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Abstract. The identification of internal forces is not only important to preserve the structure integrity but 

also to understand how their certain elements and connections work. Two examples of laboratory test are 

discussed in this paper. The first is related to an aluminium rod mounted in a stand where compression load 

was applied. Due to the relaxation phenomenon force prediction becomes even more important in case of 

compressed bolts. Thus, the second example is related to a bolted flange connection during static tensile 

test. Four out of six bolts were equipped with washer load cells. Alternatively, selected bolts were equipped 

with piezoelectric transducers (actuator and sensor) in order to measure signals of elastic waves. It was 

noted that the load increasing causes changes in the measured signals. Principal components analysis was 

used for dimensionality reduction of measured signals. The aim of this study is to investigate the use of 

elastic waves and artificial neural networks for the purpose of the force of identification. Examples of 

preliminary results have shown that axial forces may be estimated with relatively good accuracy.

1 Introduction 

Measurements of physical quantities describing the state 

of structural elements are important in many industrial 

and engineering applications, including civil engineering. 

Most often they are carried out during trial loads and 

laboratory tests of prototype solutions to study the 

behaviour the entire structure and its individual 

components. The second area are non-destructive tests 

(NDT) and structural health monitoring (SHM) systems 

which enhance safety and reliability of structures. Among 

them, there are several solutions to detect anomalies or 

damages, classify type of a damage, predict loads or 

internal forces and to identify material parameters [1-4]. 

 There exists a group of joints where the level of 

pretension force influences the strength of a slip 

resistance connection. In this case, pretension force 

changes over time may become a very important issue for 

the structure integrity, especially in cyclically-loaded 

constructions such as bridges, telecommunication towers 

or wind turbines. 

One of the major problems with the use of bolted 

joints is the precision of tightening method selected to 

achieve an accurate preload level. Insufficient preload of 

bolts is a frequent reason of bolted joint failures. There 

are few main tightening methods used to control the 

preload of a threaded fastener. Of course, they differ in 

terms of accuracy. For everyday purposes the clamping 

force can be approximated by measuring the tightening 

torque (±25%), whereas the highest accuracy is achieved 

using strain gauges or ultrasonic sensing (±1%). The 

force in a single bolt can be estimated using commercial 

solutions like ultrasonic load monitoring devices. 

Measurement uncertainty of washer like strain or 

piezoelectric load cells is about ±10%. Some of them 

were compared by Fric et al. [5]. Unfortunately, their 

price can not be possibly neglected and thus in long term 

research conducted strain gauges are used, either glued 

onto the bolt or fitted inside the bolt shank. 

In this paper a new idea of the force identification is 

proposed. It takes an advantage of the elastic wave 

propagation phenomenon. Piezoelectric transducers are 

used to introduce and measure time signals of elastic 

waves. Nazarko and Ziemiański [6] have used this idea in 

the field of SHM and non-destructive damage detection 

in various materials. Chaki and Bource [7] have studied 

guided ultrasonic waves to monitor the stress levels in 

steel strands.  

Laboratory tests were performed in two different types 

of tasks: 1) an aluminium rod under compression, 2) bolts 

of a flange connection under tension in a static test 

machine. It was noticed that force changes influence 

signals measured by sensors. It was reflected also in 

calculated principal components, which are often used to 

compress the signals, see Nazarko [8] or Chen et al. [9], 

where also other signal compression methods are 

compared. The obtained patterns and data base were then 

used for the training of Artificial Neural Networks 

(ANNs). Preliminary obtained results showed that ANNs 

are able to predict the force in bolts with reasonably well 

accuracy. 
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2 ANNs 

ANNs are widely used in many areas and tasks. The 

assumption is that ANNs are able to learn an unknown 

relation between an input and an output data. It typically 

requires large amounts of data acquired in computational 

or experimental investigation. In the approach described 

in this article, standard ANNs were trained to predict 

axial forces in the investigated elements. 

 The learning process consists of minimizing the 

computed error value between the target and the network 

outputs obtained for successive iterations. Testing and 

validating is carried out based on the data that the 

network has never seen before. The ability to produce 

such a prediction for the training set is called network 

generalization [10]. 

 The force identification provides information about 

the predicted value of that force with respect to 

parameters that are sensitive enough to its changes. The 

correct selection of these parameters is the most 

important issue in any identification task. Then, the 

accuracy of the neural predictor may be obtained by 

tuning the architecture or different training strategies. For 

the mentioned task feed forward ANNs are commonly 

used [10]. They consist of an input (first) layer, usually 

one or two hidden layers and an output layer. The number 

of elements in the input and output layers is determined 

by the size of the learning and testing data sets. 

3 Force prediction 

3.1 Compression force in an aluminium rod 

The aluminum rod (12 mm in diameter, length 70 cm) 

was placed in a didactic stand (Gunt, WP 120, Fig. 1) and 

subjected to compression loads. The force values were 

varying from 100 to 2000 N with increments of 50 N. 

Piezoelectric transducers (Noliac CMAP06) were 

mounted at both ends of the rod. One of them was used to 

actuate the propagation of elastic waves and the other 

 

Fig. 1. A laboratory setup and boundary conditions of the 

studied aluminium rod under compression test 

one to capture the answer of the specimen studied. An 

excitation was defined as 3.5 sine wave modulated by 

Hanning window with amplitude of 2 V. The received 

time signals were recorded using a digital oscilloscope 

with a sampling frequency of 20 MHz, see Fig. 1.  

 The load was applied by tightening the screw located 

on the top of the tripod. The magnitude of the force was 

hydraulically measured and displayed on a force gauge. 

 An objective of the test was to estimate the amount of 

compressive forces based on changes in the parameters of 

registered elastic wave signals. These experiment was 

carried out in four series  in which the specimen was 

gradually loaded and then unloaded to the initial level of 

its force. The load ranges and the number of elastic wave 

time signals recorded were summarized in Table 1. In this 

way 248 signals were collected for further investigations. 

Table 1. Load ranges and the number of signals recorded in 
each of the test series 

Series Load 

(with 50 N step) [N] 
Number of signals 

recorded 

1 100 – 1000 – 100 37 

2 100 – 1500 – 100 57 

3 – 4 100 – 2000 – 100 77 

 During the rod loading its buckling appeared when 

the force was bigger than 500 N and their deflection was 

increasing with the load magnitude. 

3.1.1 Signal analysis 

The analysis of elastic waves signals was aimed at 

checking whether parameters of recorded signals change 

as a result of load changes (in this case compression was 

varying). Examples of time signals recorded at two 

selected load values and theirs spectral amplitudes are 

shown in Fig. 2. One can notice that differences in signals 

are clearly visible there. 

 Next, for each signal, their amplitude and time of 

flight (ToF) observed during the experiment were also 

determined. In this case it was necessary to increase the 

sampling rate from the initial value of 5 to 20 MHz to 

capture changes in the ToF values. The signals were also 

filtered with bandwidth of 100 and 700 kHz. The 

obtained results are presented in Fig. 3a. It can be noticed 

that there is a certain relation in the amplitude changes, 

however, at the same time there are quite significant 

differences between the results of the first and the other 

series (2-4). A similar tendency is also visible in Fig. 3b, 

where signal ToF changes were shown. On this basis, it 

may be concluded that load increasing was accompanied 

by increasing in the speed of guided waves. However, the 

use of ToF requires the further increasing of the signal 

sampling rate. It can be achieved by the reduction of the 

signal time base. Unfortunately, it leads also to the 

shorter signals in time and the smaller amount of 

information is acquired (i.e. only 0.2 ms from the signals 

in Fig. 2a).  

 For the needs of the performed task, the measured 

signals have also been transformed into the domain of 
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Fig. 2. (a) Exemplary signals recorded at two certain load 

levels and (b) its spectral amplitudes (first series) 

 

Fig. 3. Variations of selected signal parameters: a) amplitudes, 

b) phase shift 

principal components [6, 8]. It allows computation of 

linear transformation  

 y = Ws 

that maps data from a high dimensional space s ⊂ RN to 

a lower dimensional space y ⊂ RK of principal 

components, without much loss of information. Due to 

the features of the PCA transformation (matrix 

multiplication), the elastic wave signals were resampled 

with the rate r = 10. As a result, their length was reduced 

from 10002 to 1001 points. The obtained values of the 

first three main components are presented in Fig. 4. The 

representation of multidimen-sional data in 3D space 

allows to seea certain relationship between particular 

series of measurements. Once again, the largest variations 

of the obtained signal parameters can be seen in the first 

stage of the loading (estimated as a range up to 400 N).  

Despite this, it was assumed that the data will be used to 

train ANN to predict a magnitude of the compressive 

force. 

Fig. 4. Projection of multidimensional data into the first three 

principal components 

3.1.2 Compression force prediction 

The patterns obtained from different measuring series (1-

4) were separated into the following sets: learning (1 and 

3), validating (2) and testing (4). Only patterns related to 

the series 1-3 were used during the ANN training, while 

those from series 4 were used only to simulate the 

prediction after training process was completed. 

 The number of 12 principal components was used to 

build the input vector. In the designed ANN, only one 

hidden layer was defined and consisted of 5 neurons. This 

number has been changed within the range of 3 to 8, 

however, no significant improvement in the prediction 

accuracy was found. Thus, the ANN’s architecture  which 

was used in this task can be schematically described as 

12-5-1. 

 Exemplary results obtained after ANN training are 

presented in Fig. 5. It shows a comparison of the obtained 

values of predicted forces (output) in relation to the 

expected values of validating patterns (target). The 

correlation of the this results is very clear. The next graph 

presents the output force magnitudes in relation to the 

load history. In addition, the learning, testing and 

validation sets are highlighted by colors (Fig. 6). In this 

case the largest obtained validation error did not exceed 

80 N. If we refer this value to the maximum force, it 

gives a relative error of 4%. 

 

Fig. 5. Exemplary results of the compression force prediction –  

validation set 

b) 

a) 

a) 

b) 
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Fig. 6. Force magnitudes estimated by the ANN with respect to 

the learning, testing and validation sets 

3.2 Force prediction in screws of a flange 
connection 

3.2.1 Idea of force monitoring in screws 

The idea proposed in this paper takes advantage of the 

elastic wave propagation phenomenon. Two piezoelectric 

transducers (single or placed in two stacks) can be used to 

excite and to measure signals. The most convenient way 

of measuring is probably placing the transducers on one 

side of the screw, but they can use in both a pulse-echo 

and pitch-catch configurations. It can be expected that 

even relatively small change in a bolt force will affect the 

signals measured (its time of flight, amplitude, frequency, 

etc.), what was confirmed by Kim and Hong [11] and 

Ding et al. [12]. Parameters describing the force changes 

can be used for training an efficient diagnosis system 

which is based on ANNs. The advantage over existing 

solutions is that it becomes possible to estimate changes 

in force over time, detection of yielding, fatigue damages 

and monitoring of the structural integrity.  

3.2.2 Laboratory setup 

The laboratory setup consisted of a signal generator (TTi) 

where an excitation was defined in the form of 2.5 sine 

wave modulated by Hanning window. Operational 

frequency was set to 52 kHz. Then the signal was 

amplified and split to actuators and synchronization 

channels. Two digital oscilloscopes (LeCroy) where used 

to store signals received from all the sensors. 

Piezoelectric transducers (Noliac CMAP6) were mounted 

on the bolt's head (excitation) and at the end of its shank. 

The sensor wax used enables trouble-free recovery of all 

sensors while their cables were fixed in single points with 

weak adhesive which holds them during test and allows a 

non-invasive removal. 

 During initial tests the bolt was equipped with two 

transducers on its head and one on the end. In this case 

two measurements scenarios were studied: one related to 

impulse-echo and the second to pitch-catch approach. It 

was decided at this stage of investigation that only pitch-

catch signals would be used for the purpose of training 

the diagnosis system. 

3.2.3 Single bolt in a static test machine 

A single bolt M16 class 8.8 and 125 mm length was 

placed in the static test machine. It was decided that loads 

will be applied in four cycles with increasing force levels 

up to 25, 50, 75 and 100 kN. The force, in this case, was 

related with load history read out from the test machine. 

The set of these values was then used as the output vector 

during the process of ANNs training. 

 A total of 602 signals were recorded at intervals of 

5 s. Examples of signals obtained at selected load stages 

were shown in Fig. 7. Amplitude for the selected signals 

changes are clearly visible there. All the recorded signals 

were then processed using PCA. Projection of two first 

principal components is shown in Fig. 8. These values, 

however, do not indicate a simple dependence on load 

changes that would allow direct prediction of forces. 

Therefore, principal components were used to train an 

ANN for the purpose of force identification. 
Fig. 7. Signals selected from the load history of the single bolt 

under cyclic load test 

Fig. 8. Projection of two first principal components calculated 

from elastic wave signals recorded in the single bolt under 

cyclic load test 

 Patterns for testing and validation were selected with 

constant distribution. It means that every third signal was 

chosen for testing, one third of them was used for 

validation, while the others patterns have formed learning 

set. One of the best obtained ANNs training results were 

shown in Fig. 9. A mean testing error was equal to 1.88 

kN (less than 2%) with standard deviation of 1.64 kN. 

3.2.4 A flange connection under static tests 

An investigated flange connection (Fig. 10) consisted of 

six bolts M16 class 5.8. Only four of them were equipped 

with a washer strain load cells (bolts no. 1, 2, 4 and 5, see 

Fig. 10). The other two had spacers that imitate the force 

sensors. The forces obtained during static tests defined an 

output vector for ANNs training. It can be seen in Fig. 11 

that forces in certain bolts are not the same. This may be 

related to geometric imperfections of the connection 

(nonsymmetric) or measurement uncertainty (this kind of 

sensors is sensitive to the washers hardness, a screw may 

touch the edge of the hole). 
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Fig. 9. Results of ANNs training based on cyclic loads of 

a single bolt (constant patterns distribution): validation error 

Fig. 10. A flange connection under static tests and a scheme of 

screw’s numbers 

Fig. 11. Force changes measured in bolts of a flange connection 

under static tests 

 Four bolts were equipped also with piezoelectric 

transducers, but their numbers were slightly different, i.e. 

2, 3, 4 and 5. Therefore the bolts no 3, which were not 

equipped with the washer load cell, may be used for the 

purpose of unknown force prediction based on recorded 

elastic wave signals and trained ANNs with data from the 

other bolts. 

 Elastic wave signals comparison at the initial stage 

shows that they are not exactly the same. Even after their 

normalization to the range ±0.9, the differences in the 

signals are well visible (Fig. 11). Principal components 

calculated also clearly differ between the individual bolts 

(Fig. 12). There may be several reasons in this case: 

piezoelectric transducers are not placed exactly at the 

same position, the thickness of the wax layer is not the 

same, the signals are affected by the closest components 

of the connection (washers, brackets on the pipe, weld 

thickness, etc.). Despite these differences, an attempt was 

made to train ANNs for the purpose of force prediction. 

 
Fig. 12. Time signals of elastic waves measured at the initial 

state in four bolts investigated 
 

 

Fig. 13. Projection of two first principal components calculated 

for all signals received (four bolts and full load history). 

 First, it was assumed that data from all bolts (2, 4, 5) 

would be used for the purpose of ANNs training, 

assuming a constant distribution of patterns for testing 

and validation. The obtained results are very promising, 

what is shown in Fig. 14. The predicted force changes are 

marked there by points Ru, Rt, Rv with respect to the 

relation observed during the experiment (comp. Fig. 11 

and 14). However, if patterns from the bolts no. 3 were 

provided to the ANN trained, its generalization ability 

can not be accepted. It was expected that the predicted 

force values would be on the same level like the others, 

while the obtained results are quite unpredictable in the 

initial phase (see “Rp-” path in Fig. 14).  

Fig. 14. Force prediction based on the validation set 

4 Conclusions and final remarks 

The obtained results of preliminary tests have showed 

that ANNs are able to find the relation between the 

changes in signals and force variations. In case of the 

aluminium rod under compression loaded up to 2000 N, 
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the largest prediction errors did not exceed 80 N. It gives 

the accuracy of 96% if compared to the load range. 

 A more detailed analysis of amplitude and phase 

changes requires the higher signal resolution where 

sampling frequency is more than 20 MHz. 

 In the case of the force prediction in bolts of the 

flange connection, the accuracy was even more than 98%, 

when testing and validation patterns were selected with 

constant distribution. It seems, however, that the principal 

components do not contain information suitable enough 

for precise prediction of axial forces in bolts that were not 

included into the training patterns database (even in case 

of the single connection where environmental conditions 

were the same).  

 The signals measured showed significant differences 

and therefore, at this stage of the research, the trained 

ANNs were not able to generalize data and to predict the 

unknown forces with acceptable accuracy. 

 In the future work the other signal parameters will be 

studied (ToF, signal amplitudes, wavelet coefficients, 

etc.) in order to improve the accuracy of the force 

prediction. The set of training patterns should be also 

extended with data related to experimental data 

performed on the wider group of bolts in order to find the 

cause of the difference observed in the measured signals 

of elastic waves. 
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