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Grid cells are a special class of spatial cells found in the medial entorhinal cortex

(MEC) characterized by their strikingly regular hexagonal firing fields. This spatially

periodic firing pattern is originally considered to be independent of the geometric

properties of the environment. However, this notion was contested by examining the

grid cell periodicity in environments with different polarity (Krupic et al., 2015) and in

connected environments (Carpenter et al., 2015). Aforementioned experimental results

demonstrated the dependence of grid cell activity on environmental geometry. Analysis

of grid cell periodicity on practically infinite variations of environmental geometry imposes

a limitation on the experimental study. Hence we analyze the dependence of grid cell

periodicity on the environmental geometry purely from a computational point of view.

We use a hierarchical oscillatory network model where velocity inputs are presented to a

layer of Head Direction cells, outputs of which are projected to a Path Integration layer.

The Lateral Anti-Hebbian Network (LAHN) is used to perform feature extraction from the

Path Integration neurons thereby producing a spectrum of spatial cell responses. We

simulated the model in five types of environmental geometries such as: (1) connected

environments, (2) convex shapes, (3) concave shapes, (4) regular polygons with varying

number of sides, and (5) transforming environment. Simulation results point to a greater

function for grid cells than what was believed hitherto. Grid cells in the model encode not

just the local position but also more global information like the shape of the environment.

Furthermore, the model is able to capture the invariant attributes of the physical space

ingrained in its LAHN layer, thereby revealing its ability to classify an environment using this

information. The proposed model is interesting not only because it is able to capture the

experimental results but, more importantly, it is able to make many important predictions

on the effect of the environmental geometry on the grid cell periodicity and suggesting

the possibility of grid cells encoding the invariant properties of an environment.

Keywords: grid cells, spatial cells, oscillatory path integration, Lateral Anti-Hebbian Network, connected

environment, concave environment, convex environment
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INTRODUCTION

Spatial navigation is essential for the survival of a mobile
organism. Entorhinal cortex (EC), an important cortical area that
forms input to the hippocampus, was reported to have neurons
known as grid cells which fire when the animal is at points that
have a spatially periodic structure (Hafting et al., 2005). Since
the periodicity encountered is often hexagonal, these cells are
further known as hexagonal grid cells (Hafting et al., 2005).
Albeit grid cells were initially discovered in rats (Hafting et al.,
2005), these cells have also been reported in mice (Fyhn et al.,
2008), bats (Ulanovsky and Moss, 2007; Yartsev et al., 2011),
monkeys (Killian et al., 2012), and humans (Jacobs et al., 2013;
Moser et al., 2014). Experimental studies in human adults who
are at genetic risk for Alzheimer’s disease have reported that the
neural degeneration originates in the EC, with the loss of grid cell
representations causing further impairment of spatial navigation
performance of the patient (Kunz et al., 2015).

Preliminary studies on the effects of environmental geometry
on spatial cells such as place cells (Barry et al., 2006) and grid
cells have been conducted. Place cells are critical for coding the
animal’s position in space. They fire when the animal is situated
in a particular space of the environment known as its firing
field (O’Keefe and Dostrovsky, 1971). Remapping of place cells
occurred when sufficient changes to the geometry (Lever et al.,
2002), color (Bostock et al., 1991), or odor (Anderson and Jeffery,
2003) of the environment were made. Grid cells are equally
crucial for spatial navigation by path integration i.e., tracking
position by integrating self-motion even without the presence
of external sensory landmarks (Hafting et al., 2005; Fuhs and
Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007;
Hasselmo et al., 2007; Fiete et al., 2008; Hasselmo, 2008; Moser
et al., 2014; Bush et al., 2015). Grid cells have been proposed to
have a role in computing directional vector between the start
and goal location (which was termed as vector navigation) that
further aids the animal in reaching its goal location (Bush et al.,
2015). The variation of the grid scale across the dorsal to ventral
medial entorhinal cortex (MEC) axis (Brun et al., 2008; Stensola
et al., 2012), acts like a ruler with different resolutions to measure
the distance traversed by the animal from its starting location.
The features of the grid cells that are stated above help the animal
to navigate the environment efficiently.

MEC conveys spatial information from the higher sensory
cortical areas to the hippocampus (Barnes et al., 1990; Quirk
et al., 1992; Fyhn et al., 2004). It is believed that the dynamic
representation of the spatial location of an animal is created and
updated by the MEC and the grid cells are a proof of it (Savelli
et al., 2008). Hargreaves et al. (2005) initially recorded MEC grid
cells from an environment (Hargreaves et al., 2005). Since the
size of the environment was relatively small, the neurons did
not show obvious grid like firing patterns. It was ambiguous in
prior studies whether all spatially modulated cells in the MEC

Abbreviations: EC, Entorhinal Cortex; HD, Head Direction; HGS, Hexagonal

Gridness Score; LAHN, Lateral Anti-hebbian Network; MEC, Medial Entorhinal

Cortex; PCA, Principal Component Analysis; PI, Path Integration; SOM, Self

Organizing Map; MLP, Multi-Layer Perceptron.

were variants of the grid cells or whether a subset resembled the
place cells of the hippocampus (Savelli et al., 2008). Savelli et al.
(2008) conducted an experiment where the rats were allowed
to forage a small box which was placed inside a larger box.
After sometime, the small box was removed from the large box
without removing the rats and now the rats foraged the larger
box for the rest of the experiment. It was observed that some
cells that showed place cell like response in the small box, showed
grid cell like response in the larger box and the cells showing
boundary cell like response showed no change upon the removal
of the small box. From the aforementioned experiments it is
possible to draw two inferences: firstly, it suggests that there
were two major classes of spatial neurons, the grid cells and the
boundary cells. The boundary cells may therefore be binding the
grid cell firing to the boundaries of the environment. Secondly,
the experiment strongly demonstrated that the spatial firing of
the MEC cells was strongly influenced by the boundaries of the
environment, in the sense that representation of the MEC cells
changed predominantly when the local cues of the environment
were altered. In this paper, we are addressing the second inference
from a purely computational point of view.

Grid cells were initially considered to be the universal metric
for navigation due to their minimal remapping property across
the environment (Hafting et al., 2005; Fyhn et al., 2007). But
this feature of grid field invariance across the environment was
contested by the experiment conducted by O’Keefe (Krupic et al.,
2015) wherein rats were allowed to forage inside differently
shaped environments such as circle, square, hexagon, and
trapezoid. Analysis of grid cell activity in each environment
revealed that the hexagonal grid field symmetry was affected by
the symmetries of the environmental shape. Circle, the most
symmetric environment, had a regular hexagonal firing field. As
the number of axes of symmetry dropped, the regular hexagonal
firing field started to transform into a skewed hexagonal field.
This experimental study pointed out that grid cell firing fields
were not invariant with respect to the environment but exhibit
a definite dependence on the geometry of the environment.

Another interesting experimental study (Carpenter et al.,
2015) considered how grid cells responded when the animal
foraged inside similar environments connected by a corridor.
A key result of the study was that initially the grid fields in
each room had a high spatial correlation between them; as the
time progressed, this correlation decreased and the grid fields
in the two environments became a continuum, forming a global
representation of the connected pair of environments. This study
revealed a new face of the grid cell coding, whereby the periodic
firing fields of the grid cell could rearrange among themselves to
reflect the global shape of connectivity of the environment.

Most of the experimental studies on grid cells were performed
on either square or circular environments, and have not explored
the rich possibilities of varying environmental geometries.
Another study by Stensola et al. (2015) focused on analyzing
the shear induced asymmetry on entorhinal grid cells (Stensola
et al., 2015). Here, the animal was allowed to explore different
square enclosures with a rotational offset which elliptically
distorts the grid patterns. This distortion is then analytically
reversed by a shearing transformation on the grid patterns
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explaining the phenomenon of anchoring of grid patterns to
specific reference points in the enclosure. Although this study
involves exploring the change in grid representation, it does not
involve analyzing the representations in different environmental
geometries, thereby placing it outside the scope of our current
study. Apart from the study of Barry et al. (2007) and Krupic et al.
(2015), to the best of our knowledge, no experimental studies
have been conducted on grid cells under varying environmental
geometries.

Krupic et al. (2014) also studied the changes in grid
representations in varying environmental geometries from a
computational point of view. The proposed model is not
biologically plausible as the firing patterns of grid cells are
generated based on the assumption that each of the N-number
of fields on an abstract semi-infinite 2-D plane interact with each
other via attractive and repulsive forces. These fields are not
intrinsically generated by neural dynamics, but are distributed
a priori over the space and controlled by the dynamics of the
abstract force equation. Theoretical studies have been made on
grid cell coding in non-Euclidean space (Urdapilleta et al., 2015)
which predicted the transformation of the hexagonal pattern of
firing field to heptagonal pattern with the change from Euclidean
to non-Euclidean space. But the problem of studying grid cell
coding as a function of practically infinite variations of the
environmental geometry poses a Himalayan challenge to spatial
cell researchers. Hence, we propose to classify environmental
geometries into the following five broad categories and study the
emergent grid fields using computational modeling.

i. Connected environments
ii. Convex shaped environments
iii. Concave shaped environments
iv. Regular polygon environments with varying number of sides
v. Transforming the environment

The previously mentioned studies, from a pure computational
point of view, would result in a better understanding of the
spatial encoding inside the brain generated by the grid cells. We
show that our simulations not only explain and confirm earlier
studies, but also make a number of testable predictions verifiable
by experiments.

METHODS

To achieve the goal of studying the effect of environmental
geometry on grid cell coding, we used the model as explained
below. In this model, the virtual animal is represented as a
point in two–dimensional space and is made to forage inside
the aforementioned range of environments. Figure 1 shows
the model architecture. Values of the parameters used in the
equations are given in Table 1.

In essence, the model has three stages as described below.

Direction Encoding Stage
The Head Direction (HD) stage is modeled using a two-
dimensional layer of neurons whose afferent weight connections
are trainable using Hebbian rule. In addition to this, the neuronal
layer ensures topography in its representation by training it using

FIGURE 1 | Model architecture. Model receives the velocity information as

input and passes through a hierarchy of processing stages such as head

direction layer, path integration layer and lateral anti hebbian network (LAHN).

Arrows show the direction of flow of information from one hierarchy to the next.

TABLE 1 | Parameter values.

Parameter Values

ΩPI 12π rad/s

µ 1

ηF 0.01

ηL 0.01

β 50

dt 0.01 s

n 20 (number of neurons in lahn)

Kohonen’s Self-Organizing Map (SOM) algorithm (Kohonen,
1982). The network is trained using unit vectors that span the
complete 360◦ angular space. Projection of the animal’s current
direction on the HD layer forms a neural representation of it and
hence forms the directional map (Kohonen, 1982). The response
equation of the SOM neuron is given as:

θHD = ψTW (1)

ψ is the two dimensional input given to the SOM such that
ψ = [cos(θ) sin(θ)] where θ is the actual direction of

navigation
W is the afferent weight matrix of the SOM, where the weight

vectors are normalized.

Oscillatory Path Integration (PI) Stage
This stage consists of a two dimensional array of phase oscillators,
which has one-to-one connections with the HD layer. The
directional input from Equation (1) is fed to the phase dynamics
of the oscillator so that each oscillator corresponding to a specific
direction codes for that component of the positional information
as the phase of the oscillator. The dynamics of phase oscillator is
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given as

d(χu(i, j))

dt
= −χv(i, j)[�PI + βsθHD(i, j)]

+χu(i, j)[µ− (χu(i, j)
2 + χu(i, j)

2)] (2)

d(χv(i, j))

dt
= χu(i, j)[�PI + βsθHD(i, j)]

+χv(i, j)[µ− (χu(i, j)
2 + χv(i, j)

2)] (3)

χ u and χv are the u and v state variables of the PI oscillator.
β is the spatial scale parameter.
s is the speed of the navigation such that s = ||X(t)–X(t−1)||

where X is the position vector of the animal.
µ is the parameter that controls the limit cycle behavior of the

oscillator. Here µ is taken as 1.

Lateral Anti-hebbian Network (LAHN)
Stage
LAHN is an unsupervised neural network (Földiák, 1989) that
extracts optimal features from the input. The network has 1D
array of neurons with lateral inhibitory and afferent excitatory
connections. These weight connections are trainable using
biologically plausible neural learning rules such as Hebbian
(for afferent weights) and Anti-Hebbian (for lateral weights).
The lateral inhibitory connections induce competition among
the neurons and the afferent Hebbian connections extract
principal components from the input (Oja, 1982). This network
connectivity hence ensures optimal feature extraction from
the input data. It has also been observed that neurons that
give rise to grid representations are connected via GABAergic
interneurons (Pastoll et al., 2013), thereby establishing inhibitory
lateral connections between them as seen in the LAHN layer of
the model.

The response of the network is given by the following
equation.

ξi(t) =

m
∑

j=1

qijχj(t)+

n
∑

k=1

wikξk(t − 1) (4)

q is the afferent weight connections and w is the lateral weight
connections.
ξ is the response of the network.
n is the total number of neurons in the LAHN layer.
m is the dimension of the input.
The afferent connections are updated by a variation of the

Hebbian rule and the lateral connections are updated by Anti-
Hebbian rule as given below.

1qij = ηF[χj(t)ξi(t)− qijξi
2(t)] (5)

1wik = −ηLξi(t)ξk(t − 1) (6)

ηFand ηL are the forward and lateral learning rates, respectively.
It has been proved that training the weights of LAHN using

Equations (5) and (6) makes the network weights to converge

r(τx, τy) =

M
∑

x,y
λ(x, y)λ(x− τx, y− τy)−

∑

x,y
λ(x, y)

∑

x,y
λ(x− τx, y− τy)

√

[M
∑

x,y
λ(x, y)2 − [

∑

x,y
λ(x, y)]2][M

∑

x,y
λ(x− τx, y− τy)

2
− [λ(x− τx, y− τy)]

2
(11)

to the subspace spanned by the principle components (PC) of
the input data (Földiák, 1989). We have previously showed that
training of LAHN on oscillatory path integration values can
potentially give rise to a wide variety of spatial cells (Soman et al.,
2018b). Although the LAHN layer in the model exhibits a variety
of spatial cells, we primarily focused on the hexagonal grid cells
to compare with the experimental results.

Trajectory Generation
The trajectory is designed using dynamics of curvature
constrained motion (Soman et al., 2018b) which is governed by
the following equations:

•
x(t) = σ (t) cos2(t) (7)
•
y(t) = σ (t) sin2(t) (8)

σ (t) = ||Xpos − Xwall|| (9)
∣

∣

∣

•

2(t)
∣

∣

∣
≤
γ (t)

ρ
(10)

x and y determine the position of the virtual animal in 2d space,
while its speed is controlled by σ. To ensure that there is high
degree of randomness (Equation 10) when it is far off from
the boundary and low randomness when it is close by and to
prevent it from crossing the boundary, the speed of the virtual
agent is reduced when the virtual animal is close to the border
(Equation 9).

The model comprises of a pure Path Integration system (i.e., it
integrates velocity information at each point in the trajectory),
therefore information given to the system can be treated as a
sequence problem where continuous integration of the input
takes place. The spatial patterns (output of the system) thus
depend highly on the way path integration is performed in the
model. In such a system, the pattern of the trajectory matters
and also changes when there is a change in the shape of the
environment, thereby influencing the activity of the spatial cells.
In conclusion, behavioral anisotropy has a profound influence on
the spatial representation in the model.

Quantification of Gridness
The neuronal firing activity is represented in the form of three
maps namely, the firing field map of the neuron, firing rate
map and the autocorrelation map. Red dots are marked on the
positions of the animal’s trajectory where the SC layer neuron
activity crosses a certain threshold value (εsc). The activity (firing
rate) of the neuron in its firing field is determined by the firing
rate map. In the firing rate map, high activity is indicated by red
and no activity by blue.

Hexagonal gridness is quantified by a gridness score value
(Hafting et al., 2005) computed from the autocorrelation map
which is obtained from the firing rate map using the following
equation.

Frontiers in Neural Circuits | www.frontiersin.org 4 January 2019 | Volume 12 | Article 120

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Jayakumar et al. Grid Cell and Environmental Geometry

r is the autocorrelation map.
λ(x,y) is the firing rate at (x,y) location of the rate map.
M is the total number of pixels in the rate map.
τx and τy corresponds to x and y coordinate spatial lags.
Hexagonal Gridness Score (HGS) is computed as given below.

HGS = min[cor(r, r60
0
), cor(r, r120

0
)]

− max[cor(r, r30
0
), cor(r, r90

0
), cor(r, r150

0
)] (12)

Designing the Environments
Generation of Regular Polygons With Varying Number

of Sides
The polygons are constructed using a unit circle with center at (0,
0). The circle is then sectored into equal angular separation based
on the number of sides given as the input.

The positional coordinates of the points on the unit circle that
form the polygon are given by

[Xk Yk] =

[

cos(
2πk

n
) sin(

2πk

n
)

]

Angle separation= 2π/n; n= number of sides.

The Xk and Yk coordinates are then connected to generate the
regular polygon (Figure 9).

Generation of Connected Environments
The connected environment used for our study has the same
boundary conditions used in the experiment (Carpenter et al.,
2015). The two compartments (e.g., square-square) connected
via a rectangular corridor are constructed by joining the
corner coordinates of the two environments (Figures 2A,
3A,G). For connected environments with varying distances
between the two compartments, we introduce a distance
parameter “d”. The displacement between the two squares is
parallel to one side of each of the two square environments
(Figures 3M–O).

Generation of Concave Boundaries
In this category, we consider the annulus, horseshoe and S-shape
as instances of concave shapes. To construct an annulus shape,
two circles are generated separately (of different radius) and then
combined to form two concentric circles (Figure 5A). In the
case of a horseshoe (Figure 5B), two semicircles are concatenated
to obtain the shape. The coordinates of both these shapes are

FIGURE 2 | Grid cell firing in square-square connected environment. (A) Boundary of square–square connected environment. (B–D) represent the firing fields of grid

cell neuron for square–square connected environment during different training iterations (beginning, middle, and end, respectively) of the model. (E,F) Local and

Global HGS values plotted against the no. of training iterations of model.

Frontiers in Neural Circuits | www.frontiersin.org 5 January 2019 | Volume 12 | Article 120

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Jayakumar et al. Grid Cell and Environmental Geometry

FIGURE 3 | Grid cell firing in circle-circle, square-circle environments and in square–square Connected Environment with increasing distances. (A) Boundary of

square–circle connected environment. (B–D) represent the firing fields of the grid cell in the LAHN for square–circle connected environment at different training

iterations (beginning, middle, and end, respectively) of the model. (E,F) Local and Global HGS values plotted against the no. of training iterations of model. (G)

Boundary of circle–circle connected environment. (H–J) represent the firing fields of the grid cell in the LAHN for circle–circle connected environment at different

training iterations (beginning, middle, and end, respectively) of the model. (K,L) Local and Global HGS values plotted against the no. of training iterations of model.

(M–O) firing field maps (corresponding to end iteration of LAHN training) of the grid cell with respect to distances (d) = 0.1, 0.5, and 1 unit, respectively. (P,Q) Local

and Global HGS final with respect to the distance between the compartments.

determined using the following equations

[X1 Y1] =
[

r1cos(θ) r1sin(θ)
]

; corresponds to the outer arc

[X2 Y2] =
[

r2cos(θ) r2sin(θ)
]

; corresponds to the inner arc

r1 and r2 = radii of the outer and inner arcs, respectively, with
r1 > r2. For the annulus, θ varied from 0 to 360◦ and in the case
of horseshoe it varied from 0 to 180◦. The S-shaped boundary is
generated by concatenating two horseshoe boundaries, with one
of the horseshoes inverted to form the S- shape (Figure 5C).

Generation of Transforming Environment
The objective of studying a transforming environment is to see
if the network output codes not just the position, but also the
global property of the output environment. In the transforming
environment, the boundary comprises of a 5 × 2 rectangular
boundary (configuration 1) (Figure 11A) that evolves over time

to a square (configuration 2) of 5 × 5 dimensions (Figure 11B).
The exploration of the environment by the virtual agent is
concurrent with this transformation.

RESULTS

Visual Input Is Not Imperative for the
Prescribed Model
The model is capable of simulating spatial cell responses even in
the absence of any visual cues (Soman et al., 2018b). Furthermore,
since it is a velocity driven model, information about the
geometry of the environment is implicitly coded in the velocity
itself. This is due to the fact that the trajectory of the virtual
animal is constrained by the shape of the external environment
(Equations (7–10).
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Grid Cell Response to the Shape of
Connected Environments
We perform two different studies to understand the grid cell
coding that emerges when the animal forages the environments
connected by a narrow corridor. In the first study we manipulate
the shapes of the connected environments and analyze the grid
fields. In the second study we fix the shape but vary the distance
between the connected environments.

Manipulating the Shapes of the Connected

Environments
We simulate connected environments with boundaries and
corridor in the same dimensions (the dimension of the square
room is 1.8 × 1.8 units and that of the corridor is 0.8 unit)as
used in the experimental study (Carpenter et al., 2015). We verify
grid cell coding under three schemes such as square–square,
square-circle and circle–circle as shown in Figures 2A, 3A,G).
The virtual animal is allowed to forage the environment in these
three cases. For each case, the model is trained and the resulting
grid fields are analyzed as shown in Figures 2, 3.

The local and global fits for the square–square connected
environment are calculated in the same manner as mentioned in
the experimental paper (Carpenter et al., 2015). As for the other
two connected environments (square–circle and circle–circle),
the global HGS is computed by calculating the HGS values
over the entire connected environment and the local HGS is
obtained by calculating the HGS values for the two environments
separately and averaging them. In the square–square connected
environment, the global fit shows an increasing trend (Figure 2F)
with respect to the LAHN training time (Regression analysis:
Global fit R2 = 0.3826, p < 0.05). Local fit shows a decreasing
trend (Figure 2E; Regression analysis: Local fit R2 = 0.771, p <
0.001).

A similar analysis is performed for connected environments

with different shapes such as square–circle. These boundaries are
connected in the exact samemanner as in the square–square case.

In this case, the global HGS shows a reverse trend (Figure 3F)

compared to the square–square case (Regression analysis: Global
fit R2 = 0.7042, p< 0.001) and the local HGS shows an increasing
trend (Figure 3E). (Regression analysis: Local fit R2 = 0.8152, p
< 0.001).

We then connect two circles exactly in the same manner as
the ones before. Similar analysis is carried out where the global
HGS shows an increasing trend (Figure 3L) (Regression analysis:
Global fit R2 = 0.4833, p < 0.001) and the local HGS shows a
decreasing trend (Figure 3K) (Regression analysis: Local fit R2 =
0.4071, p < 0.001). These trends are similar to the square-square
case.

The realignment of the grid fields from a local
to global continuum is available for viewing in the
Supplementary Material (Videos 1–3).

Manipulating the Distance Between the Connected

Environments
Experimental studies showed that grid cells were capable
of forming coherent global representations in a connected
environment (Carpenter et al., 2015). Our next objective is to

examine whether this globally representative property of grid
firing is retained with increasing distance between the connected
environments. To examine this property we connect two square
compartments and vary the distance between them (distance (d)
ranging from 0.1 to 1 unit, in increments of 0.1). The boundary
conditions of the compartments and the corridor are set in the
same ratio as in the experiment (Carpenter et al., 2015). The agent
is allowed to forage the environment for a period of 10 sessions.
Each session consists of five trips and for each session the distance
between the two compartments is increased by a value of 0.1.

HGS values (HGSfinal) are computed at the time of
convergence of LAHN and the global and local fits are calculated.
These scores are taken into account owing to the fact that
convergence corresponds to the completion of the training
session of the weights. The global HGS values over the distances
show a decreasing trend (Figure 3Q; Regression analysis: Global
fit R2 = 0.4585, p< 0.05) while the values of the local HGS show
an increasing trend (Figure 3P; Regression analysis: Local fit R2

= 0.4142, p< 0.05).

Grid Cell Response in Convex Shaped
Environment
The influence of environmental geometry on grid cell symmetry
was contested by Krupic et al. (2015), and the notion that grid
cells can serve as a universal metric for navigation was challenged.
We conduct a similar study using our computational model
where we generate square and trapezoidal boundaries in the same
dimensions as used in the experiment (Krupic et al., 2015). The
HGS values are calculated from the autocorrelation map. Both
the square and trapezoid boundaries are divided into two halves
of equal areas and analysis is performed to check the similarity
in the gridness between the two halves for both the boundaries.
The HGS analyses are carried out independently for each side
and then for the complete shape in case of both trapezoid and
square. The average HGS for the left side of the trapezoid is
less compared to its right (left = 0.050763, right = 0.14143;
Figure 4B) and is more or less equal for both sides of the square
(left = 0.201337, right = 0.20981, Figure 4A). Another study on
the similarity between the grid patterns of both the halves in
the square and trapezoid enclosures was conducted. It is seen
from the Figure 4C that the similarity in grid patterns is high
in the square than in the trapezium. Additionally, an analysis to
determine the ellipticity of the grid field in the autocorrelogram
is conducted. It can be observed that the trapezoid boundary has
a higher ellipticity in grid fields than that of a square boundary
(Figure 4D).

Grid Cell Response in Concave Shaped
Environment
A similar study of grid cell spatial coding is conducted using
concave shaped environments like horseshoe, annulus and S
shape (Figure 5).

Horseshoe Shaped Environment
The inner radius (r) of the horseshoe is varied from 0 to 2
units with a step size of 0.2. The horseshoe boundary with r
= 0 approximates a semicircle. The virtual agent is made to
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FIGURE 4 | Grid cell firing in square and trapezoid enclosures. (A,B) Average HGS values plotted for the left and right orientation of the square and trapezium

boundaries. (C) Model results—Right and left sides of square are more similar than that of a trapezium. (D) Model results—Ellipticity between a square and a

trapezoid. (E,F) Firing field, firing rate, and autocorrelation maps of the square and trapezoid boundaries, respectively.

FIGURE 5 | Simulated concave shaped environments (A) Annulus, (B)

Horseshoe, and (C) S-Shape, respectively.

traverse the environment. Firing activity of the grid cells under
various r values is shown in Figures 6A–C. HGS values show a
decreasing trend (Figure 6D) as the inner radius of the horseshoe
is increased (Single factor ANOVA, p< 0.001).

Annulus Shaped Environment
A similar analysis is performed with the second type of concave
boundary i.e., annulus shaped environment. Annulus with
inner radius 0 approximates to a circular boundary. Firing
activity of the grid cells under various r values is shown in
Figures 7A–C. The HGS values are found to have the same
decreasing trend as that of horseshoe, as the inner radii of
the annulus is increased (Single factor ANOVA, p < 0.001)
(Figure 7D).

S Shaped Environment
In case of an environment like the S shape, where two similar
horseshoes are concatenated at a common end, it is found that as
the inner radius of the S shape increased from 0 to 1 unit with a
step size of 0.2, the HGS values show a decreasing trend (Single
factor ANOVA, p< 0.001) (Figure 8D).
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FIGURE 6 | Grid cell responses in horseshoe shaped environment. (A–C) Firing field, firing rate, and auto correlation maps of horseshoe boundary with varying inner

radii of 0, 0.8, and 2, respectively. (D) Average HGS values vs. inner radii of horseshoe shaped environment.

Grid Cell Response to Increasing Lines of
Symmetry in the Environment
Most of the grid cell experimental recordings were carried
out either in square or circular shaped environments (Krupic
et al., 2015). Here we address the problem of grid cell
coding for environments in the shape of n-sided regular
polygons. Specifically we consider the range of n from 3
to 10. This study would give an understanding on how the
grid cell code will vary if the number of sides increases and
the polygon approximates a circle (a regular polygon with
infinite sides). In other words, it is analogous to the study
of the influence of environmental symmetry on the grid cell
code. Figure 9 shows the simulated environments used for
this study.

The virtual animal is then allowed to forage inside these
shapes and the resultant trajectory is given as input to the model.
Figures 10A–H show the resultant firing field, firing rate and
autocorrelation maps of the respective polygons. We compute
the HGS values from the spatial autocorrelograms. It is observed
that the HGS values shows an increasing trend with respect to the
number of sides of the polygon (Single factor ANOVA, p< 0.001)
(Figure 10I).

Deciphering the Global Feature of the
Environment From LAHN Activity
The results described so far point to the fact that the simulated
grid neuron is sensitive to a global feature of an environment
such as its shape. To make a more general statement, we need
to show that the LAHN neurons code for a more invariant
and global feature of an environment, in addition to just the
local features such as position or displacement. To numerically
prove this qualitative statement, the virtual animal is allowed to
forage in a rectangular configuration. Over the course of time,
where a rat was made to forage inside multi the environment
is transformed into a square. To prove the above hypothesis,
we show that the LAHN neural responses have information to
classify the environment—Rectangle vs. Square. We implement
this classifier using a Multi-Layer Perceptron (MLP).

The MLP is used here to classify the configuration (either
rectangle or square) based on the activity of the LAHN.
The MLP is trained using the standard back propagation
algorithm (LeCun, 1988) with a single hidden layer of neurons
[see Supplementary Material for MLP training (B)]. The
classification accuracy after training comes to 74.74%. To
confirm for the global invariant feature in the LAHN, we
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FIGURE 7 | Grid cell response in annulus shaped environment. (A–C) Firing field, firing rate, and auto correlation maps of grid activity in the annulus environment with

varying inner radii of 0, 0.8, and 2, respectively. (D) Average HGS values vs. varying inner radii of annulus.

trained another MLP with partially learned LAHN and its
classification accuracy comes to 52.33%. Furthermore, it can
be observed from Figure 12C that the Mean Square Error
of the network output with respect to the untrained LAHN
input is 0.5307 (configuration 1) and 0.2854 (configuration 2);
while for a trained LAHN input it is 0.1503 (configuration 1)
and 0.1359 (configuration 2). This proves that as the LAHN
learns the representations of the animal’s navigating space, it
encodes both local (like displacement, position) and global (like
the environmental configuration) spatial features. For efficient
navigation, both of these features are pertinent and the animal
must be performing Simultaneous Localization And Mapping
(SLAM) (Milford and Wyeth, 2010).

DISCUSSION

Grid cell firing fields, characterized by their hexagonal
spatial periodicities, are considered to serve as a universal
metric for spatial navigation. This notion was contested by

some experimental studies (Krupic et al., 2015) showing the
dependence of grid cell coding on the environmental shape.

However, the experimental studies have limitations with

regard to the grid cell recording under different environmental
shapes. This forms the motivation of the present paper which
seeks to study, using computational modeling, grid cell
activity under different environmental geometries without any

limitations that plague experimental efforts. Since we chose
to study the grid cell activity under various environmental
conditions, we systematically divided the simulations into
five categories such as connected environments, convex
shaped environments, concave shaped environments, regular
polygonal environments (with varying number of sides), and
transforming environment. Finally, through the numerical
analysis and MLP classifier we show the potentiality of the
spatial cells to encode the global and invariant feature of
the environment rather than local features like position,
displacement etc.

The experimental study conducted by Carpenter et al.
(2015) where the rat foraged between two similar square
boxes connected via a corridor, forms the special case of the
formerly stated modeling study where the shape is square-
square and distance is zero. The modeling results concur
with the experimental results (Figure 2). In the experimental
case it was observed that initially the grid cell firing was
controlled by the local cues, in the sense that the firing
replicated between the two compartments. However, with
further exploration, the similarities between the grid firing
fields of the compartments decreased, suggesting that with
increasing trials, global cues controlled the firing of grid cells.
This trend is captured in the model (Figure 2). Hence, the
aforementioned simulation and further analysis of the grid
cell activity in the connected environments form a viable
empirical study.
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FIGURE 8 | Grid cell response in S-Shape Boundary. (A–C) Firing field, firing rate, and auto correlation maps of S shape boundary with varying inner radii of 0, 0.8,

and 2, respectively. (D) Average HGS values vs. varying inner radii of S- Shape.

In the connected environment study, we manipulated the
shapes of the connected regions from a square-square to a square-
circle and circle-circle boundary. HGS values are computed while
the model is undergoing training. The interesting result is that
in the case of identical connected environments, such as square-
square and circle-circle, the global HGS values (HGS value
computed from the connected environment as a whole) show an
increasing trend and the local HGS values (average of the HGS
values computed from each connected region separately) show a
decreasing trend with respect to the training time of the model.
This means that as the animal gets more and more familiar with
the environment (with increasing training sessions in the model),
the grid fields start to realign themselves and form a continuum
in the case of similar shaped connected environments. In
order to determine whether the global representation of the
connected environments depend on the similarity between the
two connected boundaries, we performed a similar analysis in
a square-circle environment. On the contrary, in this case it
showed a negative trend in the global HGS and a positive trend
in the local HGS value. Thus, it is possible to infer from the grid
cell HGS variation whether the animal is exploring in a similar
or dissimilar connected environment. This is a novel insight into
the grid cell code purely from the computational point of view,
and an easily testable prediction for future experiments.

After studying the grid cell coding scheme with respect
to the shapes of the connected environments, we delved into

FIGURE 9 | Boundaries of n- sided polygons. (A–H) Environmental shapes

used for the analysis of grid cell coding with respect to the number of sides of

the polygon; arranged in the order of triangle, square, pentagon, hexagon,

heptagon, octagon, nonagon, and decagon (from left to right).

the dependence of grid cell coding scheme on the distance
between the connected environments. This study, along with
the formerly stated one, is pertinent especially with regard to
large scale navigation where the animal is not restricted to just
one environment but shuttles between multiple environments of
different shapes at different locations. Hence to get an insight
on the grid cell coding with respect to the distance between the
connected environments, we simulated a connected environment
(square-square) and varied the distance between the two
compartments of the environment. Our hypothesis was that since
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FIGURE 10 | Grid cell firing in regular polygons. (A–H) Firing field, firing rate map and autocorrelogram (from left to right) of triangle, square, pentagon, hexagon,

heptagon, octagon, nonagon, and decagon shapes, respectively. (I) The average HGS value of the grid field obtained for each polygon vs. the number of sides of the

polygon. The plot shows an increasing trend as the polarity of the environment decreases.

grid cells code for the distance traveled by the animal (O’Keefe
and Burgess, 2005) (due to its regularly periodic hexagonal firing
field), the distance between the connected environments should
also be reflected in its activity. On performing the analysis, the
variation in the global HGS values show a decreasing trend
and local HGS values show an increasing trend with increasing
distance between environments. This variation in the gridness
score points out the possibility that grid cells encode for the
global distance between the environments and this information
is pertinent to large scale navigation. It is observed from the
grid cell representations that the two compartments, even though
connected, are treated as independent at larger distances.

Hence at the outset, when the distance between the
compartments is minimal, the representation is more global as
opposed to local. As the distance between the two compartments
increases, the grid cells seem to lose their ability to form

global representations and the firing becomes localized to their
respective compartments. From the above simulations, the
inference is that grid cells may not code just for distance but
also for the entire structure of the environment. The methods
defined previously can be easily extended to the case of connected
environments with more than two components. We can consider
a network of environments with complex spatial arrangements
and connectivity. It would be interesting to study the evolution
of local vs. global organization of the grid fields in such systems.
In addition to the spatial arrangements of the environments in
such complex systems, the frequency of visitation of that agent to
individual components may also determine the overall grid field
organization. Such studies might pave way to the formulation of
deep laws that govern the spatial encoding of brain in compound
environments with complex navigational patterns followed by
the agent.
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FIGURE 11 | Transforming environment. (A) Rectangle (B) Temporal transformation of the rectangle to a square by increasing its breadth, and (C) shaded plot of the

classification of the two boundaries by MLP.

Oscillatory path integration stage of the model is vital to
capture the results that are indicated above. Here, the position
is encoded as the phase of the oscillator (Equations 2, 3). If a grid
cell is activated at one point in space in one case (for instance,
in connected environments separated by distance d1) and not
activated at the same point in the second case (distance d2), the
reason must be that the afferent input to the grid cell from the
oscillators is different (Equation 4) in both the cases. Different
configurations of the environment make the oscillator code for
the same position at different phases of the oscillator. Also, since
position is encoded as a periodic quantity at this oscillatory stage
[as it does in oscillatory interferencemodel (Burgess et al., 2007)],
this periodicity is reflected in the spatial firing fields of the grid
cell in the LAHN.

The objective of the next simulation study is to essentially
capture the results of the experimental work by Krupic et al.
(2015), where a rat wasmade to forage insidemultiple boundaries
of different shapes such as circle, square, trapezium and
hexagon. This study explained the permanent effect exerted
by the environmental geometry on grid cell firing and grid
field symmetry. To determine the impact of environmental
characteristics on homogeneity and symmetry of grid patterns,
the grid firing in two shapes such as square and trapezium was
analyzed. It was found that in a highly polar environment like a

trapezium there was a decrease in the regularity of the hexagon
(reflected in the HGS score) and the pattern becomes highly
elliptical across the entire enclosure. To estimate the regularity
of grid patterns, the trapezoid and square were divided into two
parts of equal area and the firing fields on both the sides were
compared. The autocorrelation maps showed that there was a
strong difference in local spatial structures between the two sides
of a trapezoid unlike a square wherein they were highly similar.
The gridness of left (narrower) side of the trapezoid was found to
be low when compared to its right (broader) side. Also when the
square and trapezoid boundaries were compared as a whole, the
latter had a lower gridness. This was because when a trapezoid is
divided into two, the left side resembled a triangle and the right
side, a square.

The simulation results are consistent with the experimental
data (Figure 4). We performed the comparative study as
mentioned above using our model i.e., between both sides of the
trapezoid and square and between both the shapes as whole and
obtained congruent results (Figure 4). From the firing rate map
(Figures 4E,F) and autocorrelation map (Figures 4E,F) we are
able to see that the left side of the trapezoid has less local spatial
structure compared to its right side. In the case of a square, little
difference is observed between its two halves. A study on the
similarity of the grid patterns between the two halves of both
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FIGURE 12 | Classification maps of the MLP output. (A) MLP classification maps using initial training periods of LAHN as input. It gives a classification accuracy of

52.33% (B) MLP classification maps using fully trained LAHN as input. It gives a classification accuracy of 74.74%.Yellow and dark blue denote configuration 1 and

configuration 2, respectively. The intermediate color gradient represents output of the network activity between 0 and 1. (C) Mean Square Error of the MLP network

output.

the trapezoid and square enclosures, respectively, revealed that
the patterns are more similar in the square enclosure than in
the trapezoid enclosure. In addition to this the ellipticity of the
grid fields from the autocorrelation maps of the trapezoid and
square boundaries were obtained and plotted as observed in the
Figure 4D. It can be inferred that the grid fields in the trapezoid
boundary are more elliptical than the grid fields in the square
boundary and this as well is in congruence with the experimental
results (Krupic et al., 2015).

Since the model successfully captured the experimental results
(Krupic et al., 2015) in the convex shaped environments such

as square and trapezoid, we extended our study by varying the
number of sides of a regular polygon. The aim of this study is
to understand the effect of the number of lines of symmetry
in the environment on the grid fields. We found that the HGS
values show an increasing trend with respect to the number of
sides of the regular polygon (Figure 10I). In other words, higher
symmetry in the environment leads to higher HGS values. Hence
we predict that the HGS score should be maximum for a circular
environment (where the number of lines of symmetry is infinite).
It was also observed from the experiment (Krupic et al., 2015),
that the circular boundary is considered to be highly unpolarized
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when compared to all the other boundaries and hence showed
high gridness scores.

The above experimental study focuses on explaining
the influence of the polarity of the environment on grid
representations. But this study takes into account only discreet
environments such as square, hexagon, circle and trapezium.
The N-Sided Polygon study that we have conducted is a
generalization of this experimental study where we dynamically
analyse the polarity induced asymmetry in grid representations
by gradually increasing the number of sides of the environment
(maintaining a continuum) until the outline approximates a
circle (considered to be highly non-polar).

Since the real world navigation occurs in environments with
arbitrary shapes, we conducted the simulation on concave shapes
too. We considered concave shapes such as horseshoe, annulus
and S-shaped environments (Figure 5). As the inner radius
of the horseshoe increased, the hexagonal grid representation
in the auto correlation map appeared to lose its regularity.
This is captured by the decreasing HGS values as shown in
the graph (Figure 6D). The same trend is observed for the
other two concave boundaries as well, i.e., annulus and S-Shape
(Figures 7D, 8D). It can be observed that, since the annulus
with inner radius 0 approximates a circular boundary, its HGS
value tends to be the highest. It can be noted that as the inner
radii of the aforementioned concave environments increase, the
space available for the virtual animal to traverse shrinks. This
reduced availability of space may be the reason behind the
deviation from the hexagonal spatial coding of the grid cell, as
reflected in the reduced HGS values across all the three concave
shapes. This can be experimentally tested in many ways by
implementing environments similar to the ones that we have
simulated in this study (Figures 6–8) with less space given to the
animal for exploration. There is also a need to develop a strong
mathematical framework that explains the relationship between
the observed spatial coding and the geometry of the environment.
Hence the proposedmodeling study gives a new dimension to the
grid cell coding with a good number of testable predictions.

In all the studies stated above, we looked for grid fields only
for the sake of comparison with empirical evidence. However,
we hypothesize that it is not just the grid cells but the entire
LAHN that implicitly codes for the global structure of the
environment rather than just local structure of the space in
which the animal navigates. To underpin this, we decoded the
LAHN neural information using MLP whose precision was
measured in terms of classification accuracy. We constructed a
transforming environment (rectangle to square) and collected
the spatial cell responses which were fed as input to the MLP
network to check if the LAHN was able to account for this
transformation. At any given time, for a given position (x, y) of
the virtual animal, the MLP is able to decipher the information
about the configuration it had traversed in Figure 11C. This is
denoted by the classification accuracy obtained from MLP. A
high classification accuracy of 74.74% (Figure 12B) is observed
on using trained LAHN input. Conversely when partially trained
LAHN is used, the classification accuracy decreased to 52.33%
(Figure 12A). This serves as a proof-of-principle that global
information is encoded in the population activity of LAHN.

MODEL PREDICTIONS

In our connected environment study, the model was able to
show that the locally and globally representing properties of the
grid cells are sensitive to the shape of the environments that
are connected with each other. We believe that this could be
verified by connecting environments of different shapes in a
similar fashion as in Carpenter et al.’s experiment (Carpenter
et al., 2015) and analyzing how the representations emerge as the
animal forages in this context. This would in turn elucidate the
underpinnings of the global pattern of the grid cell that allows it
to be a spatial metric (McNaughton et al., 2006; Fiete et al., 2008;
Buzsáki and Moser, 2013). Moreover, testing the global and local
representing properties of grid cells in connected environments
by varying the distance between the compartments, will offer a
holistic idea of the factors that these properties of grid cells are
sensitive to.

We hypothesize that the LAHN layer in our model
approximates a population of cells present in the Hippocampus
and the medial Entorhinal Cortex thus focussing on population
activity instead of single cell activity. This ensemble of neurons
in the LAHN thus holds global information regarding the
environmental geometry. The above prediction can be proved
empirically by conducting experiments in which the rat is
allowed to forage in a square boundary, one side of which is
gradually extended until it approximates a rectangle without any
interruption to the animal’s navigation during the transformation
(similar to the transforming environment study). As the rat
is navigating in this environment, the collective activity of a
population of cells from the hippocampus and medial entorhinal
cortex can then be recorded instead of single cell recording. These
neural signals can then be decoded using algorithms such as
Bayesian decoders (Kloosterman, 2011; Kloosterman et al., 2013)
to decipher the shape of the environment rather than just the
position information.

FUTURE DIRECTIONS

In themodel, we give direct velocity inputs to the path integration
layer which is further fed to the LAHN layer where spatial cells
emerge. A more biologically plausible approach would be to
account for the representation of motion-related inputs driven
by the locomotion of the animal instead of providing explicit
position coordinates or velocity inputs. The motion-related
information is conferred to the nervous system by the sensory
streams that include vision and proprioception. Although the
model accounts for spatial cell responses even in the absence
of visual cues, the presence of visual input has been proved to
offer more stability to the responses of the spatial cells (Soman
et al., 2018a). In the light of this view, it would be more
interesting to study the extent of stability that the sensory inputs
(particularly vision) offer to the spatial cells when the global
characteristics of the environment changes. Furthermore, we
would also like to decode the complete boundary information
of complex environments (contours, mazes etc.,) using the
collective response of the LAHN layer in the model.
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