPS× DelTPS× ARVS× ImgApps
Android platform state

Figure 3: The state
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appInstalled(ap, s) holds if ap is an installed application in state s.
compInstalled(c, s) holds if component c belongs to an installed application in

state s.
addRes(ap, s) returns the applications resources values in state s adding

the resources in ap, initialized to a special value.
addDefPerms(ap, s) returns the permissions defined by the applications installed

in s as well as the ones being introduced by ap.
grantPerms(ap, s) returns the permissions granted to each application in s,

assigning to ap all the permissions it requested in its manifest
file.

isCProvider(c) holds if component c is a content provider.
running(ic, c, s) is satisfied if ic is an instance of component c running in

state s.
canStart(c′, c, s) holds if the application containing component c′ (installed in

state s) has the required permissions to create a new running
instance of component c.

insNotInState(ic, s) requires ic to be a new instance in the state s.
runComp(ic, c, s) returns the running component instances of state s with the

addition of the new instance ic of the component c.
inApp(c, ap) holds if component c belongs to application ap.
inManifest(c, ap) holds if component c belongs to the application components

that are exported by the application ap in its manifest file.
existsRes(u, cp, s) holds if there exists a resource, pointed to by the URI u, in

the content provider cp.
canOp(c, cp, pt, s) is satisfied if the application containing component c has the

appropriate permissions to perform the operation pt (of type
OpTy) on the content provider cp in the state s.

delPerms(c, cp, u, pt, s) establishes that the component c has been delegated permis-
sions to perform the operation pt on the resource identified
by u of content provider cp in the state s.

canGrant(u, cp, s) is satisfied if possible to delegate permissions on the content
provider cp for resource identified by u in the state s.

delPPerms(ap, cp, u, pt, s) holds if application ap has permanent delegated permissions
to perform the operation pt on the resource identified by u
of the content provider cp in the state s.

delTPerms(ic, cp, u, pt, s) is satisfied if the running instance ic has temporary delegated
permissions to perform the operation pt on the resource
identified by u of the content provider cp in the state s.

compCanCall(c, sac, s) is satisfied if component c can perform the system call sac
in the state s.

grantTPerm(ic, cp, u, pt, s) returns the temporary permission delegations of state s, in
addition to the new temporary delegated permission corre-
sponding to the running instance ic.

Table 1: Helper functions and predicates
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• every component belongs to only one application;

• every user-defined permission is declared in an installed application;

• all the parts involved in active permission delegations are installed in
the system;

• if there is a temporary permission delegation taking place, the recipient
is running;

• If a component is running, it can not be a content provider;

• all the running instances belong to a unique component, which is part
of an installed application; and

• all the resources in the system have a unique value and are owned by
an installed application.

All these safety properties have a straightforward interpretation in our
model7 [34]. Valid states are invariant under execution, as will be shown
later.

3.3 Platform Semantics

Our formalization considers a representative set of actions to install and
uninstall applications, start and stop the execution of component instances,
to read and write resources from content providers, to delegate tempo-
rary/permanent permissions and revoke them and to perform system ap-
plication calls; see Table 2. The behavior of an action a (of type Action)
is formally described by giving a precondition and a postcondition, which
represent the requirements enforced on a system state to enable the execution
of a and the effect produced after this execution takes place. We represent
the execution of an action with the relation ↪→ (one-step execution):

Pre(s, a)
Post(s, a, s′)

s
a

↪→ s′

Intuitively, this relation models a system state transition fired by a particular
action a. This transition takes place between a state s which fulfills the
precondition of the action, and a state s′ in which the postcondition holds.

7We omit the formal definition of validState due to space constraints.
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install ap Installs application ap in the system.
uninstall ap Uninstalls application ap from the system.
start ic c The running component ic starts the execution of com-

ponent c.
stop ic The running component ic finishes its execution.
read ic cp u The running component ic reads the resource corre-

sponding to URI u from content provider cp.
write ic cp u val The running component ic writes value val on the re-

source corresponding to URI u from content provider
cp.

grantT ic cp act u pt The running component ic delegates temporary permis-
sions to activity act. This delegation enables act to
perform operation pt (of type OpTy) on the resource
assigned to URI u from content provider cp.

grantP ic cp ap u pt The running component ic delegates permanent permis-
sions to application ap. This delegation enables ap to
perform operation pt on the resource assigned to URI u
from content provider cp.

revoke ic cp u pt The running component ic revokes delegated permissions
on URI u from content provider cp to perform operation
pt.

call ic sac The running component ic makes the API call sac (of
type SACall).

Table 2: Actions

We present the semantics of the following actions: install (install
an application in the system), start (start the execution of a component
instance), read (a running component reads resources of a content provider),
and grantT (a running component delegates temporary permissions to an
activity). Notice that what is specified is the effect the execution of an action
has on the state of the system.

Action install ap

The application ap is installed in the system.
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Rule
s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧ ap = (id, cert, m, res) ∧
∀(ap′ : App), ap′ ∈ aps ∧ ap′ = (id′, cert′, m′, res′)→ id 6= id′ ∧

authPerms(ap, s) ∧m = (cmps, use, perm, exp, ext, del) ∧
∀(c : Comp), c ∈ cmps→ ¬compInstalled(c, s)
{ap} ∪ aps = aps′ ∧ addRes(ap, s) = v′ ∧

addDefPerms(ap, s) = psD′ ∧ grantPerms(ap, s) = ps′ ∧
s′ = (aps′, ps′, psD′, iCs, delPP, delTP, v′, img)

s ↪
install ap−−−−−−−−→ s′

Precondition All the permissions requested by application ap are
granted, either by the system or the user. In addition, ap’s id is not
assigned to any other application installed in s and none of its components
is already present in the current state of the system.
Postcondition Application ap is installed in the resulting state, as well
as its resources and the permissions defined by it. Moreover, all the
granted permissions, which allowed the installation, are registered for
future use. Apart from that, both states are equal.

Action start ic c

The running component ic starts the execution of component c.

Rule
compInstalled(c, s) ∧ ¬isCProvider(c) ∧

s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧
∃(c′ : Comp), running(ic, c′, s) ∧ compInstalled(c′, s) ∧

¬isCProvider(c′) ∧ canStart(c′, c, s)
∃(ic′ : iComp), insNotInState(ic′, s) ∧ runComp(ic′, c, s) = iCs′ ∧

s′ = (aps, ps, psD, iCs′, delPP, delTP, v, img)
s ↪

start ic c−−−−−−−→ s′

Precondition The component c belongs to an installed application in
state s and is not a content provider. Additionally, ic is a running instance
of a component c′ and the application containing this latter component
(installed in s) has the required permissions to create a new running
instance of component c.
Postcondition The instance ic′, which was not running in state s, is a
new running instance of the component c in the resulting state and that
is the only difference between both states.
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Action read ic cp u

The running instance ic reads resource u from content provider cp.

Rule
compInstalled(cp, s) ∧ existsRes(u, cp, s) ∧

∃(c : Comp), compInstalled(c, s) ∧ running(ic, c, s) ∧ ¬isCProvider(c) ∧
(canOp(c, cp, read, s) ∨ delPerms(c, cp, u, read, s))

s ↪
read ic cp u−−−−−−−−−→ s

Precondition The content provider cp is installed in state s and it
contains a resource that is pointed to by the URI u. The component ic is
a running instance of the installed component c, which is not a content
provider. Additionally, the application containing component c either
has the appropriate permissions to read cp in the state s or it has been
delegated the permissions to perform the operation read on the resource
identified by u. Notice that any component of an application is implicitly
granted the permissions that were delegated to a running instance of that
application.
Postcondition After the execution of this action, the system state
remains unchanged.

Action grantT ic cp act u pt

The running component ic delegates temporary permissions to activity
act. This delegation enables act to perform operation pt on the resource
assigned to URI u from content provider cp.
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Rule
compInstalled(cp, s) ∧ canGrant(u, cp, s) ∧ existsRes(u, cp, s) ∧

compInstalled(act, s) ∧ ∃(c : Comp), compInstalled(c, s) ∧
running(ic, c, s) ∧ canStart(act, c, s) ∧

(canOp(c, cp, pt, s) ∨ delPerms(c, cp, u, pt, s)) ∧
s = (aps, ps, psD, iCs, delPP, delTP, v, img)
∃ (ic′ : iComp), insNotInState(ic′, s) ∧

runComp(ic′, act, s) = iCs′ ∧ grantTPerm(ic′, cp, u, pt, s) = delTP ′ ∧
s′ = (aps, ps, psD, iCs′, delPP, delTP ′, v, img)

s ↪
grantT ic cp act u pt
−−−−−−−−−−−−−−−→ s′

Precondition The content provider cp is installed in state s. Permis-
sions can be delegated on cp for resource identified by the URI u. The
component act is an activity installed in s. The component ic is a running
instance of a component (c) that belongs to an installed application in s.
The application containing component act has the required permissions
to create a new running instance of component c. Additionally, the appli-
cation containing component c either has the appropriate permissions to
perform the operation pt on cp or it has has been delegated permissions
to perform pt on the resource identified by u.
Postcondition A new running component instance of activity act is
incorporated into the system state. Moreover, a new temporary delegated
permission corresponding to the running instance generated is added into
the temporary permissions delegations of state s. This delegation enables
act to perform pt on the resource assigned to u from cp. Apart from that,
both states are equal.

In Appendix A we present the rules of other actions that are relevant
to the formulation of the security properties discussed in Section 4.

One-step execution One-step execution preserves valid states, i.e. the
state resulting from the execution of an action on a valid state is also valid.

Lemma 1 ∀(a : Action)(s s′ : AndroidST),
validState(s)→ s

a
↪→ s′ → validState(s′)

The property is proved by case analysis on a, for each condition in validState,
using several auxiliary lemmas.
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As an illustrative example, we will depict the proof of one of these
lemmas, which claims that the state resulting from the installation of a new
application in a valid state partially meets the first condition imposed by
validState, i.e. the uniqueness of applications ids. For the proof, we will first
define predicate uniqueAppIds, which is formally defined as the following
proposition:

uniqueAppIds(s) =
∀(ap1 ap2 : App), appInstalled(ap1, s) ∧ appInstalled(ap2, s) ∧
ap1 = (id, cert1, m1, res1) ∧ ap2 = (id, cert2, m2, res2) →
ap1 = ap2

With this definition, the auxiliary lemma to be proved reads:

Lemma 2 ∀(ap : App)(s s′ : AndroidST), validState s→ s ↪
install ap−−−−−−−→ s′ →

uniqueAppIds(s′)

Proof: Let ap : App, s = (aps, ps, psD, iCs, delPP, delTP, v, img), and
s′ = (aps′, ps′, psD′, iCs′, delPP ′, delTP ′, v′, img′), such that validState(s),
and s ↪

install ap−−−−−−−→ s′ hold. Our aim is to prove uniqueAppIds(s′), i.e.:

∀(ap1 ap2 : App), {ap1, ap2} ⊆ aps′ ∧
ap1 = (id, cert1, m1, res1) ∧ ap2 = (id, cert2, m2, res2) →

ap1 = ap2

Let ap1 and ap2 be two applications installed in s′ with the same id.
We have to prove that ap1 and ap2 are in fact the same application.

First, given that s ↪
install ap−−−−−−−→ s′ is one of our hypothesis, we can use its

definition to claim that aps′ = {ap} ∪ aps. Therefore, every application in
state s′ is either ap or an application already installed in s. In particular,
applications ap1 and ap2 must fall into these two categories as well, giving
us four possible scenarios:

• Case 1: ap1 and ap2 are already installed in s.
Since s is a valid state, all the applications installed in it have unique
identifiers. Therefore, since ap1 and ap2 have the same id, they must
be the same application.

• Case 2: ap1 = ap and ap2 is installed in s.
Using hypothesis s ↪

install ap1−−−−−−−→ s′, we know by one of its preconditions
that, in order to be installed, application ap1’s id cannot be assigned
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to any other application in s. Since ap2 is installed in s, the ids for
ap1 and ap2 must be different, contradicting the original assumption.
Therefore, this case can never happen.

• Case 3: ap1 is installed in s and ap2 = ap.
Since this case is analogous to the previous one, we can easily use
similar arguments to conclude that this scenario is also impossible.

• Case 4: ap1 = ap and ap2 = ap.
This trivially implies that ap1 = ap2.

Hence, ap1 = ap2 for all possible cases. This concludes our proof. 2

System state invariants, such as state validity, are useful to analyze
other relevant properties of the model. In particular, the results presented
in the following section are obtained from valid states of the system.

4 Security Properties

In this section we present and discuss some relevant properties that can
be established concerning the Android security framework. Many of these
properties have already been analyzed elsewhere. Some of them, however,
have not been studied in previous work. All of the properties were successfully
stated and proved using our specification, which represents, up to our
knowledge, the first comprehensive analysis under the same formal model
of multiple safety and security properties of the Android system. We also
formally analyze properties (and their consequences) which show weaknesses
in the Android security system that could be exploited by attacks.

The corresponding Coq development can be found at [34]. To simplify
the presentation that follows we will assume all variables of type AndroidST
to be valid states, and variables of type App to be installed applications in a
given state, when there is no possibility of confusion. Components will also
be assumed to be installed.

4.1 Privileges

One of the most important properties claimed about the Android security
model is that it meets the so-called principle of least privilege, i.e. that “each
application, by default, has access only to the components that it requires to
do its work and no more” [3]. Using our specification we have proved several
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lemmas which were aimed at showing the compliance with this principle
when a running instance creates another component instance, reads/writes
a content provider or delegates/revokes a permission. In this setting, least
privilege means that a running instance will need to have the appropriate
permissions to execute the desired action in each of these scenarios. In
particular, the following specific properties were proved:

• if components c and c′ belong to the same application, then c can
start c′;

• if a component c′ is not exported and the component c belongs to
another application, then c cannot start c′;

• if components c and c′ belong to two different applications ap and
ap′, and c′ requires a permission that ap does not have, then c cannot
start c′;

• if components c and c′ belong to two different applications ap and ap′,
c′ requires no permission, but ap′ requires a permission that ap does
not have, then c cannot start c′;

• if ic can read/write the resource pointed by the URI u in cp, then
its associated component belongs to an application that has permis-
sion to do so, either from its installation or through a delegation of
permissions8;

• if a content provider cp and a component c belong to the same appli-
cation, then all running instances of c can read or write cp;

• if ic delegated permissions, temporary or permanent, to read or write a
resource pointed by the URI u in cp, then ic can perform this operation;

• if ic revoked permissions to read or write the resource pointed by the
URI u in cp, then ic can perform this operation.

All properties have a straightforward representation in our model. For
example, the first property above is captured by the following proposition:

∀(s : AndroidST)(ap : App)(c c′ : Comp),
inApp(c, ap) ∧ running(ic, c, s) ∧ inApp(c′, ap) ∧ ¬isCProvider(c′)→
Pre(s, start ic c′)
8In particular, ic can read/write the resource pointed by u in cp if ic has permission

due to a delegation via intents.
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where Pre(s, start ic c′) denotes the precondition of the action start ic c′

in state s.
While the fulfillment of the principle of least privilege when creating

a new instance is widely studied in the literature [32, 44], the analysis of
this principle when accessing a content provider or delegating/revoking a
permission has not been covered in other publications. Since our model
includes these two scenarios, we are able to formally state and prove lemmas
like the following:

Lemma 3 ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(cp : ContProv)(u : Uri), ap 6= ap′ ∧ inApp(c, ap) ∧ running(ic, c, s)∧
inApp(cp, ap′) ∧ ¬inManifest(cp, ap′) ∧ existsRes(u, cp, s)→
Pre(s, read ic cp u)↔ delPerms(c, cp, u, read, s))

Lemma 4 ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(cp : ContProv)(u : Uri)(v : Val), ap 6= ap′ ∧ inApp(c, ap) ∧ running(ic, c, s)∧
inApp(cp, ap′) ∧ ¬inManifest(cp, ap′) ∧ existsRes(u, cp, s)→
Pre(s, write ic cp u val)↔ delPerms(c, cp, u, write, s))

If cp is not exported and c belongs to a different application than a, then cp
can be read/written by c if and only if the application corresponding to the
latter has delegated permissions to do so.

Lemma 5 ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(cp : ContProv)(act : Activity)(pt : OpTy)(u : Uri),
inApp(c, ap) ∧ running(ic, c, s) ∧ inApp(cp, ap)∧
existsRes(u, cp, s) ∧ canGrant(u, cp, s)→
Pre(s, grantT ic cp act u pt) ∧ Pre(s, grantP ic cp ap′ u pt)

If c and cp belong to the same application and cp authorizes the delegation
on u, then ic can delegate both temporary and permanent permissions on u.

The above lemmas establish that even if a component of an application
is not exported, it can still be accessed from a different application. In
particular, Lemmas 3 and 5 show that it is possible for an external application
to obtain delegated permissions to access a non-exported content provider.
This contradicts the description of exported components given in the official
developer’s guide [4].

The interested reader is referred to [34] where he can find the Coq files
with the complete proofs of the lemmas we have just discussed.
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4.1.1 Revocation

One of the peculiarities of the Android security model is that the explicit
revocation of delegated permissions is relatively coarse-grained, in the sense
that it is impossible to only revoke permissions to a particular application.

Although this property was studied in [32], no formal statement or
proof is provided in that work. In our formal setting we are able to state
and prove the following lemma:

Lemma 6 ∀(s s′ : AndroidST)(ic : iComp)(cp : ContProv)(u : Uri)(pt :
OpTy), s ↪

revoke ic cp u pt−−−−−−−−−−−→ s′ → (∀(ap : App),¬delPPerms(ap, cp, u, pt, s′))
∧
(∀(ic′ : iComp)(c : Comp), running(ic′, c, s′)→ ¬delTPerms(ic′, cp, u, pt, s′)

If ic revokes the permission to perform operation pt over the resource pointed
by u in cp, this revocation will be applied to all the applications in the system.

A direct consequence of this property is that a running component can
revoke permissions that were not delegated by itself, which may result in
confusing and problematic scenarios [32]. For instance, suppose applications
A and B both have the same delegated permission p. In the case that an
application C revokes p with the intention that B does not longer use it, A
shall also lose that permission without further notice. Application A will just
find out when attempting a task that requires p, provoking then a runtime
exception.

4.1.2 Privilege Escalation

According to [31], in the Android system a privilege escalation problem
occurs when “an application with a permission performs a privileged task
on behalf of an application without that permission”. This privileged task
can be, for instance, invoking a system service, or accessing an application.
We have proved that a privilege escalation scenario involving either task is
possible in our model. The proof was divided in two separate lemmas, one
for each kind of privileged operation.

Lemma 7 ∀(s : AndroidST)(ic : iComp)(c : Comp)(sac : SACall),
¬Pre(s, call ic sac) ∧ ¬Pre(s′, call ic sac) ∧ compCanCall(c, sac, s′) ∧
s ↪

start ic c−−−−−−→ s′ → ∃(ic′ : iComp), running(ic′, c, s′) ∧ Pre(s′, call ic′ sac)

If ic cannot perform the API call sac but it starts the execution of a component
c which is able to do it, then it will be possible to invoke sac through an
instance of c.



52 G. Betarte, J. Campo, C. Luna, A. Romano

Lemma 8 ∀(s s′ : AndroidST)(c c′ c′′ : Comp)(ic : iComp),
¬isCProvider(c′′) ∧ ¬canStart(c, c′′, s) ∧ ¬canStart(c, c′′, s′) ∧
canStart(c′, c′′, s′) ∧ s ↪

start ic c′
−−−−−−−→ s′ →

∃(ic′ : iComp), running(ic′, c′, s′) ∧ Pre(s′, start ic′ c′′)

If ic cannot access a component c′′ but it starts the execution of a component
c′ which is able to do it, it will be possible to start c′′ through an instance
of c′.
Sketch of the proof: The proof of Lemma 8 is fairly straightforward: we
need to give a running instance of a component which is always able to access
component c′′ in state s′. We claim that this witness is the resulting instance
of executing the start operation in state s (hypothesis s ↪

start ic c′
−−−−−−−→ s′).

Calling this instance ic′, we have to prove that both running(ic′, c′, s′) and
Pre(s′, start ic′ c′′) are verified. The first predicate is trivially satisfied by
the definition of ic′. Next, the precondition of operation start, as described
in Section 3, requires ic′ to be able to start component c′′, which must be
installed in state s′ and be different from a content provider. While the first
and third requests are explicitly assumed in the hypotheses of the lemma,
we prove that component c′′ is installed in state s′ beginning by the fact
that, by hypothesis, c′′ is installed in state s and, since the start operation
does not change the installed applications, c′′ must be in s′ as well. The
proof of Lemma 7 is analogous to the one just described.

Intuitively, in the above lemmas ic represents the unprivileged running
component and c′ the component that has the permissions to make a API
call (predicate compCanCall in Lemma 7) or access another component,
respectively. If ic access c′ (creating a running instance of c′), then the
privileged operation will be available to be executed (by, at least, the
running instance just created).

In models that avoid privilege escalation it is not enough to call an
instance with the required permissions to perform a privileged operation. In
such models, extra controls are implemented in order to prevent the called
instance from being used as a deputy of an unprivileged component [22].
The issues just discussed were originally presented in [22, 28, 31] but referred
to earlier versions of the Android platform and used different approaches
to perform their analysis. Since our formalism fully captures both the
interaction between components and the execution of API calls in the
Android system we are convinced that the latest versions of the platform
are still vulnerable to this kind of privilege escalation problems.
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4.2 Permission Redelegation

The last property we want to discuss makes explicit that it is possible to
redelegate a permission an unlimited number of times. This particular aspect
of the Android security model was also studied by Fragkaki et al. [32] and
has been successfully represented in our formalism.

Lemma 9 ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(act : Activity)(cp : ContProv)(u : Uri)(pt : OpTy),
inApp(c, ap) ∧ running(ic, c, s) ∧ existsRes(u, cp, s) ∧
(delTPerms(ic, cp, u, pt, s) ∨ delPPerms(ap, cp, u, pt, s))→
Pre(s, grantT ic cp act u pt) ∧ Pre(s, grantP ic cp ap′ u pt)

If ic or an application ap have a delegated permission, they can redelegate it
in a temporary or permanent way.

As a corollary of this property, if a running component receives a
temporal permission delegation, then any instance of that component can
redelegate the given permission to the application itself in a permanent
way. Consequently, a permission that was originally temporarily delegated,
ends up being permanently delegated [32]. This behavior means that in
practice, the two delegation mechanisms are not substantially different. For
example, a running component can receive a permission delegation through
an intent because the sender wants this permission to get revoked when the
recipient finishes execution. However, the receiver could redelegate the given
permission to its own application in a permanent way so that it can only be
revoked via the method: revokeUriPermission(); which would contradict
the original purpose of the sender.

5 Requesting (and Granting) Permissions at Run
Time

On all versions of Android an application must declare both the normal and
the dangerous permissions it needs in its application manifest. However, the
effect of that declaration is different depending on the system version and
the application’s target SDK level [8]. In particular, if a device is running
Android 6.0 (Marshmallow) and the application’s target SDK is 23 or higher
the application has to list the permissions in the manifest, and it must
request each dangerous permission it needs while the application is running.
The user can grant or deny each permission, and the application can continue
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to run with limited capabilities even if the user denies a permission request.
This modification of the access control and decision process, on the one
side, streamlines the application install process, since the user does not need
to grant permissions when he/she installs or updates an application. On
the other hand, as users can revoke the (previously granted) permissions at
any time, the application needs to check whether it has the corresponding
privileges every time it attempts to access a resource on the device.

5.1 Impact on the Formal Model

We have already modified the (formal) model presented and discussed in
Section 3 so as to consider the run time requesting/granting of permissions
behavior introduced in Android Marshmallow. We shall not describe in detail
the changes that were carried out and shall limit ourselves to provide some
hints concerning the impact the changes had on the essential components of
the model:

• The application definition, as depicted in Figure 2, has not changed.
In particular, the AndroidManifest remains the same

• The state (of type AndroidST) remains unchanged. Also, the validity
conditions of state (validState) remain invariant.

• Action install is simplified; the controls associated with dangerous
permissions are removed.

• We have already incorporated actions to model the granting and
revocation of a permission at run time.

• The properties formalized in Section 4 remain valid.

5.2 On the Security Policies

In this section we briefly discuss how the management of permissions has
been affected by the design changes introduced in Android Marshmallow.

Delegated permissions The official Android documentation does not
specify what should happen when permissions acquired and delegated at
run time by an application are revoked by the user. The delegation of a
permission on a given resource might grant an application access to sensitive
information that otherwise it would not have had. A (malicious) application
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could gain a permission for access sensitive data indefinitely in the case an
user revokes a permission and not all delegations and re-delegations of this
permission are also revoked.

Permission groups A significant change in the new version of Android
is that all dangerous system permissions belong to permission groups. For
example, if an application requires permission to read contacts, it must re-
quest access to the group android.permission-group.CONTACTS that allows
the application to read contacts, but also write and access the user’s profile.
The biggest drawback with this change is that individual permissions remain.
Applications developed in the latest version of Android could start applica-
tions developed in previous versions, using the individual permissions that,
in principle, should not have9. This behavior can induce privilege escalation
and also shows a lack of transparency with the user, who should accept that
their applications have permissions to perform operations available on your
sensitive data.

Automatic Internet access Another significant change is that permis-
sion to access the Internet becomes normal type. This means that all
applications can potentially access the Internet without that permission
being granted by the user of the device. For example, a flashlight application
can access the Internet and the user can not do anything about it. Android
developers justify this change by saying that users are still the ones who
grant permissions to access sensitive data. However, applications which
by their nature can manipulate sensitive data have now also automatically
access to the Internet. For example until Android Lollipop, a camera appli-
cation which had granted access to images but was denied access to the web
could be considered a safe application. Users whose devices run Android
Marshmallow have no means to know, for instance, if the camera has Internet
access, so these applications would potentially no longer be safe.

Missing permissions Android Marshmallow allows users to revoke per-
missions from any application at any time. A developer should test his
application to verify that it behaves properly when it is missing a needed
permission. In particular, the user can grant or deny each dangerous permis-
sion, and the application can continue to run with limited capabilities even
after a user has denied a permission request.

9Individual permissions obtained (indirectly) from a permission group.
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Social engineering attacks The request of dangerous run time permis-
sions might give rise to the generation of new patterns of attacks based on
social engineering. A detailed analysis in this direction has already been
identified as future work.

6 Related Work

Existing smartphone security surveys review the state of the art regarding
popular mobile OS platforms [46, 41]. In particular, La Polla et al. [41]
surveyed smartphone security threats and their solutions for the period
2004–2011, but has very limited coverage of Android. In the survey papers [29,
42, 47] the authors focus on the Android platform, but they only perform
an informal analysis of the security model.

Some work have analyzed the limitations and weaknesses of the Android
security model. The study of most of the properties that we have formally
verified and presented in this paper is scattered in several publications from
the literature. The results presented in those publications are formulated us-
ing different formal settings in accordance to the type of study and properties
in which they are interested.

Felt et al. [31] study, although not formally, Android applications to
determine whether Android developers follow least privilege policies when
declaring applications permission requests. The authors develop in particular
an OS mechanism for defending against permission re-delegation (when an
application with permissions performs a privileged task for an application
without permissions). Our work initiates the development of an exhaustive
formal specification of the Android security model from which it is possible
to formally reason, for instance, about the property of least privilege for any
application.

In Chaudhuri’s work [23] a typed language to model the communication
between different components of the Android platform is defined. Given
an expression defined in this language, if a type can be inferred for it, the
operation being modelled is in compliance with some desirable security prop-
erties concerning the integrity and confidentiality of the information being
exchanged. Analogously, Armando et al. [14] and Bugliesi et al. [22] present
a type and effect system in which they model basic Android components
and the semantics of some operations. Although these three publications
follow similar approaches, they all define different new languages, which are
focused on the features being analyzed in each work. Additionally, no formal
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guarantee is provided of the correctness of the results obtained.
In the case of the work by Fragkaki et al. [32], instead of defining

a typed language, the authors generalize the Android permission scheme
and propose an abstract formal framework to represent the systems that
meet these general characteristics. This model is used to enunciate security
properties that, according to the authors, any instantiation should obey. In
this way, the Android platform is represented as a particular instance of
the proposed abstract model and its formal analysis consists of checking if
the enunciated security properties actually hold on it. As pointed out in
Section 4, many of the properties studied in [32] were selected to be proved
in our own model. The success in doing so shows that our formal framework
is expressive enough to state and prove the properties in question, offering
the support of a widely used tool, such as Coq, in all the stages of the proof
development process.

Finally, Shin et al. [44] adapt the approach followed by Zanella et
al. [17] to build a formal framework that represents the Android permission
system, which is based on the Calculus of Inductive Constructions and it is
developed in Coq, as we do. However, that formalization does not consider
several aspects of the platform covered in our model, namely, the different
types of components, the interaction between a running instance and the
system, the reading/writing operation on a content provider and the seman-
tics of the permission delegation mechanism. These last two aspects of our
model allow us to formulate and prove security properties which cannot be
formally studied in Shin’s model, such as Lemmas 6, 8, and 9, addressed in
Section 4. Furthermore, there are important differences between the two
models regarding the way of representing, for example, the applications and
its components, the state of the platform, the AndroidManifest file and the
operations execution. We claim that the results we have obtained constitute
a quite complete, expressive and extensible model of the Android permis-
sion system. Moreover, we understand our contribution as an alternative
adaptation of the work presented in [17] rather than an extension of the one
proposed by Shin.

7 Conclusion and Future Work

This work constitutes an essential step towards the development of an
exhaustive formal specification of the Android security model that includes
elements and properties that have been partially analyzed in previous work.
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Formal model 1k
Valid state invariance 3k
Security properties 1.5k
Total 5.5k

Figure 4: LOC of Coq development

The formal model considers the latest version of the security mechanisms
of the platform. Furthermore, we present the proof of security properties
concerning the Android permission mechanisms that have not previously been
formally verified. Thus, this specification represents, up to our knowledge,
the first comprehensive analysis under the same formal model of several
security properties of Android. The formal development is about 5.5kLOC
of Coq (see Figure 4), including proofs, and constitutes a suitable basis for
reasoning about Android’s security model.

There are several directions for future work. We are already working
in enriching the model so as to include the actions of sending and receiving
broadcasts and implicit intents, application update, and management of
signatures and certificates. We are also interested in exploring the formal
analysis of the novel mechanisms of Android that make it possible to grant
permissions at run time. In particular, we would like to explore properties
of permission delegation in this context.

We are also elaborating a formal analysis of a variety of attacks that
target specifically the Intents for malicious purposes, such as indicated
in [43, 25]: i) Intent spoofing: Applications communicate to other applications
even thought they are not meant to. This attack exploits the lack of necessary
security configurations, allowing the invocation of internal Activities by
external applications. ii) Permission Collusion: An application that only has
access to a restricted set of permissions executes a permission escalation, or
augmentation attack by invoking another collaborating application through
Intents. To perform an attack of this type, malevolent developers could
deceive users to install another collaborating malware application that is
used to compromise the privacy of the data. The common idea behind these
attacks is the abuse of the Intent mechanism to obtain unauthorised access
to private information. We are working on proving lemmas to ensure the
absence of such attacks under certain conditions expressible on the state of
the system.
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We are also interested in producing an alternative definition of the
model which would be better suited for the verification of a toy implementa-
tion of the control access decision procedure. Using the program extraction
mechanisms provided by Coq, we expect to derive a certified Haskell pro-
totype of the reference monitor following the approach used in [15]. This
work would proceed as follows: i) An executable specification of the control
access decision procedure is written using the Coq proof assistant. This
ultimately amounts to the definition of the functions that implement the
execution of the specified actions. Those functions must be defined so as
to conform to the axiomatic specification of action execution as specified
in the model. ii) The next step is the construction of the proof that the
executable specification of the control access decision procedure correctly
implements the axiomatic model. It shall be formally stated as a soundness
theorem and verified using the Coq proof assistant. iii) Finally, using the
extraction mechanism of Coq we shall be able to derive the corresponding
Haskell code from the verified Coq code of the decision procedure.
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A Semantics of Actions call, grantP, revoke, and
stop

The formulation of the propositions that establish the pre- and postcondition
of each action make use of auxiliary predicates and functions, which are
describe in Table 3.

The semantics of the actions are depicted in Figures 5, 6, 7, and 8.

grantPPerm(ap, cp, u, pt, s) returns the permanent permissions delegations
of state s with the addition of the permanent
delegated permission to application ap to perform
the operation pt on the resource identified by u
of the content provider cp.

revokePPerm(cp, u, pt, s) returns the permanent permissions delegations
of state s without the permanent delegated per-
missions on the resource identified by u, of the
content provider cp, to perform the operation pt.

revokeTPerm(cp, u, pt, s) returns the temporary permissions delegations
of state s without the temporary delegated per-
missions on the resource identified by u, of the
content provider cp, to perform the operation pt.

isSystemPerm(p) holds if p is a predefined permission in the system.
permlSAC (p, sac) holds if p is required to call sac.
stopIns(ic, s) returns the running component instances of state

s without the instance ic whose execution is being
stopped.

revokeTPermsIns(ic, s) returns the temporary permissions delegations of
state s without the temporary delegated permis-
sions to the instance ic.

Table 3: Helper functions and predicates
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Action call ic sac

The running component ic makes the API call sac.

Rule
∃(c : Comp), compInstalled(c, s) ∧ running(ic, c, s) ∧

s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧ ∀(a : App)(p : Perm),
isSystemPerm(p) ∧ a ∈ aps ∧ inApp(c, a) ∧ permSAC (p, sac)→ (a, p) ∈ ps

s ↪
call ic sac−−−−−−−−→ s

Precondition The component ic is a running instance of the installed component
c in state s and the corresponding application has the necessary permissions to
make the API call sac.
Postcondition After the execution of this action, the system state remains
unchanged.

Figure 5: Action call

Action grantP ic cp a u pt

The running component ic delegates permanent permissions to application a.
This delegation enables a to perform operation pt on the resource assigned to
URI u from content provider cp.

Rule
compInstalled(cp, s) ∧ s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧

canGrant(u, cp, s) ∧ existsRes(u, cp, s) ∧ inApp(c, a) ∧
∃(c : Comp), compInstalled(c, s) ∧ running(ic, c, s) ∧

(canOp(c, cp, pt, s) ∨ delPerms(c, cp, u, pt, s))
grantPPerm(a, cp, u, pt, s) = delPP ′ ∧

s′ = (aps, ps, psD, iCs, delPP ′, delTP, v, img)

s ↪
grantP ic cp a u pt
−−−−−−−−−−−−−−→ s′

Precondition The component cp is a content provider installed in state s.
Permissions can be delegated on cp for resource identified by the URI u. The
application ap is installed in s. The component ic is a running instance of a
component (c) that belongs to an installed application in s. Also, the application
containing component c either has the appropriate permissions to perform the
operation pt on cp or it has delegated permissions to perform pt on u.
Postcondition A permanent delegated permission to application ap to perform
the operation pt on the resource identified by u, of the content provider cp, is
added to the permanent permissions delegations of state s, and that is the only
difference between both states.

Figure 6: Action grantP
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Action revoke ic cp u pt

The running component ic revokes delegated permissions on URI u from content
provider cp to perform operation pt.

Rule
compInstalled(cp, s) ∧ s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧

existsRes(u, cp, s) ∧ ∃ (c : Comp), compInstalled(c, s) ∧
running(ic, c, s) ∧ canOp(c, cp, pt, s)

revokeTPerm(cp, u, pt, s) = delTP ′ ∧
revokePPerm(cp, u, pt, s) = delPP ′ ∧

s′ = (aps, ps, psD, iCs, delPP ′, delTP ′, v, img)
s ↪

revoke ic cp u pt−−−−−−−−−−−−−→ s′

Precondition The content provider cp is installed in state s and it contains
a resource that is pointed to by the URI u. The component ic is a running
instance of the installed component c. Additionally, the application containing
component c has the appropriate permissions to perform the operation pt on cp.
Postcondition The temporary and permanent delegated permissions on the
resource identified by u, of the content provider cp, to perform the operation pt
are removed from the temporary and permanent permissions delegations of state
s. Apart from that, both states are equal.

Figure 7: Action revoke

Action stop ic

The execution of the running instance ic is stopped.

Rule
s = (aps, ps, psD, iCs, delPP, delTP, v, img) ∧ ∃(c : Comp),

compInstalled(c, s) ∧ running(ic, c, s)
stopIns(ic, s) = iCs′ ∧ revokeTPermsIns(ic, s) = delTP ′ ∧

s′ = (aps, ps, psD, iCs′, delPP, delTP ′, v, img)

s ↪
stop ic
−−−−−→ s′

Precondition The component ic is a running instance of a component that
belongs to an installed application in state s.
Postcondition The instance whose execution is being stopped is not present in
the resulting state and all the permissions delegated temporarily to that instance
are revoked. Apart from that, both states are equal.

Figure 8: Action stop
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