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Background: Recent studies have shown that growth differentiation factor 15

(GDF15), a member of the transforming growth factor-β (TGF-β)/bone morphogenetic

protein (BMP) superfamily, plays an important role in appetite, type 2 diabetes, and

cardiovascular diseases. Since thyroid hormone has pleiotropic effects on whole-body

energy metabolism, we aimed to explore the effect of thyroid hormone on circulating

GDF15 levels in humans and GDF15 genes expression in C57BL/6 mice.

Methods: A total of 134 hyperthyroid patients and 105 healthy subjects were

recruited. Of them, 43 hyperthyroid patients received thionamide treatment for 3 months

until euthyroidism. Serum GDF15 levels were determined using the enzyme-linked

immunosorbent assay (ELISA) method. To determine the source for the increased

circulating GDF15, C57BL/6 mice were treated with T3, and GDF15 gene expressions

in the liver, skeletal muscle, brown adipose tissue (BAT), inguinal white adipose tissue

(iWAT), epididymal white adipose tissue (eWAT) were analyzed by quantitative real-time

polymerase chain reaction (PCR).

Results: Serum GDF15 levels were significantly elevated in hyperthyroid patients

as compared with healthy subjects (326.06 ± 124.13 vs. 169.24 ± 82.96 pg/mL;

P < 0.001). After thionamide treatment, GDF15 levels in hyperthyroid patients declined

markedly from 293.27± 119.49 to 118.10± 71.83 pg/mL (P < 0.001). After adjustment

for potential confounders, serum GDF15 levels were independently associated with

hyperthyroidism. T3 treatment increased GDF15 expression in the brown adipose tissue

of C57BL/6 mice.

Conclusions: Serum GDF15 levels were elevated in patients with hyperthyroidism and

declined after thionamide treatment. Thyroid hormone treatment upregulated GDF15

expression in mice. Therefore, our results present the clinical relevance of GDF15 in

humans under the condition of hyperthyroidism.
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INTRODUCTION

Thyroid hormone plays a crucial role in controlling metabolic
rate, adaptive thermogenesis, fatty acid, and cholesterol
homeostasis through regulation of target genes in the
liver, adipose tissue and skeletal muscle (1, 2). As a result,
hyperthyroidism, characterized by excess thyroid hormone,
displays increased energy expenditure, accelerated lipolysis and
weight loss, despite of increased food intake. Mechanistic studies
demonstrate that thyroid hormone could promote metabolic
rate and thermogenesis via binding to two thyroid hormone
receptors (TRs), namely TRα and TRβ, which consists of four
isoforms (α1, β1, β2, and β3) (1, 2). TRα is widely expressed
with high expression in the heart, skeletal muscle, and brown
adipose tissue (BAT), whereas TRβ is predominately expressed
in the brain, liver and kidney. In the presence of thyroid
hormone, TRs bind to thyroid hormone response element
(TRE) in the regulatory regions of target genes to activate or
repress their transcription and expression (1, 2). Activation
of TRs by thyroid hormone directly up-regulate the mRNA
expression of uncoupling protein 1 (UCP-1) in BAT to promote
thermogenesis and carnitine palmitoyltransferase 1α (CPT-1α)
in liver to promote fatty acid oxidation (3–5). Besides, recent
studies indicate that some cytokines, including fibroblast growth
factor 21 (FGF21), Fetuin A and irisin, may mediate the action
of thyroid hormone (6–9), suggesting the importance of indirect
mechanisms of thyroid hormone signaling in the regulation of
energy homeostasis.

Growth differentiation factor 15 (GDF15), a divergent
member of the transforming growth factor-β (TGF-β)
superfamily, was initially identified as a novel macrophage
inhibitory cytokine (10). Subsequent studies found that
increased expression and high circulating levels of GDF15 acted
as a critical driver of cancer cachexia, largely by decreasing
appetite (11, 12). Strong interests emerged when several groups
found that the GDNF family receptor α-like (GFRAL) is the
receptor for GDF15 to mediate its action in suppressing food
intake (13–16). In addition, GDF15 modulates metabolic
activity by increasing thermogenesis and energy expenditure,
lipolysis and oxidative metabolism, through up-regulation of key
thermogenic (UCP-1 and PGC-1α) and lipolytic genes (ATGL
and HSL) in BAT and WAT (17). Consistently, adeno-associated
virus-mediated overexpression of GDF15 or recombinant
GDF15 treatments reduces the adiposity and improves insulin
resistance and glucose intolerance in various metabolic disease
models (18, 19). On the other hand, GDF15 knockout mice
weighed more and had increased adiposity, reduced glucose
tolerance, lower locomotor activity and lower metabolic rate
than wild-type mice (20, 21). Overall, these studies indicate that
GDF15 plays a major role in the regulation of energy substrate
utilization or energy expenditure (22).

Abbreviations: BAT, Brown adipose tissue; DBP, Diastolic blood pressure; ELISA,

Enzyme-linked immunosorbent assay; GDF15, Growth differentiation factor

15; HDL, High-density lipoprotein; SBP, Systolic blood pressure; SD, Standard

deviation; SKM, Skeletal muscle, TBIL, Total bilirubin; TC, Total cholesterol;

WAT, White adipose tissue.

Due to some similarities in metabolic actions of thyroid
hormone and GDF15, especially in preventing obesity and
increasing thermogenesis, we therefore tested the hypothesis that
thyroid hormone might increase circulating GDF15 levels in
humans and further confirmed this regulatory axis in mice.

MATERIALS AND METHODS

Human Subjects
A total of 134 patients with hyperthyroidism and 105
healthy subjects were recruited from the Department of
Endocrinology and Metabolism, Zhongshan Hospital, Fudan
University (Shanghai, China). Of those, 43 hyperthyroid patients
received thionamide treatment for 3 months. Hyperthyroidism
were diagnosed according to typical clinical characteristics,
including elevated serum TH, reduced TSH, and elevated serum
TSH receptor antibody (TRAb) levels. Subjects who had diabetes,
cancer, pregnancy, lactation, subacute thyroiditis, abnormal liver
function (serum alanine transaminase [ALT], glutamic oxalacetic
transaminase [AST] increased by 1.5-fold), abnormal renal
function or infectious diseases were excluded. Blood samples
were collected after a 12-h of overnight fast, and serumwas stored
at−80◦C for GDF15 and biochemical assays. The study protocol
was approved by the Human Research Ethical Committee of
Zhongshan Hospital. Written informed consent was obtained
from each participant.

Biochemical Measurements
Serum biochemical measurements were determined on a
Hitachi 7600 analyzer (Hitachi, Ltd). Plasma glucose was
measured using the glucose oxidase method. Human serum
insulin, free T3, free T4, and TSH concentrations were
measured using electrochemiluminescence immunoassay (Roche
Diagnostics). Human and murine serum GDF15 concentrations
were measured using ELISA kits (Raybiotech, USA), according
to the manufacturer’s instructions. Murine serum total T3
concentrations were measured by ELISA (Calbiotech, USA)
following the manufacturer’s instructions.

Animal Experiments
Male C57BL/6 mice aged 10 weeks were purchased from the
Shanghai Laboratory Animal Company (SLAC). All mice were
housed at 21◦C ± 1◦C with humidity of 55 ± 10% and a 12-h
light/12-h dark cycle. FifteenMice were injected intraperitoneally
with either vehicle control (saline) or 3,3′,5-Triiodo-L-thyronine
(0.5 mg/kg, T2877, Sigma-Aldrich, St. Louis, MO, USA) for 4 hr
(single injection) or 5 days (once daily; 5 mice per group). The
animal protocol was reviewed and approved by the Animal Care
Committee of Zhongshan Hospital.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was isolated from tissues (liver, skeletal muscle, and
adipose tissues) of mice using TRIzol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. First-
strand complementary DNA (cDNA) synthesis was performed
for each RNA sample using the Promega Reverse Transcription
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System (Madison, WI, USA). Oligo dT was used to prime
cDNA synthesis. In order to quantify the transcripts of interest
genes, quantitative real-time PCR was performed using a SYBR
Green Premix Ex Taq (Takara, Shiga, Japan) on Light Cycler480
(Roche, Switzerland). PCR conditions included an initial holding
period at 95◦C for 5min, followed by a two-step PCR program
consisting of 95◦C for 5 s and 60◦C for 30 s for 45 cycles. The
mRNA levels of GDF15 were normalized to 36B4 internal control
gene. Expression data was analyzed according to the 2−11Ct

method. Primers were selected from PrimerBank (https://pga.
mgh.harvard.edu/primerbank/) and listed as follows: GDF15
(Forward: 5′-CTGGCAATGCCTGAACAACG-3′; Reverse: 5′-G
GTCGGGACTTGGTTCTGAG-3′); Spot14 (Forward: 5′-TGCT
AACGAAACGCTATCC-3′; Reverse: 5′-TTCTACACAGTGCT
CT TGG-3′); 36B4 (Forward: 5′-AGATTCGGGATATGCTGTT
GGC-3′; Reverse: 5′-TCGGGTCCTAGACCAGTGT TC-3′).

Statistical Analysis
All statistical analyses were performed using SAS 9.3 (SAS
Institute, Cary, NC). Variables were presented as mean ±

standard deviation (SD). χ2 and one-way ANOVA tests were
used for comparison of categorical and continuous variables,
respectively. The Student’s paired t-test was used for comparison
of categorial variables before and after antithyroid treatment.
Pearson’s correlation analyses were used to examine the
relationship between serum GDF15 levels and other parameters.
Multivariable logistic regression was used to calculate the
adjusted ORs and 95% CIs. A two-side P < 0.05 was considered
statistically significant.

RESULTS

Serum GDF15 Levels in Patients With
Hyperthyroidism
The clinical characteristics of human subjects in this study
are displayed in Table 1, which showed that patients with
hyperthyroidism exhibited much higher free T3, free T4,
increased heart rate, alanine transaminase (ALT) and aspartate
transaminase (AST), decreased body mass index (BMI), total
cholesterol (TC), and thyroid stimulating hormone (TSH).
However, fasting insulin (FINS), fasting plasma glucose (FPG)
and triglyceride (TG) levels were comparable between the two
groups. Serum GDF15 levels were dramatically increased in
hyperthyroid patients compared with healthy subjects (Table 1).
In 43 patients, after thionamide treatment, serum free T3, free T4,
ALT and AST decreased, whereas body weight, TC, HDL-c, and
TSH increased. Accordingly, serum GDF15 concentrations were
markedly decreased (Table 2).

Correlations of Serum GDF15 With
Hyperthyroidism and Metabolic
Parameters
In total hyperthyroid patients and healthy subjects, serum
GDF15 levels were positively correlated with serum free T3
and free T4 (Figures 1A,B). Moreover, serum GDF15 levels
were negatively correlated with serum TC level (Figure 1C),

TABLE 1 | Clinical and biochemical features in healthy and hyperthyroid subjects.

Healthy Hyperthyroid P-value

subjects patients

N 105 134

Age (y) 33.23 ± 4.65 34.11 ± 5.38 0.172

Gender (M/F) 68/37 89/45 0.387

BMI (kg/m2) 22.67 ± 1.49 20.92 ± 2.12 <0.001

Heart rate (bpm) 76.20 ± 10.59 109.42 ± 13.23 <0.001

SBP (mmHg) 116.28 ± 14.45 122.05 ± 16.92 0.51

DBP (mmHg) 71.32 ± 10.63 75.89 ± 8.67 0.052

ALT (U/L) 23.73 ± 5.32 34.87 ± 9.71 <0.001

AST (U/L) 26.87 ± 9.87 41.34 ± 11.49 <0.001

TBIL (mmol/L) 13.07 ± 5.79 13.94 ± 507 0.214

DBIL (mmol/L) 2.91 ± 1.04 2.69 ± 1.31 0.159

FINS (mm/L) 10.54 ± 4.11 12.47 ± 4.73 <0.01

FPG (mM) 5.19 ± 0.48 5.30 ± 0.58 0.123

TG (mM) 1.12 ± 0.31 1.17 ± 0.34 0.244

TC (mM) 4.59 ± 0.53 3.48 ± 0.78 <0.001

HDL-c (mM) 1.22 ± 0.34 1.18 ± 0.44 0.386

Free T3 (pM) 5.34 ± 0.42 31.05 ± 12.08 <0.001

Free T4 (pM) 16.44 ± 2.83 82.21 ± 35.88 <0.001

TSH (mIU/L) 1.76 ± 0.94 0.007 ± 0.01 <0.001

GDF15 (pmol/L) 169.24 ± 82.96 326.06 ± 124.13 <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;
ALT, alanine transaminase; AST, aspartate transaminase; TBIL, total bilirubin; DBIL, direct
bilirubin; FINS, fasting insulin; FPG, fasting plasma glucose; TG, triglyceride; TC, Total
cholesterol; HDL, high-density lipoprotein; TSH, thyroid stimulating hormone; GDF15,
growth differentiation factor 15. Data are presented as means ± standard deviation (SD).

TABLE 2 | Serum GDF15 levels before and after thionamide treatment in

hyperthyroid subjects.

Before After P-value

N 43 43

Weight (kg) 52.23 ± 6.26 57.00 ± 7.33 <0.01

ALT (U/L) 37.81 ± 15.92 20.98 ± 9.32 <0.001

AST (U/L) 30.98 ± 12.28 20.63 ± 6.81 <0.001

TBIL (mmol/L) 14.66 ± 7.47 12.08 ± 4.32 0.053

DBIL (mmol/L) 4.88 ± 3.25 3.56 ± 1.61 0.019

FINS (mm/L) 10.69 ± 13.1 8.85 ± 6.81 0.416

FPG (mM) 5.14 ± 0.76 5.01 ± 0.44 0.335

TG (mM) 0.99 ± 0.68 1.11 ± 0.62 0.392

TC (mM) 3.66 ± 0.87 5.50 ± 1.01 <0.001

HDL-c (mM) 1.37 ± 0.39 1.66 ± 0.32 <0.001

Free T3 (pM) 26.62 ± 19.40 4.53 ± 0.83 <0.001

Free T4 (pM) 66.24 ± 32.78 13.05 ± 2.63 <0.001

TSH (mIU/L) 0.011 ± 0.016 0.86 ± 1.28 <0.001

GDF15 (pmol/L) 293.27 ± 119.49 118.10 ± 71.83 <0.001

Data are presented as means ± standard deviation (SD).

whereas no significant correlation between serum GDF15
and sex, age, FPG, FINS, and TG was observed (Data not
shown).
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FIGURE 1 | Correlation of GDF15 with serum levels of free T3 (A), free T4 (B), and total cholesterol (TC) (C).

Association of Serum GDF15 Levels With
Hyperthyroidism
Table 3 shows the unadjusted and adjusted ORs with associated
95% CI of serum GDF15 for hyperthyroidism. Hyperthyroidism
were diagnosed according to typical clinical characteristics,
including elevated serum TH, reduced TSH, and elevated serum
TSH receptor antibody (TRAb) levels. In model 1, with no
adjustment for any confounding factor, serumGDF15 levels were
significantly associated with hyperthyroidism (OR [95% CI],
6.652 (4.184–11.353); P< 0.001). Inmodel 2, after adjustment for
age, gender and BMI, serum GDF15 levels were also significantly
associated with hyperthyroidism (OR [95% CI], 8.225 (4.805–
15.380); P < 0.001). In model 3, after further adjustment for ALT,
AST, FBG and TC, Serum GDF15 levels remained independently
associated with hyperthyroidism, with the adjusted OR (95% CI)
of 13.193 (4.754–55.090; P < 0.001).

Thyroid Hormone Promotes GDF15
Expression in Mice
Finally, to further determine the effects of thyroid hormone on
GDF15, C57BL/6 mice were injected with T3 intraperitoneally
for two different time points (4 h or 5 days). As shown in the
Figure 2A, serum T3 concentrations were rapidly increased in
mice treated with T3 for 4 h andmaintained at a high level inmice
treated with T3 for 5 days. Besides, it has been well-established

TABLE 3 | ORs for association between serum GDF15 levels and hyperthyroidism

with the use of three logistic regression models.

Variable OR (95% CI) P-value

MODEL 1

GDF15a 6.652 (4.184–11.353) <0.001

MODEL 2

Age 1.019 (0.946–1.098) 0.622

Gender (female vs. male) 0.517 (0.230–1.161) 0.110

BMI 0.533 (0.424–0.668) <0.001

GDF15a 8.225 (4.805–15.380) <0.001

MODEL 3

Age 0.903 (0.769– 1.060) 0.214

Gender (female vs. male) 0.249 (0.050–1.236) 0.089

BMI 0.420 (0.256–0.691) 0.0006

ALT 1.299 (1.127–1.498) 0.0003

AST 1.080 (0.995–1.173) 0.065

FPG 6.416 (0.848–48.567) 0.072

TC 0.030 (0.006–0.140) <0.001

GDF15a 13.193 (4.754–55.090) <0.001

aOR and 95% CI expressed as per SD increase of GDF15.

that Spot14 could serve as a thyroid hormone responsive gene
(23). Consistently, we found that mRNA levels of Spot14 was
induced in the liver of mice treated with T3 (Figure 2B). As a
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FIGURE 2 | Thyroid hormone induces GDF15 expression in C57BL/6 mice. (A) Serum T3 concentrations in mice treated with T3 or vehicle control for 4 h or 5 days.

n = 5. (B) Relative mRNA levels of Spot14 in the liver of mice treated with T3 or vehicle control. n = 5. (C) Serum GDF15 concentrations in mice treated with T3 or

vehicle control for 5 days. (D) Quantitative PCR (qPCR) analysis of GDF15 mRNA expression in mouse tissues. n = 4. (E) Relative mRNA levels of GDF15 in brown

adipose tissue (BAT) of mice treated with T3 or vehicle control for 4 hr or 5 days. n = 5. (F–I) Relative mRNA levels of GDF15 in the liver (F), inguinal white adipose

tissue (iWAT) (G), epididymal white adipose tissue (eWAT) (H) and skeletal muscle (SKM) (I). n = 5. Data are presented as means ± standard deviation (SD).

**P < 0.01, ***P < 0.001.

result, a 1.47-fold increase of serum GDF15 concentrations was
seen at the 5-day time point (P < 0.01; Figure 2C). These results
suggest that hyperthyroidism was successfully achieved in mice
and sufficient to elevate GDF15 in the serum to a similar extent
to what was observed in hyperthyroidism patients.

Under physiological conditions, GDF15 mRNA is expressed
by a limited number of tissues (22). Our quantitative PCR
(qPCR) analysis indicated that GDF15 mRNA expression was
higher in liver and kidney, and was also present at a lower
level in white adipose tissue (WAT) and brown adipose tissue
(BAT; Figure 2D). In contrast, its expression in other tissues,
including skeletal muscle, spleen and testis, was relatively low
(Figure 2D). We further showed that GDF15 mRNA levels
were significantly induced in the BAT of mice treated with T3
(Figure 2E). However, its expression in the liver, inguinal white
adipose tissue (iWAT), epididymal white adipose tissue (eWAT),
and skeletal muscle (SKM) were not changed (Figures 2F–I).

DISCUSSION

Previous studies have shown that GDF15 could be up-

regulated in response to cellular stress, inflammatory states or

environmental factors, to play a protective role in different
tissues (22, 24). For instance, circulating GDF15 levels are

increased in patients with cancer, cardiovascular disease, muscle

atrophy and mitochondrial myopathy (24–27). Besides, vigorous
submaximal exercise increases circulating GDF15 levels in
humans and long-term fasting up-regulates its gene expression
via activating IRE1α-XBP1s signaling in the livers of mice
(28, 29). Moreover, serum GDF15 levels are increased in
obese and type 2 diabetic patients and correlated with BMI,
body fat, plasma glucose and C-reactive proteins (30, 31). In
addition, GDF15 levels are identified as a biomarker for the
use of metformin in type 2 diabetes and its concentration
reflects the dose of metformin (32). However, physiological and
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pathological factors that modulate GDF15 expression are still
obscure.

In the present study, we uncovered for the first time to
our knowledge that thyroid hormone plays an important role
in the regulation of GDF15 expression. This is supported by
several lines of evidence. Firstly, we found that circulating GDF15
levels were markedly elevated in patients with hyperthyroidism
compared with healthy subjects and dramatically declined after
thionamide treatment. Secondly, logistic regression analysis
confirmed an independent association between serum GDF15
levels and hyperthyroidism. Besides, serum GDF15 levels were
inversely correlated with total cholesterol levels, which is also
observed in 147 older people with hypertension and in 2,991
participants in the Framingham Offspring Study who were free
of clinically overt cardiovascular disease (33, 34). Thirdly, we
showed that expression levels of GDF15 were induced in mice
by T3 treatment. Therefore, our results provide the clinical and
animal evidence that GDF15 is associated with hyperthyroidism.
However, the sample size was relatively small and data from
larger clinical patients are needed.

Further studies are still needed to clarify the relationship
between thyroid hormone and GDF15. First, one of the key
roles of thyroid hormone is to up-regulate UCP1 expression in
BAT to increase adaptive thermogenesis and counteract obesity,
which overlaps with the action of GDF15. Therefore, future
studies should determine whether GDF15 is necessary for some
of the thyroid hormone-associated metabolic benefits, such
as increasing energy expenditure. It would also be interesting
to explore whether the neutralizing antibody against GDF15
could attenuate the hyperthyroidism-associated emaciation.
Second, GDF15 was shown to suppress food intake, whereas
hyperthyroidism is known to increase appetite. It is tempting to
speculate that the orexigenic nature of thyroid hormone could
be independent of GDF15. On the other hand, some studies
reported that anorexia is observed in the older hyperthyroid
patients (35, 36), suggesting the necessity of measurement of
GDF15 in this age group. Third, the reason for the tissue-specific
effects of T3 on GDF15 expression in mice remains unknown.
Our animal results showed that BAT might be a source for
increased circulating GDF15 concentrations upon T3 treatment.
Recently, substantial depots of functionally active brown adipose
tissue were identified in adult humans (37–39), and are increased
or activated by several pathophysiological states, including

hyperthyroidism (40). Given T3 is a strong stimulator in
converting WAT to “beige” (41), a longer term of T3 treatment
might induce GDF15 expression in WAT as well. Besides, we
cannot rule out the possibility that other tissues not studied here
might also contribute to the increased serum GDF15 during
hyperthyroidism. Fourth, whether thyroid hormone regulates
the secretion of GDF15 needs to be determined. Previous
studies have shown that unprocessed GDF15 precursor is rapidly
secreted, while mature GDF15 generated within the cell by
intracellular processing is secreted much slower (22, 42). Usually,
only the mature form of GDF15 is secreted, but under some
pathological conditions, the full-length form is also secreted
(22). Finally, considering that GDF15 may be a more general cell
stress-response cytokine (22, 24), we speculate that in addition
to thyroid hormone, other hormones and nutrients, could
regulate GDF15 expression under different physiological and
stress conditions. Moreover, whether circulating GDF15
concentrations were altered in other thyroid disorders,
such as hypothyroid, toxic thyroid adenoma, pituitary TSH
adenoma, and resistance to thyroid hormone (RTH), remains
unknown.

In summary, our study demonstrated that thyroid hormone
could increase GDF15 expression and concentrations inmice and
humans. To our knowledge, these observations are being made
for the first time that GDF15 is independently associated with
hyperthyroidism.
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