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Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) ameliorates

motor function in patients with Parkinson’s disease and allows reducing dopaminergic

therapy. Beside effects on motor function STN-DBS influences many non-motor

symptoms, among which decline of verbal fluency test performance is most consistently

reported. The surgical procedure itself is the likely cause of this decline, while the influence

of the electrical stimulation is still controversial. STN-DBS also produces widespread

changes of cortical activity as visualized by quantitative EEG. The present study aims

to link an alteration in verbal fluency performance by electrical stimulation of the STN to

alterations in quantitative EEG.

Methods: Sixteen patients with STN-DBS were included. All patients had a high

density EEG recording (256 channels) while testing verbal fluency in the stimulator on/off

situation. The phonemic, semantic, alternating phonemic and semantic fluency was

tested (Regensburger Wortflüssigkeits-Test).

Results: On the group level, stimulation of STN did not alter verbal fluency performance.

EEG frequency analysis showed an increase of relative alpha2 (10–13Hz) and beta

(13–30Hz) power in the parieto-occipital region (p ≤ 0.01). On the individual level,

changes of verbal fluency induced by stimulation of the STN were disparate and

correlated inversely with delta power in the left temporal lobe (p < 0.05).

Conclusion: STN stimulation does not alter verbal fluency performance in a systematic

way at group level. However, when in individual patients an alteration of verbal fluency

performance is produced by electrical stimulation of the STN, it correlates inversely with

left temporal delta power.

Keywords: Parkinson, DBS, quantitative EEG, automated artifact removal, verbal fluency

INTRODUCTION

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is widely used in advanced
Parkinson’s disease (PD) to treat motor complications. The subthalamic nucleus is the preferred
target for DBS in most cases (1). STN-DBS improves motor manifestations in the limbs, while axial
motor manifestations and language are improved variably, to a lesser extent, or not at all (2).
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As for neuropsychological performance, verbal fluency (VF)
performance is reportedly impaired by STN-DBS (3–7), while
there is less evidence for GPi-DBS causing a decline in VF (8).
The pathophysiological reason for this decline is still in debate
(8). Chouiter et al. found that lesions by stroke or tumor of the
left basal ganglia impair semantic and phonemic VF performance
(9). However, to our current knowledge there is no study showing
a direct long-term effect of precise microsurgical placement of
electrodes on neuropsychological capacity. Interestingly, in a
study by Isler et al. (10) reduction in cognitive flexibility after
microsurgical penetration of the caudate nucleus recovered after
12 months. Anatomical studies in non-human primates have
yielded evidence of a subdivision of the STN into a motor
portion, an associative portion, and a smaller limbic portion
(11, 12), while the associative portion is highly connected to
the dorsolateral prefrontal and lateral orbitofrontal cortex. STN
stimulation lessens the amount of language-related basal ganglia
output via the thalamus and thus reduces thalamo-cortical drive
(13). As striatal dysfunction is thought to induce set-shifting
deficits by way of secondary dysfunction of the prefrontal cortex
(4), this may partly account for decrease of VF after DBS. While
it has been shown that the decline of VF after STN-DBS is an
effect of the surgical procedure/perioperative activities (14), the
influence of the electrical stimulation on VF performance is still
controversial.

Both, the temporal and frontal lobes are involved in semantic
and phonemic fluency tests. The left hemisphere is generally
more important for VF than the right, and frontal lobes are more
relevant for phonemic than for semantic fluency (15, 16).

Reduction of VF performance correlates with a reduction
of median frequency or an increase of relative power in lower
frequency bands in EEG (17).

In this study we aim to characterize the STN-stimulation-
related changes in semantic, phonemic, and alternating fluency
tasks and quantitative EEG (QEEG) measures (band powers,
median frequency) in a group of PD patients. As VF is reduced
by DBS, potentially by the stimulation itself, and as changes in VF
performance are linked to frontal and temporal lobes, we expect
a reduction of VF performance in the DBS-on compared to the
DBS-off condition along with an increase of lower band power in
frontal and temporal lobes.

METHODS

Patients
Eighteen patients with STN-DBS were included. Sixteen
completed the study protocol and were included in the analysis.
Fifteen patients were right-handed and one was ambidextrous.
Subjects characteristics are shown in Table 1. All of them
underwent high-density resting-state EEG recordings (256
channels) and testing of VF in the DBS-on and DBS-off
conditions. The phonemic, semantic, alternating phonemic, and
alternating semantic fluency was evaluated RWT, Regensburger
Wortflüssigkeits-Test, 2min testing per task, no counting of
errors, (18). Median age was 68.0 (IQR 60–71), 9 males and 7
females. Median duration of education was 14 years (IQR 12–
16.5). Median years after first symptoms of PD were 12.5 (IQR
10.75–19). Patients were included 32 months (IQR 26–58) after

TABLE 1 | Subjects characteristics.

Age (years) 68.0 (59.2–71.8)

Education (years) 14 (12–16.5)

Years since diagnosis of PD (years) 12.5 (10.75–19)

Levodopa-equivalence-dose (mg) 562 (219–798)

Duration since DBS implantation (months) 32 (25.75–58.25)

Median values and lower/upper quartiles are shown.

STN-DBS operation and had a median levodopa equivalents dose
of 562 (IQR 219–798).

EEG Recording
After initial testing of VF performance, QEEGs from all patients
were initially recorded with the DBS-on. For EEG recordings a
256-channel Geodesic DC-EEG System 300 was used. Sampling
rate was set to 1,000Hz, first high pass filter to 0.01Hz.
Impedances of EEG electrodes were kept below 40 kΩ . Subjects
were seated comfortably in a reclining chair in a dimly lit, sound
attenuated and electromagnetically shielded room. They were
instructed to relax, but to stay awake and to minimize eye and
body movements. After 12min recording DBS was turned off
and QEEG was recorded for additional 12min, followed by VF
testing. As for all subjects in the study STN-DBS consisted in a
monopolar stimulation.

EEG Post-processing
DBS-stimulation generates an artifact of considerably larger
amplitude than the intrinsic brain signal recorded by EEG
(19); the latter can only be analyzed once the former has
been removed. Different methods of artifact removal have been
proposed. The method described by Sun et al. for subtracting
a reconstructed artifact is difficult to apply to real-life data
(20). Lio et al. applied a combination of low-pass filter and
a frequency-domain filter tracking outliers (21). Santillan-
Guzman et al. proposed a temporal-frequency-domain filter
(22). This method takes advantage of the known frequency
characteristics of the artifact but does not exploit the similarity
of signal shape at all of the recording electrodes due to the
effect of volume conduction. We therefore used principal-
component analysis to delete the first component, followed by
an independent component analysis. These components were
averaged using the DBS artifact as a trigger, and components
with remaining signals after averaging were eliminated. Finally a
70Hz low-pass filter (high-order, least-square filter) was applied
(Figure 1). All steps for DBS-artifact elimination were integrated
and performed in the toolbox “TAPEEG” (23), allowing fully
automated artifact removal. Visually, frequency spectra for
every patient in the ON- and OFF-condition were compared,
showing a convincing reduction/elimination of the DBS artifact
(Supplemental Figure 1).

Inverse Solution (Frequency Domain)
Using a previously published method (24), resulting EEG data
was re-referenced to average reference and bad channels were
interpolated with spherical spline method. Power spectra were
calculated from epochs of 4 s duration (spectral resolution
0.25Hz) using Welch’s method (20, 25). Source-space data was
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FIGURE 1 | Workflow of automated reduction of DBS artifacts. A high-order least-square filter, high-pass at 1Hz was applied first, followed by detection of the peaks

of the stimulator artifacts. Second, a principal-component analysis was performed. A large part of the stimulator artifact is accounted for by the first principal

component. This component was then deleted and the EEG reconstructed. Third, after an independent component analysis, all resulting components were averaged

on the previously detected peaks for identification of the components, including DBS artifacts. These components were deleted and, again, the EEG was

reconstructed. Finally, a high order least-square filter, low-pass at 70Hz, was applied.

FIGURE 2 | Results of global relative band power, comparison DBS-on vs.

DBS-off.

calculated by LORETA inverse solution for spectral data as
described by Frei et al. (26), using a vector transposition matrix
calculated with the software-package Cartool (27), based on
the MNI brain atlas (28) and without using a normalization.
The calculation was achieved using 5,011 solution points with
subsequent reduction to 78 regions of interest (ROIs) based on
the AAL atlas (29). According to previous studies by our group,
median frequency and relative power in the delta- (1–4Hz),

theta- (4–8Hz), alpha1- (8–10Hz), alpha2- (10–13Hz) and beta-
(13–30Hz) bands were calculated.

Statistics
The relative band powers, median frequencies, and results
of VF testing in the DBS-on and DBS-off conditions were
compared with paired t-tests. The changes in relative power and
VF tests were calculated (“value DBS-on” minus “value DBS-
off”) and Spearman rank correlations calculated. Due to large
intersubject power differences, relative power is the preferred
measure for group data, while due to intrasubject stability of the
EEG, absolute power is the preferred measure for longitudinal
data within subjects. Permutation was used to correct for
multiple testing and non-normal distributions of the resulting
values.

The study was carried out in accordance with the
recommendations of the Ethikkommission beider Basel (EKBB).
The protocol was approved by the EKBB. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

RESULTS

Results of relative band power are shown in Figure 2. In the
DBS-on condition, the relative alpha2 power was higher in
parieto-occipital regions bilaterally (Figure 3, p ≤ 0.01) and the
relative beta power was higher in the left parieto-occipital region
(Figure 3, p ≤ 0.05).
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FIGURE 3 | Topographical differences in relative alpha2 and beta power: DBS-on vs. DBS-off. Results of t-tests with permutation (red = regions with p < 0.01/light

red = regions with p < 0.05/rose = regions with p < 0.1).

FIGURE 4 | Inverse correlation of changes in phonemic verbal fluency and

relative delta power. For calculation the difference of VF (VF with DBS-on minus

VF with DBS-off) and relative delta power (delta with DBS-on minus delta with

DBS-off). Results of t-tests with permutation (red = regions with p < 0.05).

Changes of relative delta power in the left temporal lobe and
the phonemic VF were inversely correlated (Figure 4, p < 0.05).

Alternating semantic fluency performance slightly decreased
after switching off stimulation, but this result is below statistical
significance. For all other VF tests, no difference between the two
conditions was found (Figure 5).

DISCUSSION

Switching off the STN-DBS did not improve VF performance
in the present study in PD patients at least 6 months after
operation. This finding accords with that of previous studies
(14, 30) and supports the hypothesis that impairment in VF tests
after operation is due to STN-DBS procedure rather than to the
electrical stimulation. In addition to the surgical microtrauma,

STN-DBS procedure includes anesthesia, changes in medication
and sometimes post-operative delirium. Especially, the reduction
of dopaminergic pharmacotherapy after the STN-DBS procedure
may be an important factor, as VF performance is known to be
ameliorated by dopaminergic drugs (31).

According to the present results, bilateral STN-DBS
stimulation increases alpha2 and beta power in posterior
regions in the resting-state EEG compared to the stimulator off
condition. High alpha2 power is linked to increased capacity
to initiate new tasks (32, 33) and probably facilitates switching
between different tasks as tested in alternating VF. Alpha
activity requires an intact thalamo-cortical loop (34), and
its increase may reflect a partial functional normalization of
this loop in the DBS-on condition, contributing to improved
motor function and VF. This concept is compatible with
the observation of a trend toward ameliorated alternating
semantic fluency in the DBS-on state and is further
supported by a previous study including 14 patients with
PD, showing a slight positive effect of stimulation in the STN
on phonemic fluency (30). However, this effect may be not
strong enough to compensate for the decline of VF after
STN-DBS procedure including a reduction of dopaminergic
drugs.

The present result of increased beta power in the DBS-on
state seems to contradict previous studies, which showed an
improvement of motor function associated with a decrease of
beta power over the sensorimotor, premotor and prefrontal
cortex during STN stimulation and movement (35). However,
in the present study the increase of beta power in the DBS-on
situation occurs in resting state EEG and, therefore, the results
are not directly comparable to studies analyzing event-related
EEG alterations. Two MEG studies recorded also in resting state
showed in contrast to the present results a decrease of beta band
activity by STN-DBS (36, 37). While recordings in the study by
Abbasi et al. took place 1 day after implantation and, therefore,
were obtained in a different situation, the study by Luoma et al.
with a latency of at least 3 months after implantation is better
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FIGURE 5 | Differences in verbal fluency: DBS-on vs. DBS-off. Percent ranks of test results, boxplots showing median, upper and lower quartiles. P–M, comparison

of phonemic fluency with “P” and “M” letters; VN–NA, comparison of semantic fluency with “Names” and “Food”; G/R–H/T, comparison of phonemic fluency with

alternating “G” and “R” and alternating “H” and “T” letters; S/F–K/B, comparison of semantic fluency with alternating “Sport” and “Fruits” and alternating “Clothes”

and “Flowers”.

comparable to our results obtained at a latency of at least 6
months.

However, the present result is in line with the observation of
a correlation between beta power in the paracentral region and
motor function as well as sensorimotor integration after L-dopa
intake (38) and with the results of a study by Cao et al. (39).
The reason for these contradictory results is currently unclear;
medication may play a role.

Changes of absolute delta power in the left temporal lobe
and the phonemic fluency on the individual level correlate
inversely. The fact that neither delta power nor phonemic fluency
changes significantly between DBS-on and DBS-off conditions
on the group level does not contradict such a correlation on the
individual level as observed here. However, according to a post-
stroke study using voxel-based volumetry phonemic fluency is a
dysfunction of the left frontal rather than the left temporal lobe
(15).

One limitation of this study is its small sample size.
Speculations can be made about the underlying mechanisms of
DBS-induced changes in brain rhythms, but no inferences can be
drawn about therapeutic language effects in individual patients.
For practical and ethical reasons, the time spent in the DBS-off
condition was limited, and this necessitated the retesting of VF
after only 12min in off-time. Although this was longer than the
3min off-time in the study by Yilmaz et al. (14), it may still not
have been long enough for the effects of DBS on VF to disappear
entirely.
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