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ABSTRACT
Today’s computational researchers are expected to be highly proficient in using
software to solve a wide range of problems ranging from processing large datasets to
developing personalized treatment strategies from a growing range of options.
Researchers are well versed in their own field, but may lack formal training
and appropriate mentorship in software engineering principles. Two major themes
not covered in most university coursework nor current literature are software
testing and software optimization. Through a survey of all currently available
Comprehensive R Archive Network packages, we show that reproducible
and replicable software tests are frequently not available and that many packages
do not appear to employ software performance and optimization tools and
techniques. Through use of examples from an existing R package, we demonstrate
powerful testing and optimization techniques that can improve the quality of
any researcher’s software.

Subjects Computer Education, Data Science, Software Engineering
Keywords Unit testing, Profiling, Optimization, Software engineering, R language,
Statistical computing, Case study, Reproducible research, Data science

INTRODUCTION
Writing scientific software has progressed from the work of early pioneers to a range of
computer professionals, computational researchers, and self-taught individuals.
The educational discipline of computer science, standardized many years ago through
recommendations from the Association for Computing Machinery (ACM) (Atchison et al.,
1968), has grown in breadth and depth over many years. Software engineering, a
discipline within computer science, “seeks to develop and use systematic models and
reliable techniques to produce high-quality software. These software engineering concerns
extend from theory and principles to development practices that are most visible to
those outside the discipline” (The Joint Task Force on Computing Curricula, 2015).

As they gain sophistication, computational researchers, statisticians, and
similar professionals need to advance their skills by adopting principles of software
engineering.Wilson et al. (2014) identified eight key areas where scientists can benefit from
software engineering best practices. The term “best” as referenced in the previous
cited work and others cited later refers to expert consensus based on knowledge and
observational reporting of results from application of the practices. They provide a
high-level description of eight important principles of software engineering that should
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“reduce the number of errors in scientific software, make it easier to reuse, and save the
authors of the software time and effort that can used for focusing on the underlying
scientific questions.”While their principles are still relevant and important today, there has
not been enough progress in this endeavor, especially with respect to software testing and
software optimization principles (Wilson, 2016; Nolan & Padilla-Parra, 2017).

The ACM/Institute of Electrical and Electronics Engineers recommendations for an
undergraduate degree in software engineering describe a range of coursework and learning
objectives. Their guidelines call out 10 specific knowledge areas that should be part
of or guide all software engineering coursework. The major areas are: computer science
fundamentals, math and engineering fundamentals, professional interactions/
communication, software modeling, requirement gathering, software design, verification,
project processes, quality, and security (The Joint Task Force on Computing Curricula,
2015). These major themes are not covered extensively outside software engineering and
include such generally applicable items such as software verification, validation, testing,
and computer science fundamentals (for example, software optimization, modeling, and
requirement gathering).

In addition to the need for further training, understanding the software lifecycle is
necessary: the process of software development from ideation to delivery of code.
The largest component of software’s lifecycle is maintenance. Software maintenance costs
are large and increasing (Glass, 2001; Dehaghani & Hajrahimi, 2013; Koskinen, 2015);
some put maintenance at 90% of total software cost. The chief factor in software
maintenance cost is the time of the people creating and using the software. From the recent
trend on making research results reproducible and replicable, some recommend
making code openly available to any who might wish to repeat or further analyze results
(Leek & Peng, 2015). With the development of any software artifact, an important
consideration for implementation should be maintenance. As research scientists tend to
think of their software products as unique tools that will not be used regularly or for a
long period, they often do not consider long term maintenance issues during the
development phase (Sandve et al., 2013; Prins et al., 2015). While a rigorous and formal
software engineering approach is not well suited to the standard lifecycle of research
software (Wilson, 2016), there are many techniques that can help to reduce cost
of maintenance and speed development. While best practices such as the use of
version control software, open access to data, software, and results are becoming more
wide spread, other practices such as testing and optimization need further attention.

In this paper, a brief survey of currently available R packages from The Comprehensive
R Archive Network (CRAN) will be used to show the continued need for software
testing and optimization. Source code for this analysis is freely available at
https://github.com/magic-lantern/SoftwareEngineeringPrinciples. After the presentation
of the current state of R packages, general advice on software testing and optimization
will be presented. The R package “pccc: Pediatric Complex Chronic Conditions”
(Feinstein et al., 2018; DeWitt et al., 2017) (pccc), available via CRAN and at
https://github.com/CUD2V/pccc, is used for code examples in this article. pccc is a
combined R and C++ implementation of the Pediatric Complex Chronic Conditions
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software released as part of a series of research papers (Feudtner, Christakis & Connell,
2000; Feudtner et al., 2014). pccc takes as input a data set containing International
Statistical Classification of Diseases and Related Health Problems (ICD) Ninth revision
or Tenth revision diagnosis and procedure codes and outputs which if any complex
chronic conditions a patient has.

ANALYSIS OF R PACKAGES ON CRAN
Testing of R packages
In order to estimate the level of testing common among R software, we analyzed all
R packages available through CRAN. Although Nolan & Padilla-Parra (2017) performed a
similar analysis in the past, due to the rapid change in the CRAN as a whole, a reevaluation
is necessary. At the time of Nolan’s work, CRAN contained 10,084 packages; it now
contains 13,509. Furthermore, the analysis by Nolan had a few shortcomings that we have
addressed in this analysis: there are additional testing frameworks for which we wanted
to analyze their usage; not all testing frameworks and R packages store their test code
in a directory named “tests”; only packages modified in the past 2 years were
reported—there are many commonly used R packages that have not been updated in
the last 2 years.

Although we address some shortcomings in analyzing R code for use of testing best
practices, our choice of domain for analysis does have some limitations. Not all research
software is written in R; for those that do use R, not all software development results
in a package published on CRAN. While other software languages have tools for testing,
additional research would be needed to evaluate level of testing in those languages to see
how it compares to this analysis. Although care has been taken to identify standard
testing use cases and practices for R, testing can be performed in-line through use of core
functions such as stop() or stopifnot(). Also, developers may have their own test cases
they run while developing their software, but did not include them in the package
made available on CRAN. Unit tests can be considered executable documentation, a key
method of conveying how to use software correctly (Reese, 2018). Published research that
involves software is not as easy to access and evaluate for use of testing code as
CRAN packages are. While some journals have standardized means for storing and sharing
code, many leave the storing and sharing of code up to the individual author, creating an
environment where code analysis would require significant manual effort.

To analyze use of software testing techniques, we evaluated all CRAN packages on two
different metrics:

Metric 1: In the source code of each package, search for non-empty testing directories
using the regular expression pattern “[Tt]est[̂/]�/.+”. All commonly used R testing
packages (those identified for metric 2) recommend placing tests in a directory by
themselves, which we look for.
Metric 2: Check for stated dependencies on one of the following testing packages: RUnit
(Burger, Juenemann & Koenig, 2015), svUnit (Grosjean, 2014), testit (Xie, 2018),
testthat (Wickham, 2011), unitizer (Gaslam, 2017), or unittest
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(Lentin & Hennessey, 2017). From the authors of these packages, it is recommended to
list dependency (or dependencies) to a testing framework even though standard usage of
a package may not require it.

For the testing analysis, we used 2008 as the cutoff year for visualizations due to the low
number of packages last updated prior to 2008.

As shown in Fig. 1, the evaluation for the presence of a non-empty testing directory
shows that there is an increasing trend in testing R packages, with 44% of packages updated
in 2018 having some tests. Table S1 contains the data used to generate Fig. 1.

As shown in Fig. 2, reliance upon testing frameworks is increasing over time both in
count and as a percentage of all packages. There 16 packages that list dependencies
on more than one testing framework (nine with dependencies on both RUnit and
testthat, seven with dependencies on both testit and testthat), so the total number
of packages shown in the histogram includes 16 that are double counted. Table S2 contains
the data used to generate Fig. 2.

As the numbers from Metric 1 do not match the numbers of Metric 2, some additional
exploration is necessary. There are 884 more packages identified fromMetric 1 vs Metric 2.
There are 1,115 packages that do not list a dependency to a testing framework, but
have a testing directory; for example, the package xlsx (Dragulescu & Arendt, 2018).
Some packages use a testing framework, but do not list it as a dependency; for example, the
package redcapAPI (Nutter & Lane, 2018). There are also 231 packages that list a
testing framework as a dependency, but do not contain a directory with tests.
See Tables S1 and S2 for more details.

Figure 1 Packages with non-empty testing directory. Count of packages with files in standard testing
directories by year a package was last updated. Testing directory “Yes” is determined by the presence of
files matching the regular expression “[Tt]est[̂ /]�/.+”; if no matches are found for an R package, it is
counted as a “No”. Full-size DOI: 10.7717/peerj-cs.175/fig-1
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Optimization of R packages
In order to estimate the level of software optimization common among R software, we
performed an analysis of all R packages available through CRAN. To analyze the use of
software optimization tools and techniques, we evaluated all CRAN packages on
two different metrics:

Metric 1: In the source code of each package, search for non-empty src directories using
the regular expression pattern “src[̂/]�/.+”. By convention, packages using compiled
code (C, C++, Fortran) place those files in a “/src” directory.
Metric 2: Check for stated dependencies on packages that can optimize, scale
performance, or evaluate performance of a package. Packages included in analysis are:
DSL (Feinerer, Theussl & Buchta, 2015), Rcpp (Eddelbuettel & Balamuta, 2017),
RcppParallel (Allaire et al., 2018a), Rmpi (Yu, 2002), SparkR (Apache Software
Foundation, 2018), batchtools (Bischl et al., 2015), bench (Hester, 2018),
benchr (Klevtsov, Antonov & Upravitelev, 2018), doMC (Calaway, Analytics & Weston,
2017), doMPI (Weston, 2017), doParallel (Calaway et al., 2018), doSNOW (Calaway,
Corporation & Weston, 2017), foreach (Calaway, Microsoft & Weston, 2017),
future (Bengtsson, 2018), future.apply (Bengtsson & R Core Team, 2018),
microbenchmark (Mersmann, 2018), parallel (R Core Team, 2018), parallelDist
(Eckert, 2018), parallelMap (Bischl & Lang, 2015), partools (Matloff, 2016),
profr (Wickham, 2014a), profvis (Chang & Luraschi, 2018), rbenchmark
(Kusnierczyk, Eddelbuettel & Hasselman, 2012), snow (Tierney et al., 2018), sparklyr
(Luraschi et al., 2018), tictoc (Izrailev, 2014).

Figure 2 Packages with testing framework dependency. Count of dependencies on a testing package
(RUnit, svUnit, testit, testthat, unitizer, unittest) by year a package was last updated. Packages with
no stated dependency from their DESCRIPTION file for one of the specified packages are listed as
“none”. Full-size DOI: 10.7717/peerj-cs.175/fig-2

Russell et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.175 5/26

http://dx.doi.org/10.7717/peerj-cs.175/fig-2
http://dx.doi.org/10.7717/peerj-cs.175
https://peerj.com/computer-science/


For the optimization analysis, we used 2008 as the cutoff year for visualizations showing
presence of a src directory due to the low number of currently available packages
last updated prior to 2008. For optimization related dependencies, in order to aid visual
understanding, we used 2009 as the cutoff year and only showed those packages with 15 or
greater dependent packages in a given year.

Automatically analyzing software for evidence of optimization has similar difficulties to
those mentioned previously related to automatically detecting the use of software
testing techniques and tools. The best evidence of software optimization would be in the
history of commits, unit tests that time functionality, and package bug reports. While all
R packages have source code available, not all have development history available nor
unit tests available. Additionally, a stated dependency on one of the optimization packages
listed could mean the package creators recommend using that along with their package,
not that they are actually using it in their package. Despite these shortcomings, it is
estimated that presence of a src directory or the use of specific packages is an
indication that some optimization effort was put into a package.

As shown in Fig. 3, the evaluation for the presence of a non-empty src directory shows
that there is an increasing trend in using compiled code in R packages, by count.
However, when evaluated as a percent of all R packages, the change has only been a slight
increase over the last few years. Table S3 contains the data used to generate Fig. 3.

As shown in Fig. 4, in 2018, Rcpp is the most common optimization related dependency
followed by parallel and foreach. Those same packages have been the most popular for
packages last updated during the entire period shown. There 699 packages that list

Figure 3 Packages with non-empty src directory. Count of packages with files in standard source
directories that has code to be compiled by year a package was last updated. Compiled directory “Yes” is
determined by the presence of files matching the regular expression “src[̂ /]�/.+”; if no matches are found
for an R package, it is counted as a “No”. Full-size DOI: 10.7717/peerj-cs.175/fig-3

Russell et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.175 6/26

http://dx.doi.org/10.7717/peerj-cs.175/supp-3
http://dx.doi.org/10.7717/peerj-cs.175/fig-3
http://dx.doi.org/10.7717/peerj-cs.175
https://peerj.com/computer-science/


dependencies to more than one optimization framework (407 with 2 dependencies,
220 w/3, 53 w/4, 16 w/5, 2 w/6, 1 w/7), so the total number of packages shown in the
histogram includes some that are double-counted. Table S4 contains the data used
to generate Fig. 4.

As the numbers from Metric 1 do not match the numbers of Metric 2, some additional
exploration is necessary. In terms of total difference, there are 818 more packages using
compiled code vs those with one of the searched for dependencies. There are 1,726
packages that do not list a dependency to one of the specified packages, but have a src
directory for compiled code. There are 908 packages that list a dependency to one of
the specified packages but do not have a src directory. See Tables S3 and S4 for
more details.

RECOMMENDATIONS TO IMPROVE QUALITY AND
PERFORMANCE
Software testing
Whenever software is written as part of a research project, careful consideration should be
given to how to verify that the software performs the desired functionality and produces
the desired output. As with bench science, software can often have unexpected
and unintended results due to minor or even major problems during the implementation
process. Software testing is a well-established component of any software development
lifecycle (Atchison et al., 1968) and should also be a key component of research
software. As shown previously, even among R software packages intended to be shared

Figure 4 Packages with optimization framework dependency. Count of dependencies on an optimi-
zation related package, see “Optimization of R packages” section for complete list, by year a package was
last updated. Packages with no stated dependency from their DESCRIPTION file for one of the specified
packages are listed as “none.” In order to aid visual understanding of top dependencies, we limited display
to those packages that had 14 or more dependent packages.Full-size DOI: 10.7717/peerj-cs.175/fig-4
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with and used by others, the majority of R packages (67–73% depending on metric) do not
have tests that are made available with the package.

Various methodologies and strategies exist for software testing and validation as well as
how to integrate software with a software development lifecycle. Some common
testing strategies are no strategy, ad hoc testing (Agruss & Johnson, 2000), test driven
development (TDD) (Beck & Gamma, 1998). There are also common project
methodologies where testing fits into the project lifecycle; two common examples are the
waterfall project management methodology, where testing is a major phase that
occurs at a specific point in time, and the agile project management methodology
(Beck et al., 2001), where there are many small iterations including testing. While a full
discussion of various methods and strategies is beyond the scope of this article, three key
concepts presented are: when to start testing, what to test, and how to test.

Key recommendations for when to test:

� Build tests before implementation.

� Test after functionality has been implemented.

Discussion: One of the popular movements in recent years has been to develop tests first
and then implement code to meet desired functionality, a strategy called TDD. While
the TDD strategy has done much to improve the focus of the software engineering world
on testing, some have found that it does not work with all development styles
(Hansson, 2014; Sommerville, 2016), and others have reported that it does not increase
developer productivity, reduce overall testing effort, nor improve code quality in
comparison to other testing methodologies (Fucci et al., 2016). An approach that more
closely matches the theoretically based software development cycle and flexible nature
of research software is to create tests after a requirement or feature has been implemented
(Osborne et al., 2014; Kanewala & Bieman, 2014). As developing comprehensive tests
of software functionality can be a large burden to accrue at a single point in time, a more
pragmatic approach is to alternate between developing new functionality and designing
tests to validate new functionality. Similar to the agile software development strategy,
a build/test cycle can allow for quick cycles of validated functionality that help to provide
input into additional phases of the software lifecycle.

Key recommendations for what to test:

� Identify the most important or unique feature(s) of software being implemented.
Software bugs are found to follow a Pareto or Zipfian distribution.

� Test data and software configuration.

� If performance is a key feature, build tests to evaluate performance.

Discussion: In an ideal world, any software developed would be accompanied by 100% test
coverage validating all lines of code, all aspects of functionality, all input, and all
interaction with other software. However, due to pressures of research, having time to
build a perfect test suite is not realistic. A parsimonious application of the Pareto principle
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will go a long way towards improving overall software quality without adding to the
testing burden. Large companies such as Microsoft have applied traditional scientific
methods to the study of bugs and found that the Pareto principle matches reality: 20% of
bugs cause 80% of problems; additionally a Zipfian distribution may apply as well: 1% of
bugs cause 50% of all problems (Rooney, 2002).

To apply the Pareto principle to testing, spend some time in a thought experiment to
determine answers to questions such as: What is the most important feature(s) of this
software? If this software breaks, what is the most likely bad outcome? For computationally
intensive components—how long should this take to run?

Once answers to these questions are known, the developer(s) should spend time
designing tests to validate key features, avoiding major negatives, and ensuring software
performs adequately. Optimization and performance recommendations are covered in the
“Software Optimization” section. Part of the test design process should include how
to “test”more than just the code. Some specific aspects of non-code tests include validation
of approach and implementation choices with a mentor or colleague.

As a brief example of how to apply the aforementioned testing principles, we provide
some information on testing steps followed during the pccc package development
process. The first tests written were those that were manually developed and manually run
as development progressed. Key test cases of this form are ideal candidates for inclusion in
automated testing. The first tests were taking a known data set, running our process to
identify how many of the input rows had complex chronic conditions, and then report
on the total percentages found; this result was then compared with published values.

# read in HCUP KID 2009 Database

kid9cols <- read_csv(“KID09_core_columns.csv”)
kid9core <- read_fwf(“KID_2009_Core.ASC”,

fwf_positions(

start = kid9cols$start,

end = kid9cols$end,

col_names = tolower(kid9cols$name)),

col_types = paste(rep(“c”, nrow(kid9cols)),

collapse = “”))

# Output some summary information for manual inspection

table(kid9core$year)

dim(kid9core)

n_distinct(kid9core$recnum)

# Run process to identify complex chronic conditions

kid_ccc <-

ccc(kid9core[, c(2, 24:48, 74:77, 106:120)],

id = recnum,

dx_cols = vars(starts_with(“dx”), starts_with(“ecode”)),
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pc_cols = vars(starts_with(“pr”)),
icdv = 09)

# Output results for manual inspection

kid_ccc

# Create summary statistics to compare to published values

dplyr::summarize_at(kid_ccc, vars(-recnum), sum)

%>% print.data.frame

dplyr::summarize_at(kid_ccc, vars(-recnum), mean)

%>% print.data.frame

For the pccc package there is a large set of ICD codes and code set patterns that are used
to determine if an input record meets any complex chronic condition criteria. To validate
the correct functioning of the software, we needed to validate the ICD code
groupings were correct and were mutually exclusive (as appropriate). As pccc is a
re-implementation of existing SAS and Stata code, we needed to validate that the codes
from the previously developed and published software applications were identical
and were performing as expected. Through a combination of manual review and
automated comparison codes were checked to see if duplicates and overlaps existed.
Any software dealing with input validation or having a large amount of built-in values used
for key functionality should follow a similar data validation process.

As an example of configuration testing, here is a brief snippet of some of the code used to
automatically find duplicates and codes that were already included as part of another code:

icds <- input.file(“../pccc_validation/icd10_codes_r.txt”)

unlist(lapply(icds, function(i) {

tmp <- icds[icds != i]

output <- tmp[grepl(paste0(“̂”, i, “.�”), tmp)]

# add the matched element into the output

if(length(output) != 0)

output <- c(i, output)

output

}))

Key recommendations for how to test:

� Software developer develops unit tests.

� Intended user of software should perform validation/acceptance tests.

� Run all tests regularly.

� Review key algorithms with domain experts.

Discussion: Most programming languages have a multitude of testing tools and
frameworks available for assisting developers with the process of testing software. Due to
the recurring patterns common across programming languages most languages have a
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SUnit (Wikipedia contributors, 2017a) derived testing tool, commonly referred to as
an “xUnit” (Wikipedia contributors, 2017b) testing framework that focuses on validating
individual units of code along with necessary input and output meet desired requirements.
Based on software language used, unit tests may be at the class or function/procedure
level. Some common xUnit style packages in R are RUnit and testthat. Unit tests should
be automated and run regularly to ensure errors are caught and addressed quickly. For R, it
is easy to integrate unit tests into the package build process, but other approaches
such as post-commit hook in a version control system are also common.

In addition to unit tests, typically written by the developers of the software, users should
perform acceptance tests, or high-level functionality tests that validate the software meets
requirements. Due to the high-level nature and subjective focus of acceptance tests,
they are often manually performed and may not follow a regimented series of steps.
Careful documentation of how a user will actually use software, referred to as user stories,
are translated into step by step tests that a human follows to validate the software
works as expected. A few examples of acceptance testing tools that primarily
focus GUI aspects of software are: Selenium (Selenium Contributors, 2018), Microfocus
Unified Functional Testing (formely known as HP’s QuickTest Professional)
(Micro Focus, 2018), and Ranorex (Ranorex GmbH, 2018). As research focused software
often does not have a GUI, one aide to manual testing processes is for developers of the
software or expert users to create a full step by step example via an R Markdown
(Allaire et al., 2018b; Xie, Allaire & Grolemund, 2018) notebook demonstrating use of the
software followed by either manually or automatic validation that the expected end
result is correct.

In addition to the tool-based approaches already mentioned, other harder to test items
such as algorithms and solution approach should be scrutinized as well. While automated
tests can validate mathematical operations or other logic steps are correct, they
cannot verify that the approach or assumptions implied through software operations are
correct. This level of testing can be done through code review and design review sessions
with others who have knowledge of the domain or a related domain.

During development of the pccc package, after the initial tests shown in previous
sections, further thought went into how the specifics of the desired functionality should
perform. Unit tests were developed to validate core functionality. We also spent time
thinking about how the software might behave if the input data was incorrect or if
parameters were not specified correctly. If an issue is discovered at this point, a common
pattern is to create a test case for discovered bugs that are fixed—this ensures that a
re-occurrence, known as a “regression” to software engineers, of this error does not
happen again. In the case of pccc, developers expected large input comprised of
many observations with many variables. When a tester accidentally just passed 1
observation with many variables, the program crashed. The problem was discovered to be
due to the flexible nature of the sapply() function returning different data types based
on input.
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The original code from ccc.R:

# check if call didn’t specify specific diagnosis columns

if (!missing(dx_cols)) {

# assume columns are referenced by ‘dx_cols’
dxmat <- sapply(dplyr::select(

data, !!dplyr::enquo(dx_cols)), as.character)

# create empty matrix if necessary

if(! is.matrix(dxmat)) {

dxmat <- as.matrix(dxmat)

}

} else {

dxmat <- matrix(“”, nrow = nrow(data))

}

The new code:

if (!missing(dx_cols)) {

dxmat <- as.matrix(dplyr::mutate_all(

dplyr::select(

data, !!dplyr::enquo(dx_cols)),

as.character))

} else {

dxmat <- matrix(“”, nrow = nrow(data))

}

One of the tests written to verify the problem didn’t reoccur:

# Due to previous use of sapply in ccc.R, this would fail

test_that(paste(“1 patient with multiple rows of no diagnosis”,
“data--should have all CCCs as FALSE”), {

expect_true(all(ccc(dplyr::data_frame(

id = ‘a’,
dx1 = NA,

dx2 = NA),

dx_cols = dplyr::starts_with(“dx”),
icdv = code) == 0))

}

)

Testing Anti-Patterns: While the above guidance should help researchers know the basics
of testing, it does not cover in detail what not to do. An excellent collection of testing
anti-patterns can be found at (Moilanen, 2014; Carr, 2015; Stack Overflow Contributors,
2017). Some key problems that novices experience when learning how to test software are:

� Interdependent tests—Interdependent tests can causemultiple test failures.When a failure
in an early test case breaks a later test, it can cause difficulty in resolution and remediation.
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� Testing application performance—While testing execution timing or software
performance is a good idea and is covered more in the “Software Optimization” section,
creating an automated test to perform this is difficult and does not carry over well
from one machine to another.

� Slow running tests—As much as possible, tests should be automated but still run
quickly. If the testing process takes too long consider refactoring tests or evaluating the
performance of the software being tested.

� Only test correct input—A common problem in testing is to only validate expected
inputs and desired behavior. Make sure tests cover invalid input, exceptions, and
similar items.

Software optimization
Getting software to run in a reasonable amount of time is always a key consideration when
working with large datasets. A mathematical understanding of software algorithms is
usually a key component of software engineering curricula, but not widely covered in other
disciplines. Additionally, while software engineering texts and curricula highlight the
importance of testing for non-functional requirements such as performance (Sommerville,
2015), they often fail to provide details on how best to evaluate software performance
or how to plan for performance during the various phases of software lifecycle.

The survey of R packages at the beginning of this work indicates that approximately
75% of packages do not use optimization related packages nor compiled code to improve
performance. While the survey of R packages is not evidence of non-optimization of
packages in CRAN, computational researchers can should carefully consider performance
aspects of their software before declaring it complete. This section will provide a starting
point for additional study, research, and experimentation. The Python Foundation’s
Python language wiki provides excellent high-level advice (Python Wiki Contributors,
2018) to follow before spending too much time in optimization: First get the software
working correctly, test to see if it is correct, profile the application if it is slow, and
lastly optimize based on the results of code profiling. If necessary, repeat multiple cycles of
testing, profiling, and optimization phases. The key aspects of software optimization
discussed in this are: identify a performance target, understanding and applying
Big O notation, and the use code profiling and benchmarking tools.

Key recommendations for identifying and validating performance targets:

� Identify functional and non-functional requirements of the software being developed.

� If software performance is key to the software requirements, develop repeatable tests to
evaluate performance.

Discussion: The first step to software optimization is to understand the functional and
non-functional requirements of the software being built. Based on expected input, output,
and platform the software will be run on, one can make a decision as to what is
good enough for the software being developed. A pragmatic approach is best—do not
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spend time optimizing if it does not add value. Once the functional requirements have
been correctly implemented and validated, a decision point is reached: decide if the
software is slow and in need of evaluation and optimization. While this may seem a trivial
and unnecessary step, it should not be overlooked; a careful evaluation of costs versus
benefit from an optimization effort should be evaluated before moving forward.
Some methods for gathering the performance target are through an evaluation of other
similar software, interdependencies of the software and its interaction with other systems,
and discussion with other experts in the field.

Once a performance target has been identified, development of tests for performance
can begin. While performance testing is often considered an anti-pattern of testing
(Moilanen, 2014) some repeatable tests should be created to track performance as
development progresses. Often a “stress test” or a test with greater than expected
input/usage is the best way to do this. A good target is to check an order of magnitude
larger input than expected. This type of testing can provide valuable insight into the
performance characteristics of the software as well unearth potentials for failure due to
unexpected load (Sommerville, 2015).

Here is an example of performance validation testing that can also serve as a
basic reproducibility test calling the main function from pccc using the
microbenchmark package (one could also use bench, benchr, or other similar
R packages).

library(pccc)

rm(list=ls())

gc()

icd10_large <-

feather::read_feather(

“../icd_file_generator/icd10_sample_large.feather”
)

library(microbenchmark)

microbenchmark(

ccc(icd10_large[1:10000, c(1:45)], # get id, dx, and pc columns

id = id,

dx_cols = dplyr::starts_with(“dx”),
pc_cols = dplyr::starts_with(“pc”),
icdv = 10),

times = 10)

Unit: seconds

expr min lq mean median uq max neval

ccc 2.857625 2.908964 2.959805 2.920408 3.023602 3.119937 10

Results are from a system with 3.1 GHz Intel Core i7, 16 GB 2133 MHz LPDDR3,
PCI-Express SSD, running macOS 10.12.6 and R version 3.5.1 (2018-07-02).
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As software runs can differ significantly from one to the next due to other software
running on the test system, a good starting point is to run the same test 10 times
(rather than the microbenchmark default of 100 due to this being a longer running
process) and record the mean run time. microbenchmark also shows median, lower and
upper quartiles, min, and max run times. The actual ccc() call specifics are un-important;
the key is to test the main features of your software in a repeatable fashion and
watch for performance changes over time. These metrics can help to identify if a test was
valid and indicate a need for retesting; that is, a large interquartile range may indicate not
enough tests were run or some aspect of environment is causing performance
variations. Software benchmarking is highly system specific in that changing OS version,
R version, R dependent package version, compiler version (if compiled code involved), or
hardware may change the results. As long as all tests are run the same on the same
system with the same software, one can compare timings as development progresses.

Lastly, although the example above is focused on runtime, it can be beneficial to also
identify targets for disk space used and memory required to complete all desired
tasks. As an example, tools such as bench and profvis demonstrated in our “Code
Profiling/Benchmarking” section as well as object.size() from core R can give
developers insight into memory allocation and usage. There are many resources beyond
this work that can provide guidance on how to minimize RAM and disk resources
(Kane, Emerson & Weston, 2013; Wickham, 2014b; Wickham et al., 2016; Klik, Collet &
Facebook, 2018).

Key recommendations for identifying upper bound on performance:

� Big O notation allows the comparison of theoretical performance of different
algorithms.

� Evaluate how many times blocks of code will run as input approaches infinity.

� Loops inside loops are very slow as input approaches infinity.

Discussion: Big O notation is a method for mathematically determining the upper bound
on performance of a block of code without consideration for language and hardware
specifics. Although performance can be evaluated in terms of storage or run time,
most examples and comparisons focus on run time. However, when working with large
datasets, memory usage and disk usage can be of equal or higher importance than run.
Big O notation is reported in terms of input (usually denoted as n) and allows one
to quickly compare theoretical performance of different algorithms.

The basic steps for evaluating the upper bound of performance of a block of software
code is to evaluate what code will run as n approaches infinity. Items that are constant
time (regardless of if they run once or x times independent of input) are reduced
down to O(1). The key factors that contribute to Big O are loops—a single for loop or
similar construct through recursion that runs once for all n is O(n); a nested for loop
would be O(n2). When calculating Big O for a code block, function, or software system,
lower order terms are ignored, and just the largest Big O notation is used; for example, if a
code block is O(1) + O(n) + O(n3) it would be denoted as O(n3).
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Despite the value of understanding the theoretical upper bound of software in an ideal
situation, there are many difficulties that arise during implementation that can make
Big O difficult to calculate and which could make a large Big O faster than a small Big O
under actual input conditions. Some key takeaways to temper a mathematical evaluation
of Big O are:

� Constants matter when choosing an algorithm—for example, if one algorithm is
O(56n2), there exists some n where O(n3) is faster.

� Average or best case run time might be more relevant.

� Big O evaluation of algorithms in high level languages is often hard to quantify.

For additional details on Big O notation, see the excellent and broadly understandable
introduction to Big O notation (Abrahms, 2016).

Key recommendations for profiling and benchmarking:

� Profile code to find bottlenecks.

� Modify code to address largest items from profiling.

� Run tests to make sure functionality isn’t affected.

� Repeat process if gains are made and additional performance improvements
are necessary.

Discussion: As discussed throughout this section, optimization is a key aspect of software
development, especially with respect to large datasets. Although identification of
performance targets and a mathematical analysis of algorithms are important steps, the
final result must be tested and verified. The only way to know if your software will perform
adequately under ideal (and non-ideal) circumstances is to use benchmarking and
code profiling tools. Code profilers show how a software behaves and what functions are
being called while benchmarking tools generally focus on just execution time—though
some tools combine both profiling and benchmarking. In R, some of the common tools are
bench, benchr, microbenchmark, tictoc, Rprof (R Core Team, 2018), proftools
(Tierney & Jarjour, 2016), and profvis.

If, after implementation has been completed, the software functions correctly, and
performance targets have not been met, look to optimize your code. Follow an iterative
process of profiling to find bottlenecks, making software adjustments, testing small
sections with benchmarking and then repeating the process with overall profiling again.
If at any point in the process you discover that due to input size, functional requirements,
hardware limitations, or software dependencies you cannot make a significant impact
to performance, consider stopping further optimization efforts (Burns, 2012).

As with software testing and software bugs, the Pareto principle applies, though some
put the balance between code and execution time is closer to 90% of time is in 10%
of the code or even as high as 99% in 1% (Xochellis, 2010; Bird, 2013). Identify the biggest
bottlenecks via code profiling and focus only on the top issues first. As an example of how
to perform code profiling and benchmarking in R, do the following:
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First, use profvis to identify the location with the largest execution time:
library(pccc)

icd10_large <- feather::read_feather(“icd10_sample_large.feather”)
profvis::profvis({ccc(icd10_large[1:10000,],

id = id,

dx_cols = dplyr::starts_with(“dx”),
pc_cols = dplyr::starts_with(“pc”),
icdv = 10)}, torture = 100)

In Fig. 5 you can see a visual depiction of memory allocation, known as a “Flame Graph,”
as well as execution time and call stack. By clicking on each item in the stack you will be
taken directly to the relevant source code and can see which portions of the code take
the most time or memory allocations. Figure 6 is a depiction of the data view which shows
just the memory changes, execution time, and source file.

Once the bottleneck has been identified, if possible extract that code to a single function
or line that can be run repeatedly with a library such as microbenchmark or tictoc to
see if a small change either improves or degrades performance. Test frequently and
make sure to compare against previous versions. Youmay find that something you thought
would improve performance degrades performance. As a first step we recommend running
tictoc to get general timings such as the following:

library(tictoc)

tic(“timing: r version”)
out <- dplyr::bind_cols(ids, ccc_mat_r(dxmat, pcmat, icdv))

toc()

Figure 5 Profvis flame graph. Visual depiction of memory allocation/deallocation, execution time, and
call stack. Full-size DOI: 10.7717/peerj-cs.175/fig-5
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tic(“timing: c++ version”)
dplyr::bind_cols(ids, ccc_mat_rcpp(dxmat, pcmat, icdv))

toc()

timing: r version: 37.089 sec elapsed

timing: c++ version: 5.087 sec elapsed

As with previous timings, while we’re showing pccc calls, any custom function of block
of code you have can be compared against an alternative version to see which performs
better. The above blocks of code call the core functionality of the pccc package—one
implemented all in R, the other with C++ for the matrix processing and string
matching components; see sourcecode available at https://github.com/magic-lantern/pccc/
blob/no_cpp/R/ccc.R for full listing.

After starting with high level timings, next run benchmarks on specific sections of code
such as in this example comparing importing a package vs using the package reference
operator using bench:

library(bench)

set.seed(42)

bench::mark(

package_ref <- lapply(medium_input, function(i) {

if(any(stringi::stri_startswith_fixed(i, ‘S’),na.rm = TRUE))

return(1L)

else

return(0L)

}))

# A tibble: 1 � 14

expression min mean median max �itr/sec� mem_alloc

<chr> <bch> <bch> <bch:> <bch> <dbl> <bch:byt>

1 package_r : : : 547ms 547ms 547ms 547ms 1.83 17.9MB

library(stringi)

bench::mark(

direct_ref <- lapply(medium_input, function(i) {

if(any(stri_startswith_fixed(i, ‘S’),na.rm = TRUE))

return(1L)

else

return(0L)

}))

# A tibble: 1 � 14

expression min mean median max �itr/sec� mem_alloc

<chr> <bch> <bch> <bch:> <bch> <dbl> <bch:byt>

1 direct_re : : : 271ms 274ms 274ms 277ms 3.65 17.9MB

The above test was run on a virtual machine running Ubuntu 16.04.5 LTS using R 3.4.4.
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One benefit of bench::mark over microbenchmark is that bench reports memory
allocations as well as timings, similar to data shown in profvis. Through benchmarking
we found that for some systems/configurations the use of the “::” operator, as
opposed to importing a package, worsened performance noticeably. Also widely known
(Gillespie & Lovelace, 2017) and found to be applicable here is that the use of matrices are
preferred for performance reasons over data.frames or tibbles. Matrices do have
different functionality, which can require some re-work when converting from one to
another. For example, a matrix can only contain 1 data type such as character or numeric;

Figure 6 Profvis data chart. Table view of memory allocation/deallocation, execution time, and call
stack. Full-size DOI: 10.7717/peerj-cs.175/fig-6

Figure 7 Profvis flame graph .Call(). Visual depiction of memory allocation/deallocation, execution
time, and call stack; note the limitations in detail at the .Call() function where custom compiled code is
called. Full-size DOI: 10.7717/peerj-cs.175/fig-7
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data.frames and tibbles support shortcut notations such as mydf$colname. Another key
point found is that an “env” with no parent environment is significantly faster (up to 50x)
than one with a parent env. In the end, optimization efforts resulted in reducing run
time by 80%.

One limitation with R profiling tools is that if the code to be profiled executes C++ code,
you will get no visibility into what is happening once the switch from R to C++ has
occurred. As shown in Fig. 7, visibility into timing and memory allocation stops at the .
Call() function. In order to profile C++ code, you need to use non-R specific tools such as
XCode on macOS or gprof on non-macOS Unix-based operating system (OS).
See “R_with_C++_profiling.md” in our source code repository for some guidance
on this topic.

Some general lessons learned from profiling and benchmarking:

� “Beware the dangers of premature optimization of your code. Your first duty is to create
clear, correct code.” (Knuth, 1974; Burns, 2012) Never optimize before you actually know
what is taking all the time/memory/space with your software. Different compilers
and core language updates often will change or reverse what experience has previously
indicated as sources of slowness. Always benchmark and profile before making a change.

� Start development with a high-level programming language first—Developer/
Researcher time is more valuable than CPU/GPU time. Choose the language that allows
the developer/researcher to rapidly implement the desired functionality rather than
selecting a language/framework based on artificial benchmarks (Kelleher &
Pausch, 2005; Jones & Bonsignour, 2011).

� Software timing is highly OS, compiler, and system configuration specific. What
improves results greatly on one machine and configuration may actually slow
performance on another machine. Once you decided to put effort into optimization,
make sure you test on a range of realistic configurations before deciding that an
“improvement” is beneficial (Hyde, 2009).

� If you’ve exhausted your options with your chosen high-level language, C++ is
usually the best option for further optimization. For an excellent introduction to
combining C++ with R via the library Rcpp, see (Eddelbuettel & Balamuta, 2017).

For some additional information on R optimization, see (Wickham, 2014b;
Robinson, 2017).

CONCLUSION
Researchers frequently develop software to automate tasks and speed the pace of research.
Unfortunately, researchers are rarely trained in software engineering principles
necessary to develop robust, validated, and performant software. Software maintenance is
an often overlooked and underestimated aspect in the lifecycle of any software
product. Software engineering principles and tooling place special focus on the processes
around designing, building, and maintaining software. In this paper, the key topics of
software testing and software optimization have been discussed along with some analysis
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of existing software packages in the R language. Our analysis showed that the majority
of R packages have neither unit testing nor evidence of optimization available with
normally distributed source code. Through self-education on unit testing and
optimization, any computational or other researcher can pick up the key principles of
software engineering that will enable them to spend less time troubleshooting software and
more time doing the research they enjoy.
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