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Radiotherapy serves as a foundational pillar for the therapeutic management of diverse

solid tumors through the generation of lethal DNA damage and induction of cell death.

While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer

management, in the era of immunooncology there is renewed and focused interest

in exploiting the indirect bystander activities of radiation, termed abscopal effects.

In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced

regression of cancerous lesions distant from the primary site of radiation delivery

and rely upon the induction of immunogenic cell death and consequent systemic

anticancer immune activation. Despite the promise of radiation therapy for awaking

potent anticancer immune responses, the purposeful harnessing of abscopal effects

with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically

implement the promise of radiation-induced abscopal effects stems from limitations

associated with existing conventional tumor models which inadequately recapitulate

the complexity of malignant transformation and the dynamic nature of tumor immune

surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed

with solid tumors including melanoma and osteosarcoma, which are both metastatic

and immunogenic in nature, could potentially serve as unique resources for exploring the

fundamental underpinnings required for maximizing radiation-induced abscopal effects.

Given the spontaneous course of cancer development in the context of operative immune

mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be

leveraged as valuable model systems for realizing the science and best clinical practices

necessary to generate potent abscopal effects with anti-metastatic immune activities.
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SIGNIFICANCE OF A DOG
MODEL—STRENGTHS AND LIMITATIONS

Strengths
Domesticated dogs are second only to human beings in terms of
being afflicted with naturally-occurring and inherited diseases,
and the purposeful breeding of companion dogs for specific
characteristics has produced lineage-specific homogeneity that
mimics human demographics such as race or geographic
phenotypes (1–4). Dogs acquire genetic diseases as do humans,
and consequently might serve as suitable comparative models
for conserved pathologies, including certain types of cancer
(5, 6). Given that pet dogs often share the same environment
and are exposed to similar carcinogens as people, the natural
development and evolution of canine tumors can closely parallel
those that afflict human beings and share comparable recurrence
and metastases patterns. The compressed lifespans of dogs
in comparison with humans, combined with the substantial
veterinary healthcare dollars spent on pet dogs exceeding
$15 billion annually (7), provide researchers with a robust
population of pet dogs available to participate in studies of cancer
pathogenesis and the preclinical assessment of investigational
therapeutics and medical devices (8–11). Collectively, the
shared genetics of specific canine cancers with their human
counterparts (12–17), and the high societal value placed upon
dogs as companion animals, uniquely and ethically allow pet
dogs to serve as potential valuable large animal models for
translational cancer research. Particularly, in the era of immuno-
oncology, pet dogs might uniquely serve as ideal parallel tumor
models, given the development of spontaneous cancers under
competent immune surveillance mechanisms which invariably
contributes to shaping of cancer cell immunogenicity and the
associated immune topography of the tumor microenvironment
(18, 19).

Limitations
While the recognition of comparative oncologic pathology has
been existent for over 50 years (20), the establishment of
comparative oncology as a health science discipline by the
National Cancer Institute’s Center for Cancer Research remains
relatively nascent, being formalized in 2003. As such, the
purposeful inclusion of pet dogs as parallel cancer models for
investigational anticancer immunotherapeutic strategies has only
recently begun to bear scientific results in support of the potential
model value (21), and has not been maximally leveraged by
the scientific cancer research committee given the existence of
perceived and true barriers (9), which include heterogeneity
of study populations and tumor biology, necessity to conduct
adequately powered and prospective clinical trials, and limited
availability of diagnostic and therapeutic tools for in-depth
scientific investigations. For the study of anticancer immune
responses, the diversity and number of commercially available
and validated reagents for characterizing immune activation in
the domestic canine remain limited in comparison to the existent
murine and human reagent toolboxes (22, 23). Additionally,
the nuances of immune composition and activation responses
in canines is less well-annotated compared to traditional

inbreed mouse strains (24–26), however, in aggregate there is
sufficient data to support the comparative similarities for specific
aspect of the immune system between canines and humans
(27, 28).

To expedite the translation of novel immune-based strategies
to people with metastatic tumor histologies, the evaluation of
experimental therapies in the most highly relevant tumor models
should be considered. Besides people, domesticated dogs are
also large mammals that develop solid tumors spontaneously
that are not only metastatic, but also immunogenic and include
canine oral malignant melanoma (OMM) and appendicular
osteosarcoma (OS) (29, 30). Importantly, studies demonstrate
that these 2 specific solid tumors share similar genetic and
histologic features as those found in humans (31–35); suggesting
that pet dogs might serve as excellent predictive models for
guiding the rational development of immune-based strategies in
people with comparable tumor histologies (36).

IONIZING RADIATION THERAPY

Radiation Principles and Mechanisms of
Cell Death
The biologic responses of cells exposed to radiation traditionally
have been categorized into the 5 R’s, being Repopulation,
Reassortment, Reoxygenation, Repair, and Radiosensitivity.
Understandings of these foundational cellular reactions to
ionizing radiation have been leveraged to maximize the
anticancer activities of radiation therapy (37, 38). The primary
target for radiation cellular damage is DNA, and with low linear
energy transfer radiation, such as photons and electrons, single
strand DNA breaks are created, accumulate, and mimic damage
similar to double strand breaks that become difficult, if not
impossible, to repair. Consequently, irreparably damaged cells
can no longer replicate limitlessly, and the primary cause of
cellular death is mitotic catastrophe (39, 40). Irradiated cells
can also undergo apoptosis rapidly following radiation exposure
with this form of death most relevant to lymphoid cells (39).
Other death pathways also play roles in response to radiation,
including autophagy and necrosis. Autophagy involves internal
degradation of organelles for the promotion of cellular survival
and occurs after radiation as a survival mechanism; but can also
progress to cellular death and influence inherent radiosensitivity
(41, 42). Lastly, by extensive cellular stress through DNA damage,
radiation can induce cellular senescence with consequent tumor
cell growth arrest (43, 44).

Radiation-Induced Immunogenic Cell
Death and Abscopal Effects
While anticancer activities from radiation have traditionally
been ascribed to direct DNA damage to tumor cells, in the
era of immunooncology, there has been focused interest to
understand the indirect or “out-of-field” immunomodulatory
activities induced by radiation therapy. Specifically, a unique
form of radiation-induced cell killing called immunogenic cell
death (ICD) holds promise for activating systemic immunity
against tumor masses distant from the field of radiation
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delivery (45), a phenomena termed abscopal effect (46). The
regressive activity of local irradiation on distant metastatic
cells, constituting the abscopal effect, is attributed to an
immune-mediated response (47). Given the recognized potential
to amplify systemic anticancer immunogenicity following
localized radiation, excitement has been garnered by the
scientific community to understand and harness the promise of
radioimmunotherapy (48, 49).

Mechanistically, ICD has been a focus of radiobiology research
and requires activation of the innate immune system through
the release of damage-associated molecular patterns (DAMPs)
or alarmins, which are released from injured, stressed, or
dying cells within the radiation field (50). Scores of different
endogenous alarmins derived from cellular organelles and
extracellular matrix proteins have been described (51); however,
three specific molecules appear to be required for optimal
dendritic cell activation and immune priming against malignant
cells, specifically being membrane localization of calreticulin and
the release of highmobility box group 1 (HMBG1) and adenosine
triphosphate into the tumor microenvironment (52). Collectively
the expression and secretion of alarmins by dying cells create
a localized milieu which exert either “eat me” or “come find
me” signals, and are capable of activating innate immune cells
exhibiting cognate DAMPs receptors (TLR, RAGE, P2X7), which
leads to the priming of cytotoxic T lymphocytes for an adaptive
anticancer immune response (53). Given their immune activating
properties, the purposeful induction of alarmins within the
tumor microenvironment as an in-situ vaccine strategy is actively
being investigated (54, 55).

While the elicitation of ICD within the primary tumor
microenvironment through ionizing radiation has potential to
prime the innate immune system, there remains the necessity for
generating sufficient out-of-target tumor responses known as the
abscopal effect, especially at sites of metastatic burden that might
be unamendable to conventional localized treatment strategies.
Despite the documentation of abscopal activities induced by
localized radiation therapy in combination with adjunctive
treatments (cytokines and chemotherapy), the fraction of human
cancer patients that reliably demonstrate abscopal activities
sufficient to inducemacroscopic tumor regression remains<30%
(56). The contextual scenarios (tumor type, host environment,
therapeutic combinatorial sequencing) by which abscopal effects
can be generated by radiation therapy remain incompletely
defined (57, 58). As such, prospective investigations with
high-value animal models could accelerate the identification
of ideal circumstances to augment the proportion of human
cancer patients whom might benefit from the life-extending
activities of radiation-induced ICD and associated abscopal
effects.

Opportunity to Optimize Radiation-Induced
ICD Protocols
While several recent investigations have discussed the optimal
dose and timing of radiation therapy relative to immunologic
intervention, no single protocol is clearly superior to others,
and the impact of dose rate is relatively unexplored. Given the

non-uniformity of various therapeutic radiation regimens for
the management of diverse solid tumor histologies, a significant
research barrier exists for the thorough characterization of
contributory radiation variables required for optimal radiation-
induced ICD. While recent meta-analysis has been conducted
to “standardize” immune activating potential of radiation
treatment protocols through the comparison of biologic
effective dose in preclinical models (59), there remains a
scientific need for additional prospectively-designed studies
inclusive of model systems that more faithfully recapitulate
the natural progression of cancer development under immune
evolutionary pressures. This “gap” in knowledge given the
absence of an ideal experimental model system, is underscored
by the rarity of achieving radiation-induced abscopal effects in
human cancer patients (56, 60–62). As such, the consistent and
reproducible generation of clinically meaningful abscopal
effects in most cancer patients remains infrequent and
suggests that the current state of understanding regarding
radiation-induced immune activation remains incomplete and
necessitates the inclusion of complementary innovativemodeling
systems.

One mechanism to generate new knowledge regarding
the feasibility and limitations of radiation-induced ICD and
associated abscopal effects could include the rational inclusion of
pet dogs with solid tumors. Therapeuticmanagement of cancer in
pet dogs parallel the same modalities in human cancer patients,
with the inclusion of radiation therapy for controlling localized
tumor progression and associated morbidity. Importantly, the
repertoire of cognate receptors including toll-like receptors
responsible for detecting the presence of pathogens (pathogen
associate molecular patterns) and danger signals (damage
associated molecular patterns) have been recently characterized
in the domestic canine (26, 63–65). With existing tools and
knowledge of radiobiology and immunology in the canine
species, an opportunity exists to prospectively and systemically
evaluate novel radiation-induced ICD strategies in pet dogs
that could be translated into life-extending abscopal activities in
human cancer patients.

RELEVANT SOLID TUMORS IN PET DOGS
FOR OPTIMIZING RADIATION ABSCOPAL
EFFECTS

Canine Oral Malignant Melanoma (OMM)
Malignant melanoma is a metastatic solid tumor affecting both
dogs and people (66), however, the anatomic locations of primary
tumors differ, with oral cavity and skin being the primary sites
for malignant melanoma in dogs and humans, respectively.
In canines, melanoma is considered the most common oral
malignancy, accounting for∼40% of all oral cancers (67). Despite
differences in primary anatomic site, prominent molecular
drivers of malignancy are conserved between dogs and people,
including AKT and MAPK signaling pathways (31).

Effective management of canine OMM requires local
treatment strategies, as well as systemic intervention to delay
the onset and progression of regional and/or distant metastases
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TABLE 1 | Summary of canine melanoma immunogenic strategies.

Immunotherapeutic

strategy

Target Number

of

animals

Immunologic

endpoint

Clinical

benefit

Xenogeneic

melanoma-antigen-

enhanced allogenic

tumor cell vaccine

Human

glycoprotein

100

(hgp100)

34 dogs PBMC cytotoxicity

Neutralizing

anti-hgp100 antibody

1 CR

5 PR

6 SD

Local adenovector

human CD40L

immunogene

transfection

Human

CD40L

19 dogs Circulating cytokines

(TNFα, IL8, IL10)

Neutralizing anti-human

adenovirus serotype 5

antibody

5 CR

8 PR

4 SD

(68–72). While surgical resection is feasible for some dogs with
rostrally-confined primary tumors, most canines are diagnosed
with invasive inoperable tumors, and hypofractionated ionizing
radiation is instituted for local tumor control (73–75). Radiation
therapy, alone or as an adjuvant to marginal resection, can
achieve satisfactory local primary tumor control (Figures 1A,B),
however a substantive fraction of dogs will develop metastatic
progression within 6–9 months of diagnosis (67, 68, 76). While
the most common site for OMM metastases are regional lymph
nodes (77, 78), progression of distant metastases within the
pulmonary parenchyma can become life-limiting in dogs that
have achieved durable local disease control (67) (Figures 1C,D),
and the institution of adjuvant cytotoxic agents does not
definitively yield any survival benefit (74, 79). As such, no
standard-of-care adjuvant therapy in dogs with metastatic OMM
exists and creates a unique and ethical opportunity to model
novel immunotherapeutic strategies that might not be otherwise
possible in human patients. Importantly, commercial reagents
for the assessment of immunobiologic endpoints including
tumoral expression of PD-L1, tumor-infiltrating lymphocytes,
and regulatory T cells have recently been validated in canine
tissues (Figures 1E–H).

Clinical Evidence for Canine OMM Immunogenicity
With conservation of certain tumor-associated antigens in
both humans and dogs (80–82), canine OMM has been
explored as a relevant tumor model in evaluating various
immunotherapeutic strategies, in particular tumor vaccine (30).
Both autologous and xenogeneic (tyrosinase) vaccines exert
measurable anticancer activities in subsets of dogs treated,
with objective responses being documented in patients with
unsatisfactorily controlled primary tumors, as well as regression
of regional and distant metastatic lesions (83–85). In addition
to tyrosinase as a therapeutic target, a limited number of
investigations have characterized the immunogenic targeting
of xenogeneic GP100 and adenoviral CD40L transfection
through vaccination strategies; demonstrating immunobiologic
activities and clinical benefit in dogs with OMM (Table 1)
(86, 87).

In addition to vaccines, checkpoint blockade strategies have
been recently described in dogs with OMM. Initial studies

identified the upregulation of PD-L1 following INF-γ exposure
in immortalized canine melanoma cell lines, as well as, PD-
L1 expression in 100% (8/8) of spontaneous canine OMM
samples (88). A follow-up confirmatory study similarly identified
90% (36/40) OMM samples to express PD-L1, and importantly
demonstrated that tumor-infiltrating lymphocytes, both CD4+

and CD8+, expressed PD-1 (89). Expressions of PD-L1 by
melanoma cells and PD-1 by TILs, support the potential for
melanoma cells to induce T-cell exhaustion as an immunoevasive
mechanism. To confirm the functional immunosuppressive
activities of PD-L1 expressions in canine OMM, an anti-PD-
L1 antibody was evaluated in dogs with OMM, with suggestive
evidence for survival time prolongation in four dogs with
pulmonary metastasis when compared to historical controls (90).
Collectively these clinical investigations support the relevancy
of canine OMM as a naturally-occurring model system for
testing immunotherapeutic combinations inclusive of other
immunomodulatory strategies such as radiation-induced ICD
and abscopal activities.

Canine Appendicular Osteosarcoma (OS)
Osteosarcoma (OS) accounts for 85% of all skeletal tumors in
the dog with an estimated 10,000 dogs diagnosed each year
(33, 91), and is a disease primarily afflicting the appendicular
skeleton of large and giant breed dogs (33). Similarly, OS
is the most common primary focal skeletal tumor in people,
being the third most frequent cause of cancer in adolescents
(92). The comparative similarities at genetic, molecular, and
clinical levels shared between canine and pediatric OS are
robust (12, 13, 33–35, 93–97); evidence that strongly emphasize
the potential value for the utilization of canine OS to guide
investigations related to pathogenesis and novel therapeutic
discovery (98).

The biologic behavior of OS is aggressive, starting within
the local bone microenvironment but then involving distant
organs because of metastatic progression. Although 15% of dogs
and 20% of people present with detectable lung metastases, the
development of metastatic foci in the absence of chemotherapy
is 90% within 1 year for dogs and 80% within 2 years for
people (99, 100). While the institution of chemotherapy for
OS patients has tripled the cure rate of people (20 → 65%)
and doubled the survival time of dogs (130 → 270 days),
no substantive improvement in long-term outcomes has been
achieved for either species over the past 2 decades despite the
institution of dose intensification strategies (101, 102). Given
the current therapeutic ceiling, there is clinical need to explore
alternative adjuvant therapies that might improve metastatic
disease control.

Because the cure rate for canine OS remains <10% 3-years
post diagnosis (103), the palliative management of primary
tumor malignant osteolysis and associated pain is considered
an acceptable treatment option in veterinary medicine (104).
Similar to skeletal metastasis in humans, ionizing radiation
alone or with bisphosphonates is considered effective for
attenuating pathologic bone resorption and associated pain
syndromes in affected dogs (105–111), and provides a durable
therapeutic window of acceptable analgesia lasting from 3
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FIGURE 1 | Canine OMM (A) pre- and (B) post- palliative radiation therapy; note the achievement of strong partial response of primary tumor (courtesy of Dr. Michael

Kent, UC Davis). Computed tomography of (C) distant pulmonary (red) and (D) regional lymph node metastases (yellow) of OMM origin; demonstrating the potential

for reproducible and quantitative volumetric assessments for documentation of abscopal activities. Panel (E–H; top to bottom) represents the histologic and

immunobiologic assessment of a regional lymph node effaced with amelanotic melanoma by H&E, PD-L1, CD3+ tumor-infiltrating lymphocytes, and regulatory T cells

(courtesy of Dr. Jonathan Samuelson, UIUC). Magnification 400x.

to 12 months, whereby it is possible to serially monitor
for the development, progression, or regression of distant
pulmonary metastases. Prospective assessment of combinatorial
strategies inclusive of radiation and other immunostimulatory
therapies to amplify tumoral lymphocyte infiltrates such as
ICD-inducing anthracyclines, toll-like receptor agonists, and
checkpoint blocking antibodies which maximally generate robust
abscopal effects could be leveraged to guide translational studies
in human patients (Figure 2).

Clinical Evidence for Canine OS Immunogenicity
Scientific and clinical evidence supports OS to be immunogenic
in dogs and humans (29, 112), and strategies that amplify
anticancer immunity would be expected to improve long-
term outcomes. In dogs, investigations have demonstrated
immune activation as an effective strategy for either regressing
macroscopic metastases or delaying micrometastatic disease
progression. For macroscopic disease, inhalation therapy
with liposome interleukin-2 demonstrated the capacity
to activate immune cells with consequent regression of
measurable pulmonary metastases (113, 114). In the setting of
microscopic disease, dogs that develop post-operative wound
infection after limb-spare surgery experience prolongation
to pulmonary metastases development, with survival times
being doubled in dogs that develop osteomyelitis (115, 116),
and mechanistically localized infectious inflammation has
been linked to NK cell and macrophage activation with
consequent mediation of systemic anticancer effects (117).
Similarly, L-MTP-PE, a synthetic lipophilic glycopeptide
capable of activating monocytes and macrophages to a

FIGURE 2 | Theoretical schematic for how canine OS patients can be

prospectively recruited to evaluate different immunomodulatory strategies

inclusive of radiation therapy in combination with other agents such as

ICD-inducing anthracyclines (mitoxantrone, doxorubicin, idarubicin), toll-like

receptors (CpG ODN, Poly I/C, imiquimod), and checkpoint antibodies (PD-1,

PD-L1, OX40) to generate high-value preclinical data to inform “go,” “caution,”

or “no go” parallel translational studies maximizing abscopal activities in

adolescents diagnosed with OS.

tumoricidal state, when administered to dogs with OS increases
survival time, and underscores the key participation of innate
immune cell activation for curbing metastatic progression
(118, 119). Lastly, intravenous delivery of a genetically modified
Listeria monocytogenes to OS-bearing dogs exerts promising
anticancer immune activities and extends survival times (120).
Collectively, these clinical investigations support the feasibility
of stimulating immune effector cells to regress macroscopic and
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microscopic metastatic disease burdens in dogs diagnosed with
OS.

Emerging Abscopal Modeling in Canine
OMM and OS
While existing aggregate data for validating radiation-induced
ICD and abscopal activities in pet dogs with cancer remains
limited, experimental data is emerging to support the prospective
evaluation of hypofractionated radiation therapy for augmenting
immune responses. Recently, combinatorial strategies inclusive
of ionizing radiation, hyperthermia, and intratumorally
delivered virus-like nanoparticle-based therapies have been
evaluated in canine OMM, and demonstrate the capacity
to elicit immunogenic changes within the localized tumor
microenvironment including the promotion TILs into the
primary tumor (121, 122). In another investigation conducted
in dogs with OMM, abscopal effects were documented in dogs
treated with a combination of localized radiation therapy,
intratumoral CpG ODN, and an indolamine-2,3-dioxygenase
inhibitor (123). For canine OS, combining radiation and
immunotherapy has been recently explored in a first-in-dog trial
of autologous natural killer (NK) cells (124). In this study, OS-
bearing dogs were treated with a coarsely fractionated radiation
protocol consisting of 9Gy once weekly for 4 treatments, with
NK cells being harvested and expanded, and then delivered back
to dogs by intratumoral injection following the completion of
radiation therapy. Of the 10 dogs treated, 5 remained metastasis-
free at 6 months, and one had regression of a suspicious
pulmonary nodule detected at the time of diagnosis.

FUTURE DIRECTIONS AND
CONCLUSIONS

Dogs diagnosed with naturally-occurring cancers of comparative
relevance can serve as biology-rich models of disease. If

leveraged appropriately, the inclusion of pet dogs can accelerate
the discovery of optimal combinations of radiation and
immunotherapies which robustly and consistently elicit life-
extending abscopal effects. With the availability of linear
accelerator-based radiation facilities in veterinary centers
analogous to human hospitals, coupled with the development
of dog-specific immune-based therapies including vaccines,
monoclonal antibodies, and CAR-T technologies, the purposeful
inclusion of pet dogs with immunogenic tumors should be
seriously contemplated as a unique strategy to aid in defining the
limits and benefits of radiation-induced abscopal activities.

The scientific development and clinical assessment of novel
immunotherapeutic strategies are rapidly growing areas in
veterinary medicine and have demonstrated promise in the
settings of canine OMM and OS. Given the conserved biology of
these two immunogenic solid tumors between dogs and people,
unique opportunities exist collectively for human and veterinary
researchers to pilot and validate innovative immune strategies
inclusive of radiation therapy in efforts to harness the promise
of abscopal anticancer activities.
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