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Introduction

Nowadays, cancer treatment using ionizing radiation 

(IR), also known as radiotherapy, is one of the most 

common modalities. The aim of radiotherapy is to 

eradicate all tumor cells with lowest possible damage to 

the surrounding normal tissues.1 However, radiation 

therapy is associated with some side-effects. Early and 

late side effects of exposure to high doses of 

radiotherapy may limit the radiation doses delivered.2 

Also, a high dose of radiation may affect the long‐term 

quality of life of cancer patients.3 lung inflammation and 

fibrosis is one of the most important late effects of 

radiotherapy which may appear months or years after 
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Abstract 
Purpose: Lung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and 

late side effects of exposure to IR can limit the radiation doses delivered to tumors that are 

within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of 

radiotherapy for this organ. IL-4 and IL-13 have a key role in the development of pneumonitis 

and fibrosis. Metformin is a potent anti-fibrosis and redox modulatory agent that has shown 

radioprotective effects. In this study, we aimed to evaluate possible upregulation of these 

cytokines and subsequent cascades such as IL4-R1, IL-13R1, Dual oxidase 1 (DUOX1) and 

DUOX2. In addition, we examined the potential protective effect of metformin in these 

cytokines and genes, as well as histopathological changes in rat’s lung tissues.  

Methods: 20 rats were divided into 4 groups: control; metformin treated; radiation + 

metformin; and radiation. Irradiation was performed with a 60Co source delivering 15 Gray 

(Gy) to the chest area. After 10 weeks, rats were sacrificed and their lung tissues were 

removed for histopathological, real-time PCR and ELISA assays.  

Results: Irradiation of lung was associated with an increase in IL-4 cytokine level, as well 

as the expression of IL-4 receptor-a1 (IL4ra1) and DUOX2 genes. However, there was no 

change in the level of IL-13 and its downstream gene including IL-13 receptor-a2 

(IL13ra2). Moreover, histopathological evaluations showed significant infiltration of 

lymphocytes and macrophages, fibrosis, as well as vascular and alveolar damages. 

Treatment with metformin caused suppression of upregulated genes and IL-4 cytokine 

level, associated with amelioration of pathological changes.  

Conclusion: Results of this study showed remarkable pathological damages, an increase in 

the levels of IL-4, IL4Ra1 and Duox2, while that of IL-13 decreased. Treatment with 

metformin showed ability to attenuate upregulation of IL-4–DUOX2 pathway and other 

pathological damages to the lung after exposure to a high dose of IR.  
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treatment. These side effects are usually associated with 

damage to vascular structures, infiltration of immune 

system cells such as macrophages, lymphocytes and mast 

cells in addition to oxidative damage and tissue 

remodeling.4 Radiation-induced fibrosis develops 

through long term changes in some biological elements 

and processes, such as cytokines and growth factors, 

inflammation, fibroblast differentiation etc.5  

Several experiments have proposed TGF-β, IL-4 and IL-

13 signaling pathways as the most important pathways 

involved in radiation-induced fibrosis.6 TGF-β through 

stimulation of Smad pathway, promotes fibroblast 

differentiation.7 IL-4 stimulates both IL-13 and TGF-β. 

which further amplifies the process of fibrosis. 

Furthermore, IL-4 and IL-13 stimulate production of free 

radicals, a long time after exposure, resulting in chronic 

oxidative stress.8 It has been shown that IL-4 has a two-

fold effect on promotion of fibrosis.9 Upregulation of 

Dual oxidase 1 (DUOX1) and DUOX2 by these 

cytokines play a key role in chronic ROS production, 

inflammation and fibrosis.10 Moreover, it has been 

shown that IL-4 plays a key role in the maintenance of 

macrophages in lung tissues following exposure to 

radiation. On the other hand, macrophages are the main 

source of IL-4 production.11 It has been suggested that 

chronic infiltration of macrophages through production 

of IL-4, plays a central role in the development of 

pneumonitis and lung fibrosis.12 Suppressing these genes 

can ameliorate various side effects induced by IR.  

So far, various agents such as herbal compounds, 

antioxidants etc., have been examined for preventing 

radiation-induced pneumonitis and lung fibrosis.13,14 

Metformin has shown some radioprotective and 

antioxidant effects.15 Moreover, this drug has shown 

ability to ameliorate fibrosis induced by various toxic 

agents such as chemotherapy drugs.16,17 Metformin has 

been shown to possess antioxidant effect via direct 

neutralization of ROS and stimulating antioxidant 

enzymes.18 However, a major effect of metformin is its 

stimulatory effect on DNA repair pathways through 

upregulation of AMP-activated protein kinase (AMPK).19 

AMPK is able to stimulate BER and HR pathways of 

DNA repair, leading to amelioration of clastogenic agents 

such as IR.20,21 Metformin also has a potent inhibitory 

effect on mitochondrial electron transfer chain 1 (ETC1), 

leading to attenuation of superoxide production in 

oxidative stress conditions. In this study, we examined the 

protective effect of metformin (in a non-toxic dose) on 

development of radiation-induced inflammation and 

fibrosis associated with other pathological changes such as 

vascular damage. In addition, we evaluated its effects on 

changes in the levels of pro-fibrotic cytokines such as IL-4 

and IL-13 and their downstream genes, including IL-4Ra1, 

IL-13Ra2, DUOX1 and DUOX2. 

  

Materials and Methods 

Animal preparation  

20 adult male Wistar rats were purchased from Razi 

institute, Tehran University of Medical Sciences, Tehran, 

Iran. Rats weighing 200 ± 20 g were housed in 

accordance to the principles outlined in “The Guide for 

The Care and Use of Laboratory Animals” prepared by 

Kermanshah University of Medical Sciences. All rats 

were kept under controlled conditions, including 

humidity (60 ± 5%), temperature (25 ± 2°C), as well as 

12h light and dark cycle.  

 

Metformin treatment 

Metformin powder was prepared by Tehran Chemie 

Pharmaceutical Company, Tehran, Iran. It was dissolved 

in distilled water at a concentration of 20mg/ml. Oral 

administration of the resulting solution was done 4 and 5 

consecutive days before and after irradiation, 

respectively. On the day of irradiation, metformin was 

administered 30 minutes before irradiation. To obtain a 

non-toxic drug dose as well as optimum radioprotective 

effect, a 100 mg/kg dose of metformin was selected 

based on previous studies.22 

 

Irradiation of animals  

Before irradiation, animals were anesthetized using 

intraperitoneal injection of ketamine 10% at a dose of 80 

mg/kg and xylazine 2% at a dose of 5 mg/kg. The rats 

were irradiated on the thoracic region with a 60Co source 

of gamma rays at a dose rate of 109 cGy/min. A single 

dose of 15 Gy was selected for inducing lung injury 

based on previous study by Ghosh et al.23 

 

Experimental design 

Rats were divided into four groups. Group 1 (control): 5 

rats served as controls without any intervention. Group 2 

(metformin): 5 rats were treated with metformin for 10 

consecutive days. Group 3 (radiation): 5 rats received 15 

Gy gamma rays to their chest area. Group 4 (metformin 

+ radiation): 5 rats were treated with metformin for 4 and 

5 consecutive days before and after irradiation, 

respectively. All animals sacrificed 10 weeks after 

irradiation. Their lung tissues were removed after chest 

surgery. The right lung tissues were frozen immediately 

at -80°C for ELISA and real-time analysis, while the left 

parts were fixed in 10% neutral buffered formalin for 

histopathological assay.  

 

Real-time PCR 

Lung tissues were homogenated and total RNA was 

extracted. The concentration of total RNA was evaluated 

by a nanodrop. The extracted RNAs were transcribed to 

cDNA using cDNA Synthesis Kit (Gene All, South 

Korea). Afterwards, the expression of IL-4R, IL-13R, 

DUOX1 and DUOX2 were quantified using Corbett PCR 

system (USA) and their amplifications were performed 

with master mix green (Ampliqon). Expression of these 

mentioned genes was quantified relative to the reference 

gene and normalized to phosphoglucomutase 1 (PGM1) 

as the housekeeping gene. The genes’ primer sequences 

were designed using Gene Runner software and BLAST 

from NCBI. The primer sequences of IL-4R, IL-13R, 

DUOX1, DUOX2 and PGM1 are shown in Table 1.  
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Table 1. The primer sequences of genes which were used for real-time PCR. 

Gene Forward sequence Reverse sequence 

IL-4R1 GAGTGAGTGGAGTCCCAGCATC GCTGAAGTAACAGGTCAGGC 

IL-13Ra2 TCGTGTTAGCGGATGGGGAT GCCTGGAAGCCTGGATCTCTA 

DUOX1 AAGAAAGGAAGCATCAACACCC ACCAGGGCAGTCAGGAAGAT 

DUOX2 AGTCTCATTCCTCACCCGGA GTAACACACACGATGTGGCG 

PGM1 CATGATTCTGGGCAAGCACG GCCAGTTGGGGTCTCATACAAA 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Lung tissues were homogenated by a homogenizer 

device. The levels of IL-4 and IL-13 in the lung 

homogenates were detected by Rat IL-4 and IL-13 

ELISA kits (Zelbio, Germany) according to the 

manufacturer’s instructions.  

 

Histopathological evaluation 

After sacrificing the rats, their left lungs were removed 

and fixed in formalin, and then embedded in paraffin. 

Sections of the removed lungs were cut into 5 µm, 

stained with hematoxylin and eosin (H and E) and 

Masson's trichrome (MTC). All pathological analyses 

were performed at the pathology unit of Imam Khomeini 

Hospital, Tehran, Iran. The blinded pathological study 

was performed with a light microscope using a semi-

quantitative scoring system for the detection of 

histological parameters including fibrosis, edema, 

vascular damage and immune cells infiltration.  

 

Statistical analysis 

The results were presented as mean ± standard deviation 

and P<0.05 was considered statistically significant. Data 

were analyzed using SPSS 16 for Windows, Chicago, 

USA. Results of real-time PCR were analyzed by t-test 

while histopathological and ELISA results were analyzed 

using one-way ANOVA with post-hoc Tukey’s HSD.  

 

Results and Discussion  

Lung is one of the most radiosensitive but late 

responding organ to radiotherapy. During radiotherapy 

for lung cancer or other tumors adjacent to the lung, late 

effects such as pneumonitis and fibrosis may threaten the 

life of patients. Moreover, exposing the lungs to 

radioactive particles after a radiation disaster or during a 

non-uniform whole body irradiation may cause death due 

to pneumonitis or fibrosis, months or years after 

exposure.24 In recent years, several studies have been 

conducted to illustrate the molecular mechanisms of 

radiation injury to the lung. Also, some studies have 

proposed several agents which inhibit inflammatory and 

profibrotic pathways to protect or mitigate lung 

pneumonitis and fibrosis.25-28 Evidences have shown that 

inflammatory and profibrotic cytokines play a key role in 

chronic consequences of exposure to IR in lung tissue.29 

Amongst several cytokines, IL-1, IL-4, IL-6, IL-13, 

TNF-α and TGF-β are the most effective cytokines in 

promoting late effects of radiation injury in various 

organs such as the lung.24,30 IL-4 and IL-13 are able to 

induce continuous oxidative stress which mediate 

chronic inflammation and fibrosis. Studies have shown 

that IL-4, through its receptor IL-4R1, upregulates the 

expression of both DUOX1 and DUOX2, while IL-13 

can upregulate IL13R and DUOX1.31,32 This may 

continue for a long time after exposure to IR, leading to 

disruption of normal function of tissues and increased 

risk of carcinogenesis.30,33 In addition, IL-4 has a key 

role in infiltration of macrophages in the lung and 

subsequent consequences such as promotion of fibrosis 

and inflammation.34 

 

Signs of radiation sickness  

The results of the survival rates of control, metformin 

treated, irradiation and irradiation plus metformin, 

evaluated at the end of the 10th week after local-thorax 

irradiation showed that rats which received metformin 

had healthy signs similar to the control group. In 

addition, those rats which were treated before and after 

irradiation, did not show any sign of radiation sickness. 

However, rats which received gamma rays without 

metformin had signs of reduced weight (possibly because 

of problems in food and water intake), epilation and 

ruffling of their hairs.  

 

Real-time PCR 

In this study, we aimed to evaluate the level of two 

important pro-fibrotic cytokines; IL-4 and IL-13, and 

their downstream genes, including IL4ra1, IL13Ra2, 

DUOX2 and DUOX1 in rat’s lung tissue following 

exposure to a high dose of radiation. We also examined 

the radioprotective effect of metformin on development 

of pneumonitis and fibrosis, infiltration of macrophages 

and lymphocytes, alveolar and vascular damage, as well 

as edema and collagen deposition. As shown in Figure 1, 

the expression of IL4ra1 was significantly increased 

following exposure to IR when compared to control 

group (6.55±0.30, p=0.001). However, in metformin 

treatment group, there was no significant change in the 

expression of this gene. Treatment with metformin could 

attenuate the expression of IL4ra1 significantly, 

compared with IR group (1.91±0.93, p <0.05). Unlike 

IL4ra1, there was no detectable expression of IL-13ra2 

gene in all groups. The expression of DUOX1 increased 

following exposure to IR when compared to control 

group (4.83±1.63, p<0.05). Treatment with metformin 

could attenuate the expression of IL-4r compared to IR 

group (2.15±0.57, p <0.05). Results of DUOX2 gene 

expression showed a significant increase for the radiation 
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group compared with control group (4.23±0.57, p 

≤0.001). Moreover, its expression was significantly 

reduced in rats which were treated with metformin 

(2.09±0.44, p ≤0.001).  

 

 
Figure 1. The expression of IL4Ra1, IL13Ra2 and DUOX2 in 
rat’s lung tissues following irradiation, treatment with metformin, 
and both, (t-test, *p <0.05 is considered a significant difference, 
a: significant compared to control group; b significant compared 
to radiation group). RAD=radiation; MET=metformin. 

 
ELISA 

IL-4 and IL-13 are among important cytokines that 

induce ROS production. As earlier mentioned, IL4Ra1 

and IL13Ra2 are the main receptors of these cytokines. 

As upregulation of these genes are involved in chronic 

oxidative stress and fibrosis, we hypothesized that the 

increased expression of these genes may be associated 

with pathological damages to the lung tissue. In addition, 

we evaluated the levels of IL-4 and IL-13 cytokines as 

well as pathological changes. Afterwards, we examined 

the protective effect of metformin on these changes. As 

shown in Figures 2 and 3, irradiation of lung tissue led to 

an increase in IL-4 level (640±43 pg/ml vs 413±30 

pg/ml). However, treatment with metformin did not 

cause any change in the level of this cytokine. When rats 

were treated with metformin before irradiation, the level 

of IL-4 was suppressed compared to irradiation only 

group (339±36 pg/ml vs 640±43 pg/ml). In contrast to 

IL-4, the level of IL-13 was significantly reduced 

following exposure to IR (243±4 pg/ml vs 215±3 pg/ml), 

(ANOVA, Tukey's HSD, p=0.034). However, no 

changes were observed for treatment with metformin 

before and after irradiation compared with IR group 

(229±14 pg/ml).  

 

 
Figure 2. The levels of IL-4 in rat’s lung tissues following 
irradiation or treatment with metformin, or both. a: significant 
compared to control group; b significant compared to radiation 
group (ANOVA, Tukey's HSD, p<0.05). RAD=radiation; 
MET=metformin. 

 

 
Figure 3. The levels of IL-13 in rat’s lung tissues following 
irradiation of rat’s chest area. a: significant compared to control 
group (ANOVA, Tukey's HSD, p<0.05). (ANOVA, Tukey's HSD, 
p<0.05). RAD=radiation; MET=metformin. 

 

Histopathological analyses 

As shown in Table 2, irradiation led to an increase in 

infiltration of macrophages and lymphocytes, thickening 

of alveolar and vascular endothelium as well as edema 

and thrombosis. Treatment with metformin led to 

attenuation of all mentioned factors. In addition, 

irradiation caused a mild fibrosis, which was suppressed 
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by metformin (Figures 4 and 5). It is well known that 

macrophages and lymphocytes are able to release large 

numbers of cytokines that lead to appearance of 

inflammation and fibrosis. Macrophages and 

lymphocytes, through some cytokines induce ROS and 

NO production that have key roles in promotion of 

pneumonitis and collagen deposition.  

 
Table 2. Results of histopathological evaluation of rat’s lung tissues, radiation group was compared to control group while radiation plus 
metformin group was compared to radiation group (a: significant compared to control group, ANOVA, Tukey's HSD, p<0.05).  

 Control Metformin treated Radiation Radiation+Metformin 

Macrophage infiltration 1.00±00 1.00±00 3.66±0.57a 1.5±0.57b 

Lymphocyte infiltration 1.75±0.50 1.00±00 4.00±00a 1.5±0.57b 

Neutrophil infiltration 1.25±50 1.00±00 1.00±00 1.25±50 

Alveolar thickness 1.00±00 1.00±00 2.66±0.57a 1.25±50b 

Vascular thickness 1.00±00 1.00±00 2.00±00a 1.00±00b 

Edema and thrombosis 1.00±00 1.00±00 2.00±00a 1.00±00b 

 

 

 
Figure 4. Histopathological effects of irradiation of rat’s lungs and protective effect of metformin. A: Normal; B: Radiation; C: Radiation + 
Metformin. Irradiation caused a mild interstitial infiltration of lymphoplasma, and significant elevation of foam cells. Treatment with 
metformin before and after irradiation caused suppression of all changes in histological parameters (H&E staining).  

 

Metformin is able to modulate cellular metabolism via 

inhibition of reduction/oxidation reactions and 

inflammation. A study by Sato et al. has shown that 

metformin through inhibition of TGF-β–NOX4 signaling 

pathway attenuate Smad phosphorylation and 

myofibroblast differentiation, leading to reduced lung 

fibrosis.16 Modulatory effects of metformin have been 

proposed for protection against radiation injury. It has 

also shown ability to reduce IR-induced cellular damage 

as reported in vitro and in vivo studies.35,36 Metformin 

has shown reduced cell death and micronucleus 

formation in human lymphocytes.35 An in vivo study by 

Xu et al. has shown that metformin suppresses long term 

upregulation of NOX4 in mice bone marrow stem cells 
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following irradiation. This was associated with decreased 

ROS production, DNA damage and apoptosis. Also, 

metformin could stimulate the activity of antioxidant 

enzymes such as superoxide dismutase (SOD) and 

glutathione (GSH).37  

Targeting IL-4 and IL-13 was proposed for mitigation 

of radiation injury in the lung.38 It has been shown that 

suppression of IL-4 can reduce late effects of radiation 

in this organ like fibrosis and macrophage 

accumulation.34 In this study, we showed that the 

expression of IL-4 and its downstream genes involved 

in lung injury after radiation therapy can be potently 

inhibited by metformin.  

 

 
Figure 5. Histopathological effects of irradiation of rat’s lungs and protective effect of metformin. Radiation led to mild fibrosis, while 
metformin reversed it completely. (Massons trichrome staining)  

 

Conclusion 

In this study, we showed that irradiation of rat’s lung led 

to upregulation of IL-4–IL-4R1–DUOX2 pathway, 

associated with inflammation and infiltration of 

macrophages and lymphocytes. However, there was 

significant reduction in the level of IL-13. This could be 

an indication that upregulation of DUOX1 and DUOX2 

by IL-4 is involved in lung injury following exposure to 

IR. Treatment with metformin could suppress 

pathological damages to the lung such as infiltration of 

macrophages and lymphocytes after exposure to a high 

dose of IR. This was associated with a reduction in IL-4 

level as well as expression of IL4Ra1, DUOX1 and 

DUOX2 genes.  
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