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Major depressive disorder (MDD) is a severe mood disorder and frequently associated

with alterations of the immune system characterized by enhanced levels of circulating

pro-inflammatory cytokines and microglia activation in the brain. Increasing evidence

suggests that dysfunction of mitochondria may play a key role in the pathogenesis

of MDD. Mitochondria are regulators of numerous cellular functions including energy

metabolism, maintenance of redox and calcium homeostasis, and cell death and

therefore modulate many facets of the innate immune response. In depression-like

behavior of rodents, mitochondrial perturbation and release of mitochondrial components

have been shown to boost cytokine production and neuroinflammation. On the

other hand, pro-inflammatory cytokines may influence mitochondrial functions such

as oxidative phosphorylation, production of adenosine triphosphate, and reactive

oxygen species, thereby aggravating inflammation. There is strong interest in a better

understanding of immunometabolic pathways in MDD that may serve as diagnostic

markers and therapeutic targets. Here, we review the interaction between mitochondrial

metabolism and innate immunity in the pathophysiology of MDD. We specifically focus

on immunometabolic processes that govern microglial and peripheral myeloid cell

functions, both cellular components involved in neuroinflammation in depression-like

behavior. We finally discuss microglial polarization and associated metabolic states in

depression-associated behavior and in MDD.

Keywords: major depressive disorder, immune system, metabolic pathways, mitochondria, immune cells,

microglia, neuroinflammation, immunometabolism

INTRODUCTION

Major depression is a serious mood disorder and characterized by marked functional impairment
and increased health care utilization (1, 2). In particular, major depressive disorder (MDD) is
estimated to affect more than 300 million people worldwide and treatment resistant depression
occurs in about 20–30% of patients (3). Therefore, a better understanding of the underlying
mechanisms is warranted to improve the therapeutic options in MDD.
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Although the pathophysiology of MDD is not yet fully
understood, genetic and environmental factors have been
identified as major risk factors for the development of
depression (4–6). In addition, a plethora of findings point
toward an association between inflammation and depression.
Immune alterations such as increased levels of circulating
pro-inflammatory cytokines and polymorphisms in immune–
associated genes have been frequently found in depressed
individuals. Additional observations that immunotherapy with
type I interferons may induce depressive symptoms and
that depression-like “sickness behavior” in rodents is caused
by treatment with inflammatory mediators underscored the
bidirectional relationship between the immune response and
depression (7–11). Accordingly, the “inflammation hypothesis
of depression” has been proposed over 20 years ago (12,
13). The multi-faceted inflammatory process in depression has
been reviewed in detail before (13–18). In this review, we
focus on the intricate interplay between metabolic processes
and innate immunity in the pathophysiology of MDD. We
further discuss the link between mitochondrial dysfunction and
neuroinflammation in depression-associated behavior in the
rodent model. Finally, we highlight the concept that specific
metabolic processes are associated with distinct microglial
activation states that may contribute to the pathogenesis of
depression.

INNATE IMMUNE RESPONSE IN
DEPRESSION

Mitochondrial Function in the Innate
Immune Response
The innate immune system represents the first line of defense
against invading microbial pathogens and comprises a variety
of cell types, molecules, and signaling cascades (19). Myeloid
cells are the cellular components of innate immunity and
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represent a heterogeneous group of bone marrow (BM)—
derived cells including monocytes/macrophages, dendritic cells
(DCs), and granulocytes (20). Within minutes of encountering
pathogens, highly conserved pathogen-associated molecular
patterns (PAMPs) bind to pattern recognition receptors (PRR)
expressed within the cytosol or on membranes of innate
immune cells, such as RIG-I-like receptors (RLR), NOD-like
receptors (NLR), or Toll-like receptors (TLR) (21) (Figure 1).
Activated PRR can trigger the release of cytokines, chemokines,
and additional inflammatory factors via various intracellular
pathways to ultimately control infection (22). Even in the absence
of overt pathogenic infection, cell damage or stress responses
may alert the innate immune response and induce a “sterile
inflammatory immune response.” In this context, endogenous or
“self-molecules” (e.g., high mobility group box 1, S100 proteins,
RNA, and DNA) are recognized as danger signals when released
into the extracellular space. These damage-associated molecular
pattern molecules (DAMPs) trigger innate immune responses
also via binding of PRRs (23).

Multiple lines of evidence strongly suggest that mitochondrial
integrity and function, and innate immunity are closely
interlinked processes. Mitochondria are intracellular organelles
required for numerous cellular functions including energy
metabolism, regulation of reactive oxygen species (ROS)
signaling, Ca2+ homeostasis, and apoptosis. In addition, several
mitochondrial components such as adenosine triphosphate
(ATP), N-formyl peptides or mitochondrial DNA (mtDNA)
function as DAMPs and are sensed by distinct PRRs thereby
promoting an inflammatory response (24). Accordingly, it has
been demonstrated in humans that injury induces release of N-
formyl peptides and mtDNA into the circulation and activates
neutrophils via binding of formyl peptide receptor-1 and TLR9,
respectively (25). Studies in mice demonstrated that mtDNA
aggravated the inflammatory response, while inflammation was
reduced in animals deficient for TLR9 or the adaptor protein,
myeloid differentiation primary response gene 88 (Myd88) (26).
Furthermore, also ATP has been found to induce mitochondrial
dysfunction, enhanced generation of ROS, and apoptosis,
resulting in cytosolic release of oxidized mtDNA, that binds
to and activates the NLR family pyrin domain containing 3
(NLRP3) inflammasome (27).

The inflammasome is a multi-protein signaling complex
that triggers caspase-1-dependent secretion of the pro-
inflammatory cytokines interleukin-1β (IL-1β) and IL-18
(25, 28, 29). A particular role has been described for intracellular
mtDNA and mitochondria-derived ROS in pathways that
activate the inflammasome (30–32). For example, mtDNA
accumulation in the cytosol of macrophages was identified
as a prerequisite for caspase 1-dependent IL-1β release in
response to combined lipopolysaccharide (LPS) and ATP
exposure. The essential role of mitochondria in this process was
further demonstrated by depletion of autophagic proteins that
enhanced the accumulation of dysfunctional mitochondria
in macrophages thereby increasing mitochondrial ROS
production and susceptibility to stimulation by LPS and
ATP (30, 33). Further, extracellular ATP can induce NLRP3
inflammasome activation through engagement of P2x7 receptors
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FIGURE 1 | Mitochondrial involvement in microglial activation and inflammatory signaling. Microglial activation pathways and inflammatory cytokine release are

initiated by the binding of pathogen- or damage-associated molecular patterns (PAMPs/DAMPs) to intracellular or membrane-bound pattern recognition receptors

(PRR), such as NOD-like receptors (NLR) or Toll-like receptors (TLR). This triggers NLRP3 and Caspase-1 assembly to form the inflammasome leading to the

processing of pro-IL-1β as well as pro-IL-18 to active IL-1β and IL-18, respectively. In addition, oxidized mitochondrial DNA (ox-mtDNA) and mitochondrial reactive

oxygen species (ROS) are canonical activators of inflammasome formation. Tumor necrosis factor (TNF) and Interleukin-6 (IL-6) are generated via nuclear factor

NF-κB-dependent transcriptional activation. The oxidation of L-arginine (L-Arg) by inducible nitric oxide synthase (iNOS) produces NO (Nitric oxide), which in turn

inhibits oxidative phosphorylation (OXPHOS) shifting the energy metabolism of the cell toward glycolysis. Ca2+ influx via L-type calcium channels (LTCC) and

ATP-binding purinoceptors (P2X7) results in the loss of mitochondrial membrane potential (19m), enhanced mitochondrial ROS formation and further contributes to

inflammasome formation and pro-inflammatory activation of microglia.

and downstream mitochondrial dysfunction. The purinergic
P2x7 receptor is an ATP-gated ion channel that is expressed
by virtually all immune cell subsets and its activation has been
associated with inflammation (34). A recent study demonstrated
in macrophages that K+ efflux and Ca2+ influx through P2x7
were required for sustained reduction of the mitochondrial
membrane potential and generation of mitochondrial ROS
formation upstream of NLRP3 inflammasome assembly and
pyroptotic cell death (35). Earlier studies pointed toward ROS
as the key regulators of the NLRP inflammasome in response to
PAMPS and DAMPS, such as oxidized mtDNA or other DAMPs
resulting from metabolic dysregulation (36, 37). More recent
studies, however, underscored the importance of new mtDNA
synthesis for NLRP3 inflammasome activation. According
to these findings, LPS-induced TLR signaling via MyD88
and Toll/interleukin-1 receptor domain-containing adaptor
protein inducing interferon beta (TRIF) triggers transcription
of the mitochondrial cytidine/uridine monophosphate kinase-2
(CMPK2). CMPK2 belongs to a family of nucleotide kinases
that are required for mtDNA synthesis and production of
oxidized mtDNA fragments that ultimately act as activating
ligands for the NLRP3 inflammasome complex in stimulated
macrophages (38).

Innate Immune Responses in MDD
Dysregulation of innate immune responses has been linked to
stress-associated psychiatric disorders such as MDD (16, 39–
43). A plethora of studies and meta-analyses have demonstrated
that patients with MDD frequently show elevated levels of TNF,
IL-6, as well as the T helper cell differentiation cytokine IL-
12 (44–48). Stress may induce the activation of the innate
immune system and stressful experiences such as adverse
childhood events induce long-term alterations of the immune
response and increase the susceptibility to depression (49–55). In
analogy to depression, exposure to early life stressors in humans
has been shown to elevate blood levels of pro-inflammatory
cytokines (56). Mechanistically, pro-inflammatory cytokines
can activate the hypothalamic–pituitary–adrenal axis leading
to hypercortisolism and increased glucocorticoid receptor
resistance, both mechanisms involved in the etiology of
MDD (57). In addition, pro-inflammatory cytokines modulate
the tryptophan–kynurenine pathway and enhance synthesis
of the neurotoxic N-methyl-D-aspartate (NMDA) glutamate
receptor agonist quinolinic acid and 3-hydroxykynurenine with
detrimental effects on brain function (41). Recent studies support
the idea that inflammation contributes to depression in a
subgroup of patients characterized by enhanced disease severity
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and potentially neurovegetative symptoms. In addition, somatic
comorbidities associated with an ongoing inflammatory process
and elevated circulating inflammatory factors have shown better
treatment responses to anti-inflammatory agents in MDD [for
review see Raison and Miller (42)].

It is important to note, however, that altered blood cytokine
levels as discussed here are not specific for affective disorders, but
have also been found elevated in post-traumatic stress disorders
(PTSD) (58, 59), obsessive-compulsive disorders (OCD) (60)
or eating disorders (61). Additionally, low grade inflammation
and cytokine elevation play a role in a number of physical
diseases for example metabolic diseases such as diabetes and
obesity as hallmarks of the metabolic syndrome. It has also to be
considered that overall altered cytokine levels may result from
distinct immune activation patterns on the level of immune cell
subsets. Therefore, in addition to the analysis of overall cytokine
levels in the peripheral blood, characterization of cytokine and
receptor expression profiles of specific immune cell subsets
(i.e., immune signatures) may better represent an individual‘s
psychiatric disease risk and progression. Longitudinal studies are
required in MDD patients and healthy participants, including
those with familial genetic risk and exposure to early life
stress (e.g., childhood maltreatment) to identify such immune
signatures. In the multicenter cohort study FOR2107, we
established a large-scale multi-parameter flow cytometry screen
for characterization of immune activation profiles on a single
cell level with prognostic potential in MDD patients with genetic
(G), environmental (E), or GxE risk factors. In this cohort study,
established immune signatures in patients are now compared
to those identified in peripheral immune cells and microglia
of the CNS in genetic and behavioral rat models of depression
in defined GxE risk settings (62). This translational approach
will provide a better understanding of the functional impact of
(neuro-) inflammatory responses in MDD and the mechanisms
by which GxE alters immune activation profiles and the risk to
develop MDD.

Microglia in MDD and
Depression-Associated Behavior
In analogy to humans, also in rodent models, depression-
associated behavior after stress exposure is frequently
associated with “low-grade immune activation” characterized by
enhanced levels of circulating pro-inflammatory cytokines and
immigration of myeloid immune cells into the brain (63–66).
Specifically, trafficking of “inflammatory” Ly6Chi monocytes that
co-express CC chemokine receptor 2 (CCR2), the receptor for
the CC chemokine ligand 2 (CCL2), to the brain has been shown
to promote neuroinflammation in the stress response (67–69).
The treatment of mice with the TLR4 ligand LPS is well-known
to induce an innate immune response and trigger sickness
behavior, i.e., anhedonia and weight loss. Mice deficient for the
inflammatory caspase-1 exhibit enhanced resistance to LPS-
induced depressive-like behavior underscoring the involvement
of the inflammasome in depression (70). Also pretreatment with
an NLRP3 inflammasome inhibitor abrogated the depressive-like
behaviors induced by LPS in mice (71). Interesting findings

further identified TRIF, one of the key mediators of oxidized
mtDNA production in NLRP3 inflammasome activation,
as an important inflammatory signaling mediator of LPS-
induced sickness behavior through regulation of CCL2 in the
hypothalamus (72). This CCR2-CCL2 signaling mechanism may
thus link metabolic and behavioral adaptation to inflammation
in the brain (73).

Peripheral immune alterations are closely linked to microglia
activation that plays a prominent role in the pathogenesis of
MDD and depression-associated behavior (65, 74–77). Microglia
express PRRs and thus recognize PAMPs and DAMPs. Upon
ligand binding to PRRs, microglia acquire an amoeboid-
like phenotype, migrate to inflammatory sites, and release
pro-inflammatory cytokines (e.g., IL-1β, IL-6, IL-18, TNF),
chemokines, and neurotoxic factors such as nitric oxide
(NO) generated by the inducible NO synthase (iNOS) and
ROS (78–81). Classically activated M1 microglia are induced
by stimulation with LPS, granulocyte-macrophage colony-
stimulating factor (GM-CSF) or interferon-γ (IFN-γ) and
express enhanced levels of major histocompatibility complex
(MHC) class II, and CD86. They are involved in the defense
against pathogens but may also occur in stress responses. Upon
alternative activation with IL-1 and anti-inflammatory IL-10, M2
microglia express arginase-1 (Arg-1), the chitinase-like protein
Ym1, Fizz1 (found in inflammatory zone), anti-inflammatory
cytokines, extracellular matrix proteins, and glucocorticoids
(82). In analogy to peripheral macrophages, the M2 microglia
phenotype has further been sub-classified into M2a, M2b, and
M2c activation states, each subtype specifically equipped to
contribute to immune regulation, phagocytosis, and/or tissue
repair [for review, see Singhal and Baune (79)].

To study microglial activation in depression in vivo, positron
emission tomography (PET) imaging studies using various PET
ligands for the microglial marker translocator protein 18 kDa
(TSPO) have been conducted. TSPO predominantly localizes to
the outer mitochondrial membrane and is expressed in brain
microglia (83). Depression-associated elevations in TSPO in the
prefrontal cortex, insula, and anterior cingulate cortex have been
correlated with the severity and duration of depression (84). Post-
mortem and PET imaging studies further identified microglia
activation in individuals who committed suicide (74, 85–87).
However, also negative results demonstrating lack of microglia
activation or even suppressed microglia activation states have
been reported in depressed individuals [for review, see Yirmiya
et al. (88)].

Several studies investigated substances that may affect M1
to M2 polarization in microglia. For example, inhibition of
the JAK/STAT pathway is known to suppress M1-associated
downstream genes in inflammatory CNS disorders (89).
Treatment with the PPARγ agonist, pioglitazone, has been shown
to cause a phenotypic switch of M1 microglia to the anti-
inflammatory M2 state in various CNS disease models and
to mediate antidepressant properties in several studies (90).
Furthermore, Glatiramer acetate, approved for the treatment
of relapsing-remitting MS, mediates neuroprotective effects
by inducing an anti-inflammatory microglial M2 phenotype
and thus harbors potential for treatment of MDD (91). A
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study in cultured mouse microglial cells demonstrated that the
antidepressant selective serotonin reuptake inhibitors (SSRI)
fluoxetine and S-citalopram can inhibit M1 activation and
enhanced M2 activation of these immune cells in vitro (92).
With regard to microglia activation in depression-associated
behavior, several studies have been conducted in rodent models.
One study demonstrated that mice exposed to social defeat
stress, an established stress/depression model, exhibit microglia
activation and increased expression of microglial-derived pro-
inflammatory cytokines specifically in brain regions associated
with fear and anxiety (31). Furthermore, inhibition of microglial
activation or NLRP3 deletion has been proven to impair stress-
induced alterations associated with depression in rodents (93).
Treatment with substances mediating antidepressant effects has
further been shown to suppress classical microglial activation
and increased the microglial M2 markers in the brain of
C57BL/6 mice exposed to chronic mild stress (94) Moreover,
anti-inflammatory effects of tricyclic antidepressants, SSRI, and
lithium have been described in vivo, in animal models of IFNα-
induced sickness behavior and inflammation-induced cytokine
production in the brain (45, 95).

As has been discussed in this chapter, exposure to early life
stressors represents a risk factor for MDD and depression-like
behavior and is associated with alterations of the innate immune
response. Elevated blood levels of pro-inflammatory cytokines
in depressed individuals may affect microglia activation, a
pathophysiological hallmark of major depression.

INVOLVEMENT OF MITOCHONDRIA IN
THE NEUROBIOLOGY OF AFFECTIVE
DISORDERS

Mitochondrial Impairments Associated
With Depression
Intracellular and intercellular mechanisms of stress adaptation
in the brain such as in the course of MDD lead to a significant
increase in energy demand (96). In neural cells mitochondria are
pivotal for energy production through oxidative phosphorylation
that converts the chemical energy stored in glucose to ATP.
Furthermore, mitochondria are essential for Ca2+ homeostasis,
generation of ROS, neuronal outgrowth and differentiation,
synaptic plasticity, and cell death signaling. Thus, they are highly
important for cellular resilience and stress adaptation in the
brain. More recent reports suggested a role for mitochondrial
dysfunction and related major hallmarks of cellular stress, such
as impaired redox balance and deregulation of intracellular Ca2+

homeostasis in the development of MDD and bipolar disorders
(BD) (97–100).

While affective disorders such as MDD or BD are not
considered as classic mitochondrial diseases, emerging evidence
suggests a substantial link between mitochondrial dysfunction
and these disorders in genetic and behavioral animal models,
as well as in patients (99, 101, 102). For example, patients
suffering from mitochondrial diseases caused by genetic
alterations affecting mitochondrial metabolism frequently
develop symptoms of MDD, BD, psychosis, and personality

changes (103–105). Further, mood disorders are often prevalent
years before the onset of cognitive and motor symptoms in
patients later diagnosed with neurodegenerative diseases, such
as Alzheimer’s, Parkinson’s, and Huntington’s disease (106, 107),
which all feature mitochondrial dysfunction in neurons as
a major hallmark of the underlying pathology (107–109).
Concurring reports are derived from genetic studies as well
as post-mortem brain analysis, brain imaging or biomarker
studies in patients diagnosed with affective disorders, and in the
respective animal models (99, 110). Mitochondrial impairments
are characterized by morphological, biochemical, and functional
hallmarks which all contribute to disturbed energy metabolism,
but also to reduced Ca2+ buffering, loss of membrane potential,
and increased mitochondrial ROS production. Finally, fatal
mitochondrial dysfunction can result in disruption of the
mitochondrial membrane and release of pro-apoptotic proteins
such as cytochrome c or apoptosis-inducing factor (AIF) which
mediate caspase-dependent or caspase-independent cell death,
respectively.

Disturbed oxidative phosphorylation (OXPHOS) and
reduced mitochondrial ATP production may significantly
contribute to impaired neuronal plasticity and neurogenesis
which are considered hallmarks in the neurobiology of
depression (102). Several studies detected lower ATP levels in
the brain tissue of MDD patients compared to healthy controls
(111, 112). Similar correlations of depressive behavior and
mitochondrial dysfunction in energy supply were confirmed
in animal models of depression. In a mouse model of chronic
restraint stress depressive behavior in the tail suspension
and forced swim tests was associated with decreased oxygen
consumption rate in isolated brain mitochondria (113). Further,
impaired mitochondrial respiration and additional features of
mitochondrial damage such as altered mitochondrial membrane
potential and changes in the mitochondrial ultrastructure were
also detected in other rodent models of depression induced
by chronic mild stress such as learned helplessness in mice
(114) or anhedonia in rats (115). Interestingly, treatment with
the antidepressant fluoxetine reversed the depressive behavior
and restored ATP production in brain tissue in a rat model of
unpredictive chronic stress (116).

Mitochondria are highly dynamic organelles that undergo
permanent fission and fusion processes allowing for the
transport, reorganization, and regeneration of these organelles
within the cells. In a model of streptozotocin-induced diabetes
in mice, the associated depressive behavior was accompanied
by increased expression of mitochondrial fission genes fission
protein 1 (Fis1) and dynamin-related protein 1 (Drp1), and a
decreased expression of mitochondrial fusion genes mitofusin 1
(Mfn1), mitofusin 2 (Mfn2), and optical atrophy 1 (Opa1) in the
brain tissue (117). Further, the DISC1 protein is an important
regulator of mitochondrial dynamics and mediates the transport,
fusion, and regeneration of these organelles in neuronal
axons and dendrites (118). Pathological DISC1 isoforms
disrupt mitochondrial dynamics leading to abnormal neuronal
development and DISC1 mutations have been implicated in
major mental disorders including MDD and BD (119). Intact
mitochondrial fission and fusion dynamics are also important
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for the proper cristae formation, respiratory functions of these
organelles, and quality control through mitophagy. Impairments
in the structural dynamics lead to reduced energy supply,
accumulation of dysfunctional mitochondria and increased ROS
production. These phenomena are closely associated with both,
enhanced inflammatory responses (120, 121) and the risk of
psychiatric disorders, including MDD (122).

In particular, oxidative stress has been frequently linked to
the pathophysiology of depression. In MDD patients and in
animal models, decreased levels of antioxidants and antioxidant
enzymes were detected, suggesting an impaired antioxidant
defense associated with depressive behavior. For example,
in a rat model of restraint stress glutathione levels were
significantly decreased in the brain tissue for weeks after stress
exposure (123). In neurons, glutathione depletion leads to
increased lipid peroxidation and the activation of pro-apoptotic
signaling pathways that involve the activation and mitochondrial
translocation of BH3-interacting domain death agonist (BID)
and the fission-inducing GTPase Drp1. Upon mitochondrial
transactivation, these proteins mediate mitochondrial fission,
mitochondrial ROS production, ATP depletion, and disruption
of the mitochondrial membrane (124–126). Notably, lipid
peroxidation was enhanced in mouse brain tissue after restraint
stress (123), and increased oxidative damage and altered
expression levels of the electron transport chain complex I
were also detected in brain tissue of MDD patients (127).
Inhibition of complex I leads to a rapid increase in mitochondrial
ROS formation which further impairs mitochondrial respiration,
integrity, and function. As outlined before, complex I inhibition
and the associated increase in mitochondrial ROS formation and
oxidized mtDNA have been established as a trigger mechanism
for inflammatory responses in macrophages through activation
of the NLRP3 (36–38).

The Risk Gene CACNA1C and
Mitochondrial Dysfunction
How mitochondrial functions are affected by genetic risk
factors and environmental stress in the context of affective
disorders is an emerging field of research. The trigger
mechanisms of mitochondrial pathology, such as oxidative
stress, impaired intracellular Ca2+ homeostasis, and molecular
signaling pathways causing loss of mitochondrial function and
integrity have been associated with the pathology of affective
disorders. In particular, recent findings closely connected the
psychiatric risk gene CACNA1C to mitochondrial dysfunction
in conditions of oxidative stress. CACNA1C codes for the α1c
subunit of the L-type Ca2+ channel (LTCC) Cav1.2, and has
been identified by several genome-wide association studies as
one of the strongest and most replicable risk factors for MDD
and BD (128). In cultured mouse neuronal cells, reduction
of CACNA1C expression or pharmacological inhibition of
LTCC prevented excessive ROS formation, mitochondrial
damage and ATP depletion, and rescued the neurons from
cell death in a model of oxidative stress (129, 130). Our
data corroborate earlier reports demonstrating that CACNA1C
depletion or pharmacological LTCC inhibition was associated

with antidepressant-like behavior and resilience to chronic stress,
while activation of CACNA1C was detrimental for synaptic
plasticity and cognitive functions (131, 132). In gene/genetic x
environmental risk interactions, mitochondrial dysfunction may
represent a converging point of the complex interdependent
processes of energy metabolism, cellular stress, and calcium
homeostasis in the neurobiology of affective disorders.

Overall, increased cellular ROS levels and the ensuing
oxidative stress may be cause as well as consequence of
mitochondrial dysfunction and metabolic impairments involved
in neuroinflammatory responses in the neurobiology of
depression. The according signaling pathways may serve as
future therapeutic targets. Similar to therapeutic effects on
innate immune responses and mitochondrial impairments,
antidepressants attenuate parameters of oxidative stress in
MDD patients and animal models [for review, see Allen
et al. (102) and Adzic et al. (133)]. Further, a recent study
exposed functional perturbations of apoptotic mitochondrial
stress signaling induced by BID as a potential therapeutic
target in rodent models of depression (134). Targeting such
mechanisms of mitochondrial damage may provide novel
therapeutic approaches in both, age-related disorders of
the nervous system and psychiatric disorders (135–137).
Systematic studies investigating the impact of genetic risk
factors and environmental stress on mitochondrial functions
and morphological alterations are highly warranted for a better
understanding of the proposed link between the course of
psychiatric disorders and mitochondrial demise.

IMMUNOMETABOLISM AND
NEUROINFLAMMATORY RESPONSES IN
MDD

Metabolic Programs in M1 and M2 Like
Macrophages and Microglia
The research field termed immunometabolism has significantly
advanced our understanding on the link between immunological
and metabolic processes in immune cell differentiation and
effector function. Naïve as well as activated immune cells require
the capacity to produce ATP as energy supply for cellular function
and it has been demonstrated that myeloid cells primarily use
glycolysis as a source of ATP that represents a major mechanism
of pro-inflammatory adaptation (138, 139). It is well-established
that inflammatory factors such as pro-inflammatory cytokines
influence mitochondrial function and can shift ATP production
from OXPHOS to glycolysis. In this regard, TNF produced e.g.,
by activated microglia inhibited OXPHOS and concomitantly
induced enhanced mitochondrial ROS production (120).

Immunometabolismmay fine-tunemyeloid cell functions and
thereby influence activation states and polarization of myeloid
cells. In accordance, M1 and M2 macrophages have been linked
to distinct metabolic programs (139). It has been shown that
classically activated M1 macrophages exhibit enhanced aerobic
glycolysis and increased pentose phosphate pathway (PPP),
while mitochondrial fatty acid oxidation (FAO), the Krebs-cycle,
and OXPHOS were reduced (140, 141). This metabolic shift
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in M1 cells allows for conserving and generating metabolites
necessary for pro-inflammatory activation, cell proliferation and
concomitant supply of the required amount of ATP. For example,
succinate from the inactive Krebs-cycle activates hypoxia-
inducible factor 1-alpha (HIF1-α) which stimulates IL-1β
production, and, together with the increased glycolysis, supports
cell activity and survival in hypoxic-inflammatory environments
(141). Enhanced NO production through oxidation of L-
arginine by iNOs activity is another hallmark of activated M1
macrophages and microglia (142, 143). NO reduces Krebs-cycle
activity through inhibition of the pyruvate dehydrogenase, i.e.,
by reducing the production of acetyl-CoA from pyruvate (144,
145). Further, increased NO levels can also reversibly inhibit
OXPHOS through inhibition of the mitochondrial cytochrome
oxidase.

Similar to peripheral immune cells, LPS stimulation of
mouse microglial cell lines and primary microglia revealed a
metabolic switch from mitochondrial respiration to glycolysis
(146) (and own observations in primary rat microglia). The LPS-
mediated activation of microglia was accompanied by increased
lactate production and activation of glycolysis-driving enzymes
such as hexokinase, glucose-6-phosphate dehydrogenase,
phosphofructokinase-1, and lactate dehydrogenase. The
metabolic shift upon TLR activation in macrophages and
microglia appears to occur in two steps that allows for utilizing
OXPHOS, glycolysis, and the PPP simultaneously in the first
phase, while glycolytic metabolism and the PPP support survival
and pro-inflammatory activity after fullM1 transformation (146).
In contrast, anti-inflammatory M2 macrophages, supporting
e.g., wound-healing, utilize fatty acid oxidation as the primary
energy source which results in generation of acetyl-CoA that is
shuttled to the catabolic Krebs-cycle in the mitochondrial matrix
(144, 147). This metabolic state represents the phenotype of
resident macrophages and features reduced glucose utilization
and the synthesis of ornithine and polyamines to promote cell
proliferation and tissue repair, collagen synthesis, fibrosis, and
tissue remodeling (142). In cultured mouse microglia, induction
of the M2 phenotype by exposure to IL-4 was also accompanied
by reduced glucose consumption and lactate production, and
mitochondrial respiration was preserved to control levels in non-
stimulated cells (146). These findings are in contrast to peripheral
human macrophages, where IL-4 stimulation enhanced glucose
uptake, fatty acid metabolism, and mitochondrial biogenesis
(148), thus pointing to differences in the M2 states between these
two immune cell populations. More insight into the molecular
mechanisms of microglia polarization is required to identify
potential targets for pharmacological intervention at the level of
mitochondrial metabolism or at the level of cytokine regulation
and signaling (149).

Metabolic Programs in PMBCs
Up to now there is limited knowledge on the effect
of mitochondria-derived metabolic pathways on
(neuro-)inflammation in MDD. Furthermore, the impact
of pro-inflammatory cytokines on mitochondrial functioning
in depression is yet unresolved. During neuroinflammation in
depression-associated behavior, inflammatory mediators such

as TNF produced by activated microglia and brain-infiltrating
immune cells trigger intracellular signaling cascades that can alter
mitochondrial metabolism, ROS formation, and programmed
cell death as outlined before. In contrast to microglia, which
are hardly accessible from MDD patients, peripheral blood
mononuclear cells (PBMCs) may provide an accessible source
of the mitochondrial pool with relevance to alterations of
mitochondrial functions in the brain. It has been shown recently
in non-human primates that the mitochondrial bioenergetics
profile of blood monocytes and platelets is positively related
to frontal cortex mitochondrial function and metabolism
(150). Brain mitochondrial dysfunction, in turn, is significantly
involved in the pathophysiology of psychiatric disorders as
supported by a growing body of literature (102, 151). In fact, a
few studies already assessedmitochondrial function in circulating
blood cells of psychiatric patients (152–154). For example, basal
and maximal mitochondrial respiration was significantly lower
in platelets (153) as well as in PBMCs (152) of depressed
patients vs. healthy controls. Fresh intact platelets of depressive
patients in partial remission showed decreased basal and
maximal respiration, whereas the ratio of both values remained
unchanged compared to healthy individuals (153). Basal and
maximal mitochondrial respiration, and ATP production
were significantly lower in cryopreserved PBMCs of female
patients with a current diagnosis of major depression (152).
As outlined before, compromised mitochondrial metabolism
often leads to excess superoxide production thereby modulating
redox-sensitive inflammatory pathways and inducing oxidative
stress, which most likely play a role in MDD pathophysiology
(155, 156). The Bioenergetic Health Index (BHI) comprises
several parameters of a person’s respiration profile and overall
mitochondrial function (157, 158). By considering the spare
respiratory capacity, the BHI may even have predictive value for
the development of affective disorders because it may already
identify alterations in mitochondrial performance before cellular
energy failure occurs.

In this chapter we reviewed studies providing compelling
evidence for metabolic re-programming in peripheral innate
immune cells and in microglia upon activation. This is
characterized by a switch from mitochondrial respiration to
glycolysis and the PPP in the pro-inflammatory “M1” phenotype
and, in contrast, to enhanced utilization of fatty acid and
acetyl-CoA shuttling to the Krebs-cycle in anti-inflammatory M2
macrophages/microglia. The pro-inflammatory M1 phenotype
has been associated with enhanced disease status in MDD,
whereas a switch toward M2-activated microglia was associated
with the therapeutic effect of antidepressants. Whether
bioenergetic profiles of peripheral immune cells could serve
as predictive biomarkers in affective disorders or even as
therapeutic target with relevance for both, peripheral immune
cells and microglia in the brain, requires further investigation.

SUMMARY

As discussed in this review, certain metabolic pathways
may determine microglia differentiation to shape the effector
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function of these cells. Consequently, manipulating these
pathways may constitute a novel target to combat detrimental
inflammatory responses in affective disorders. For example,
the potential to promote an M1 to M2 shift in microglia
during neuroinflammation in MDD may have beneficial
therapeutic implications. In patients, PBMCs may be a
valuable surrogate model of brain function and established
mitochondrial perturbations in PBMCs may serve as biomarkers
for neuropsychiatric disorders. In most studies, impaired
mitochondrial respiration in the PBMCs was linked to an
enhanced risk for or already established psychiatric disorders
in the donor patients. Limitations in the overall comparability
of the reported findings are attributed to differences in
study cohort characteristics, antidepressant medication, cell
type, cell storage, and detection methods of mitochondrial
function. Whether mitochondrial dysfunction precedes the
onset of psychiatric disorders has not been investigated in
detail so far. Therefore, it remains to be elucidated, if
changes in mitochondrial bioenergetics are already present in
healthy individuals with psychiatric disease-relevant genetic or
environmental risk factors and thus can serve as prognostic
marker before clinical symptoms manifest. However, the
impact of metabolic regulation in immune cell activation
on the pathophysiology of depression and the question how
increasing knowledge on immunometabolism could be translated
into potential therapies for affective disorders remains to be
answered.
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