
 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

A Novel ICA-based Estimator for Software Cost
Estimation

Behrouz Sadeghi1, Vahid Khatibi Bardsiri2, Monireh Esfandiari3, Farzad Hoseinzadeh4

Received (2015-07-11)
Accepted (2015-10-17)

Abstract — One of the most important and
valuable goal of software development life cycle
is software cost estimation or SCE. There have
been proposed so many models using heuristic and
meta-heuristic algorithms to do machine learning
process for SCE. COCOMO81 is one of the most
popular models for SCE proposed by Barry
Boehm in 1981. However COCOMO81 is an old
estimation model, it has been widely used for the
purpose of cost estimation in its new forms. In this
paper, the Imperialism Competition Algorithm
(ICA) has been employed to tune the COCOMO81
parameters. Experimental results show that in the
separated COCOMO81 dataset, ICA can estimate
the COCOMO81 model parameters such that
the performance parameters are significantly
improved. The proposed hybrid model is flexible
enough to tune the parameters for any data sets in
form of COCOMO81.

Keywords - DCOCOMO81, software cost
estimation, accuracy, meta-heuristic, imperialism
competition algorithm.

I. INTRODUCTION

Managing software plan and development
process is one of the most challenging issues

in the field of software development scheduling
so that, time and human resources handling are
those of the most important role which is called
cost estimation. In fact SCE has an impressive
and remarkable role in software development
life cycle. From the beginning of the 1940s that
the software systems concepts are introduced,
SCE was also a vital and challenging process.
Also the accuracy is very important for software
developers and costumers because it is very useful
in generating some proposals, making contracts,
scheduling and controlling [1]. So that the
accuracy of SCE process needed to be improved.
There for, overestimating or underestimating
the cost of software application can cause some
destructive effects on the whole project lifecycle.
Because accuracy is very important, in the last
three decades there have been proposed many
models for SCE although it is in its infancy. In
this paper the words cost estimation and effort
estimation are used interchangeably. Studying
the previously done research works show that
although there are some good results but they
are not as acceptable as it should be[2],[3]. One
of the methods which is recently very popular
in improving the accuracy of SCE is using
some heuristic and meta- heuristic optimization
algorithms. All these algorithms tries to optimize
the process of SCE. It will be discussed in section
three.

In this experimental research work the ICA
meta-heuristic optimization algorithm has
been used to minimize the MMRE of SCE on
COCOMO81 software cost estimation model.

1,3- Tayabad Unit, Payam Nour University of Khorasan
Razavi
2- Kerman Branch, Islamic Azad University, Kerman, Iran
4- Lengeh Branch, Islamic Azad University, Lengeh, Iran

16 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

The rest of this paper is organized as follow.
Section two presents related works. In section
three firstly the COCOMO81 is briefly introduced
and then the ICA is presented. In section four,
the proposed model is described in details and
performance analysis is presented in section five.
And finally in section six, conclusion and future
works are presented.

II. Related work

Artificial intelligence techniques have been
used vastly in the last few years to optimize so
many problems in the vast majority of all kinds of
sciences, especially computer science. Although
these intelligent techniques seem to have so many
particular advantages, but recent studies mostly
focus on using hybrid techniques to benefit all the
advantages together. There have been significant
efforts put in to the researches on SCE models
using heuristic and meta-heuristic methods. In
this kind of techniques, once the algorithm has
been started, it must be firstly trained by some
examples, specially some large historical project
datasets are needed in this phase of the algorithm
to train it accurately. Then the model iterates on
its training part of the algorithm with the training
data prepared for, and automatically tune the
problem specified parameters and finally depends
on some ending conditions like maximum
number of iteration or convergence of the model
parameters to an optimized point or achieving
to a predefined goal or even some user defined
hybrid conditions, the model finishes its training
part. Now it’s the time to present some new
data as test data to the algorithm, to predict the
corresponding target. This part of the algorithm
is known as test part.

GA-LR and GA-NLR hybrid models have
been proposed for the SCE and carried out on the
NASA60 Dataset with 60 projects, COCOMO81
Dataset with 63 projects, and on NASA93 with
93 projects. The degree of MMRE on NASA60
Dataset is respectively 0.48 and 0.43 in GA-
LR model in the training and testing; the same
factor is respectively 0.42 and 0.2 in the GA-
NLR model [4]. The degree of MMRE on
COCOMO81 Dataset is respectively 0.46 and
0.35 in the training and testing steps in GA-LR
model; this factor is respectively 0.44 and 0.37 in
the GA-NLR model. The results show that hybrid
models have a lower accuracy value of MMRE
in comparison with GA, Linear Regression (LR)

and Non-Linear Regression (NLR) models. PSO-
FCM and PSO-LA hybrid models have been
proposed for the SCE using NASA60 Dataset.
Estimating effort using PSO [5] Parameters which
influence effort estimation have been investigated
using PSO. Evaluation was conducted on
KEMERER Dataset with 15 projects. The results
show that the value of MMRE in the proposed
model equals 56.57; it is 245.39 in the COCOMO
model. GA and Scatter Search (SS) hybrid
model was evaluated on NASA60 and NASA93
Datasets [6]. The value of MMRE in the hybrid
model for NASA60 and NASA93 Datasets is
respectively 7.56 and 23.85. The value of MMRE
in GA model on NASA60 and NASA93 Datasets
is respectively 19.63 and 36.51. The value of
MMRE in SS model is respectively 15.21, 29.15
on NASA60 and NASA93 Datasets. The results
show that the hybrid model has reduced the value
of MMRE to respectively about 3.92 and 2.46 on
NASA60 and NASA93 Datasets compared with
COCOMO81[7].

GA and Artificial Immune System (AIS)
hybrid model has been assessed on NASA60
Dataset [8]. The value of MMRE in AIS, GA, and
the hybrid models is respectively 18.20, 15.14
and 12.44.

A hybrid of Firefly Algorithm (FA) and GA
model is proposed for SCE using NASA93
Dataset. Using elitism operation GA attempts to
find the best answer for effort factors, evaluate
it in fitness function and present a solution with
the lowest value of error as the final answer. The
results show that the value of MMRE is 58.80
in the COCOMO model and respectively 38.31
and 30.34 in GA and FA models; it equals 22.53
in the hybrid model. Comparisons show that
the hybrid model has increased the efficacy of
estimation accuracy to about 2.88% compared
with COCOMO model. The Liner Regression
(LR), Artificial Neural Network (ANN), SVR
and (KNN) K Nearest Neighbors techniques
have been utilized for SCE [8].Also prediction
accuracy on the tested data is respectively 60%,
95%, 80% and 60% in LR, ANN, SVR and KNN
models.

III. Constructive Cost Model (COCOMO) and
Imperialism Competition Algorithm (ICA)

In this section firstly a brief description
of Constructive Cost model (COCOMO) is
presented and then the Imperialism Competition

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 17

Algorithm (ICA) is explained.

1. COCOMO
The Constructive Cost Model (COCOMO)

is an algorithmic software cost estimation
model developed by Barry W. Boehm (1981)
[9]. The model uses a basic regression formula
with parameters that are derived from historical
project data and current project characteristics.
COCOMO consists of a hierarchy of three levels
[10]. The first level, Basic COCOMO is good for
quick, early, rough order of magnitude estimates
of software costs, but its accuracy is limited due
to its lack of factors to account for difference in
project attributes or cost drivers. Intermediate
COCOMO takes these Cost Drivers into account
and Detailed COCOMO additionally accounts
for the influence of individual project phases
[11]. Basic COCOMO computes software
development effort as a function of program
size which is expressed in estimated thousands
of source lines of code [12]. COCOMO applies
to Organic, Semi-detached and Embedded sorts
of projects to classify complexity of the system.
A brief description of these modes is given in
Table1.

Table 1: Three Types of software projects in COCOMO
Software
project

Project size

Organic Less than
50 KLOC

Semidetached 50 – 300
KLOC

Embedded Over 300
KLOC

In the basic COCOMO equations, the

parameters effort Applied, development time
and people required are of interest. Intermediate
COCOMO computes software development
effort as function of program size and a set of
cost drivers that include subjective assessment
of product, hardware, personnel and project
attributes. The product of all effort multipliers
results in an effort adjustment factor (EAF). The
COCOMOI model takes the form of Eq. (1).

𝐸𝐸𝑓𝑓𝑓𝑓𝑜𝑜𝑟𝑟𝑡𝑡 𝑎𝑎 ∗ 𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒𝑏𝑏 𝐸𝐸𝑀𝑀𝑖𝑖
𝑖𝑖

 Eq. (1)

Where a and b are two factors that can be set

depending on the details of the developing

company and 𝐸𝐸𝑀𝑀𝑖𝑖 is a set of effort multipliers,

see Table 2.

Table 2: Overview of the COCOMOI Multipliers
EMi Description Impact
acap Analysts

capability

Positive Impact:
Increasing these
factors results
in a decreased
effort
Convex relation

pcap Programmers
capability

aexp Applications
experience

modp Modern
programming
practices

tool Use of
software
tools

vexp Virtual
machine
experience

lexp Language
experience

sced Schedule
constrain

stor Main
memory
constrain

Negative
Impact:
Decreasing
these factors
results in an
increased effort

data Data base
size

time Time
constrain for
cpu

turn Turnaround
time

virt Machine
volatility

cplx Process
complexity

rely Required
software
reliability

2. Imperialist Competitive Algorithm
One of the most interesting evolutionary

algorithm which recently has been proposed
for solving optimization problems is Imperialist
Competitive Algorithm or in short, ICA[13], [14].
This algorithm is a Socio Politically Inspired
Optimization Strategy which has been devised by
the inspiration of social and political history of
human. Like all the other evolutionary algorithms,
ICA also begins with a number of random initial
populations which are called countries. Some of
the best elements of the population are selected

18 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

as the imperialist, and the others are supposed to
be the colonies [15]. Assimilation policies and
colonial rivalries are two main policies of this
algorithm. At the beginning of the algorithm an
array of the optimization variables is created
which is known as a country or in some cases
it is known as the screw. Each country itself has
some unique features such as economics, culture,
politics, language, and etc. The production vector
of these features or characteristics is as the Eq.
(2) in which pn is the nth characteristics of the
country.

Country = [p1,p2 ,...,pn] Eq. (2)

In optimization problems the main goal is to
find the best country. So the first thing to find is to
determine the cost of all the countries using Eq. (3).
Those countries which have the best set of parameters
should be selected as imperialist. According to the
calculated cost, only a certain number of countries are
considered as colonies and the others are supposed to
be empires. In the first stage, based on the Eq. (4) the
power of imperialist is defined as the total cost of its
own colonial state plus a percentage of the average
cost of colonies. For each imperialist, total power T.
Cn is related to the first stage.

 Cost=f (country)= f(p1,p2 ,….,pn) Eq. (3)

 T.Cn= Cost(imperialist)+ξ*mean{Cost (colonies
of impire_n)}

 Eq. (4)

Depends on its power, each imperialist
controls a number of countries. The main part
of this algorithm is composed of assimilation
policy and colonial competition. Regarding to
absorption or assimilation policy, the imperialists
countries try to destroy these nations using
methods such as imposing their language and
characteristics of their country on the colonies,
abolishing the language and culture of the colony.
In this strategy, this policy is done moving the
colonies to the imperialist according to the Eq.
(5) and Eq. (6).

X~U (0,β*d) Eq. (5)

θ~U (-γ,γ) Eq. (6)

It can be understood from Figure 1 that a
colony can move directly toward its emperor or

indirectly as seen in Figure 2.

Figure 1: a colony moving towards its colonial in a direct
line.

Figure 2: a colony moving towards its colonial with a
deviation θ

In Eq. (5), if d is considered to be the distance
between a colony country and its’ colonizer then
the colony movement toward the location of
imperialist would be x. Of course each colony
can move through angle of θ which is called
time angle and is estimated with respect to Eq.
(6). Although, the movement of x and angle θ is
determined randomly. Normally, the θ angle is
uniformly in the interval [-γ,γ] and x momentum
is estimated uniformly in the interval [0, β*d].
Values of γ and β are known as algorithm
parameters in ICA. During the algorithm, if a
colony gets more power than its colonizer, then
the colonizer would be replaced by that colony. In
each iteration step of the algorithm, competition
is confirmed among the colonists. Model of ICA
is shown in Figure (3).

According to Eq. (7) if a colonizer or an
imperialist has some power less than the others,
it may lose one of its colonies. Based on this
relation T. C_n is the total power of each
imperialist and N. T. C_n is the normalized
total cost. Possible appointment of a new colony
to each of the colonizers is proportional to the
colonial power and possible takeover by empire
is n and it is equal to (p_(p_n)) that achieved
from Eq. (8). If somehow, an imperialism doesn’t
have any colonies left, it must become the colony
of another colonizer.

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 19

Figure 3: Imperialistic Competition

Initially, the competition between colonizers
to seize colonies is specified by T. C_n and then
it is normalized by the Eq. (7) [6].

N. T. Cn = T. Cn –max{ T. Ci} Eq. (7)

 Eq. (8)

The process of colonial division among
empires is based on the probabilistic situation
and is represented as a vector P in the Eq. (9).

P= [𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 … 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝] Eq. (9)

In the Eq. (10), size of vector R is equal to
the size of vector P and the elements are some
random number s uniformly distributed in the
interval [0,1].

R=[r1,r2,r3,…,rnimp]; r1,r2,r3,…,rnimp ≈U(0,1)

 Eq. (10)

According to the Eq. (11), vector D is formed
by subtracting the values of vector P from vector
R.

 D=P-R=[𝑝𝑝𝑝𝑝 -𝑟𝑟 𝑝𝑝𝑝𝑝 -𝑟𝑟 𝑝𝑝𝑝𝑝 -𝑟𝑟 ,…, 𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝 -𝑟𝑟𝑛𝑛𝑖𝑖𝑚𝑚𝑝𝑝]

 Eq. (11)

Using vector D, the weakest colony is selected
and is granted to the colonial which is the highest
index in that vector. ICA process iterates until the
number of colonizers reach number one. In this
case, all the countries are colonies of one colonizer
and the algorithm ends. Of course, there are other
conditions for the algorithm such as performing
a certain number of iterations of the algorithm or
finding the best answers possible.

IV. Proposed model

It is clear that, software cost estimation is
one of the most important and principal topics
in software planning and management and there
are lots of methods for SCE that were mentioned
before. Here, a meta-heuristic algorithm called
Imperialism Competition Algorithm has been
used to optimize the process of SCE. In this
research work, the COCOMO81 dataset has
been utilized which stores the information of 63
software projects in the real word and also for
each of these projects 17 features are presented.
As mentioned in Eq. (1), it is clear that the
amounts of effort is strictly dependent on project
size and its production by values of fifteen
features of each of the projects.

First of all, it should be considered that these
projects have been classified in three classes:
organic, semi-detached and embedded projects
so firstly they have been classified.

1. Performance metrics
There are lots of performance metrics to

evaluate an estimation strategy, but here two
of them are selected which are very important
and popular: mean magnitude of relative error
(MMRE) and percentage of prediction (PRED)
which are computed as follows Eq. (12), Eq.
(13), Eq. (14), Eq. (15):

RE= 𝑎𝑎𝑐𝑐𝑡𝑡 − 𝑒𝑒𝑠𝑠𝑡𝑡
 𝑎𝑎𝑐𝑐𝑡𝑡 Eq. (12)

MRE= 𝑎𝑎𝑐𝑐𝑡𝑡 𝑖𝑖 − 𝑒𝑒𝑠𝑠𝑡𝑡 𝑖𝑖
 𝑎𝑎𝑐𝑐𝑡𝑡 𝑖𝑖 *100

 Eq. (13)

MMRE=𝑛𝑛 𝑀𝑀𝑅𝑅𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖 , i=1,2,…,n

 Eq. (14)

20 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

PRED(x)= 𝐴𝐴
𝑁𝑁

 Eq. (15)

Where A is the number of estimated projects
with MRE less than or equal to x, and N is the
total number of estimated projects. In software
estimation methods, an acceptable value for x
is 0.25, and the proposed models are compared
based on this level. MMRE which is known as
the total number of errors must be minimized
whereas PRED (0.25) must be maximized.

2. Training process
In the training stage of the algorithm, the

proposed estimation model, is constructed based
on adjusting weights for features using ICA
optimization strategy. And the COCOMO81
dataset which has seventeen features, is used as
the input to the algorithm. In this dataset, the
dependent variable is effort, which is the last
feature in COCOMO81 dataset and the first
fifteen features are independent variables. The
sixteenth variable is the size of the project.

At the beginning of this stage, the projects are
divided into two main categories: train data and
test data using leave one out cross validation. The
project which has been selected as a train data,
is applied to the ICA. The ICA proposes some
weights related to the optimization variables,
in the range of [varmin, varmax], which is
[-10,+10] here. And then according to the Eq
(1), the estimated effort is calculated for each of
projects. Then the RE and MRE are calculated.
And finally as a result, the MMRE is returned to
the ICA. As ICA is an optimization strategy and
its main goal is to minimize the cost function, it
tries to minimize the MMRE.

3. Testing process
The main goal of this stage is to evaluate

the accuracy of the ICA strategy giving unseen
projects to the ICA. In this stage of the algorithm,
the separated test dataset and the proposed
weights for optimization variables are passed
to the test function. Using Eq (1), the estimated
effort is calculated for that test project and again
the MRE and MMRE and also the PRED (0.25)
are calculated. The results of this stage is the last
result and can be used to evaluate the proposed
model performance accuracy.

The flowchart of the proposed model is shown
in Figure 4. The experimental results show that

in contrast with COCOMO model, the MMRE is
considerably decreased.

Figure 4: Flowchart of the proposed model

4. Leave one out cross validation (LOOCV)
In LOOCV scenario, one of the observations

is randomly selected as the test data and the rest
of the observations are considered as train data.
These data sets are given to the optimization
algorithm. This process continues till all the
observations are selected as test data. Here there
are 63 records or observations. One of the records
is selected as test data and the rest of records as
train one and then the optimization process is
performed on the train data. Then, this process
is continued till all the records are selected as
test data. At the end of this process, an array
with 63 members that are estimated efforts are
constructed. So it can be easy to compare the
results with the real efforts. This process always
has deterministic results although the only
problem is that the training time of the algorithm
in this form of cross validation is so long. A

summary of LOOCV is presented in figure 5.

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 21

Figure 5: A summary of applying Leave One Out Cross
Validation on COCOMO81 dataset

The pseudo code of the procedure is as
follows:

for k =1 : sizeof(COCOMO81,1)
train_data and test_data sets are selected using

LOOCV
 Problem Statement
 Algorithmic Parameter Setting
 Creation of Initial Empires
 Main Loop
 Assimilation
 Revolution
 New Cost Evaluation
 Empire Possession
 Computation of Total Cost for Empires
 [MMRE]=Mycost(x, train_data)//Cost function

call
 [MMRE]=Mytest(a,b,test_data)//Test function

Call
End

Where a and b are the two optimization
variables.

V. Experimental Results
In order to measure the estimation accuracy of

the ICA model, COCOMO dataset consisting of
63 records of real world software projects is used.

The simulation of the proposed model is done in
the simulated environment of MATLAB 2014a.
To evaluate the proposed model, the initial values
of ICA parameters have been given values shown
in Table 3. Number of initial countries is set to
180, empires number to 18, and also the parameter
decades which is equal to the maximum iteration
parameter in Genetic algorithm is set to 100. The
lower bound and upper bound of the optimization
variables are set to [-10, +10] interval. Parameter
β gets the value of 2. Increasing the value of the
parameter γ increases the search of imperialist
environs and its decrease causes colonial move
as much as possible, closer to the vector of
connected colonials to colonies. The parameter
zeta, which is a percentage of average cost of
whole of the colonies in an imperialist, is set to
0.03. The training and testing processes were
completed using leave one out cross validation.

Table 3- ICA parameters initialization.

Parameters values
No. Population 180
No. Imperials 18

No. Decades (Iterations) 100
Revolution rate 0.3

Varmin -10
Varmax +10

β 2
γ Π/4

Zeta 0.03
Training LOOCV
Testing LOOCV

In this experimental study, the process of
evaluating the accuracy of SCE is done in three
experiences in which of them different data
orders are used.

1. Original COCOMO81
In the first experience, the ICA was trained

with the original COCOMO dataset without any
changes using leave one out cross validation
which is here called original COCOMO. In the
proposed model, MMRE considered as the output
of the fitness function so that the objective of the
fitness function is to minimize the amount of
MMRE Eq. (12), Eq. (13), Eq. (14) and Eq. (15).
The results obtained from applying the proposed
estimation model to original COCOMO dataset
show that, the best MRE which is also the best
cost, is about 0.3606 and MMRE is about 0.3903

22 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

and PRED is about 0.3651 .Eq. (15).

The plot diagram of estimated and real efforts
in this experience is shown in figure 6. As it is
clear, the estimated values are very close to the
real ones.

Figure 6: Effort estimation using original COCOMO dataset.

2. Separated COCOMO81
As it has been mentioned before, the

projects in COCOMO dataset are divided into
three categories: organic, semi-detached
and embedded. In the second experience, the
COCOMO dataset has been divided into these
three separated datasets, and for each of these
datasets, the ICA was separately trained using
leave one out cross validation and then test it
with the test data. There are three sets of results
obtained from each run that are presented in
figures 8,9 and 10, but the final results, which can
be seen in figure 7 are the mean of these three
results and show that the best MRE is equal to
0.2702 while the MMRE is bout 0.3370 and the
PRED value is 0.3571.

Figure 7: Real Efforts vs Estimated Efforts on Separated

COCOMO datasets.

In figure 8, the comparison of estimated
efforts and real efforts on the organic dataset is
presented.

Figure 8: Real Efforts vs Estimated Efforts on organic dataset

In figure 9, the comparison of estimated efforts
and real efforts on the semi-detached dataset is
presented either.

Figure 9: Real Efforts vs Estimated Efforts on semi-detached
dataset

In figure 10, the comparison of estimated
efforts and real efforts on the embedded dataset
is presented.

Figure 10: Real Efforts vs Estimated Efforts on embedded
dataset

23 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

3. Ordered COCOMO81
And finally, in the third experience, the order

of COCOMO dataset values has been changed, in
such a way that all the organic projects come first
and then the semi-detached projects are stored
and finally all the embedded projects are placed.
The difference between second experience
and third one, which is now called ordered
COCOMO, is that in the second experience, for
each kind of projects, organic, semi-detached
and embedded, the ICA ran separately but in the
last experience, ICA ran just for one time on the
ordered COCOMO dataset. Here just like the
previous experiences, at the beginning of the
process, the ICA was trained using leave one
out cross validation on the ordered COCOMO
dataset and then it was tested with the test data.
The results show that, the best MRE is about
0.3621and MMRE is about 0.3941 and PRED is
about 0.3492. See Figure 11.

Figure 11: Real Efforts vs Estimated Efforts on the ordered
COCOMO dataset

In figure 12 the results of all the projects
experiences has been presented in one figure and
also the result summary is shown in table 4 and
table 5.

Figure 12: Estimated Efforts vs Real Efforts of all the
experiences

A brief summary of applying ICA on different
COCOMO datasets is shown in table4 and table5.

Table 4: The results of applying ICA on different COCOMO
datasets

Criterion Original
cocomo

Separated
cocomo Ordered cocomo

a and b 2.79 1.08 4.2283 0.9955 2.7665 1.0909
Best
MRE 0.3606 0.2702 0.3621

Table 5: Comparison of MMRE and PRED values of
applying ICA on different Cocomo datasets.

Criterion Original
cocomo

Separated
cocomo

Ordered
cocomo

COCOM
O81

MMRE 0.3903 0.2863 0.3941 0.3180

PRED 0.3651 0.3571 0.3492 0.3492

VI. Conclusion
In this paper, the ICA optimization strategy

was employed to estimate the effort based on
COCOMO81. ICA has been known as a very fast
and flexible strategy and could properly estimate
the effort values. The proposed model was
constructed so that the parameters of COCOMO
are optimized. The results of the proposed model
through MMRE and PRED (0.25) criteria showed
values close to the actual values. So that for the
proposed model, MMRE and PRED (0.25) values
were 0.2702 and 0.2863. Comparing the obtained
results from the proposed model and COCOMO
showed that the proposed model has less MMRE
value and more PRED value than COCOMO.
Although MMRE and PRED were much better
than COCOMO but for the future, this algorithm
should change to have a lower amount of MMRE
and upper value for PRED.

24 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

REFERENCES

[1] Wold, Svante, et al. (1984). The Collinearity
Problem in Linear Regression. The Partial Least Squares
(PLS) Approach to Generalized Inverses, SIAM Journal on
Scientific and Statistical Computing, 5.6: 735-743.

[2] El, E. K, Gunes, A. k. (2008). A replicated survey of
IT software project failures. Software, IEEE 25.5: 84-90.

[3] Jorgensen, M., and MOLØKKEN-ØSTVOLD,
K.(2003). A review of surveys on software effort estimation.
International Symposium on Empirical Software Engineering
(ISESE’03), Rome. Proceedings. IEEE Computer Society.

[4] Heiat, A. (2002). Comparison of artificial neural
network and regression models for estimating software
development effort. Information and software Technology
44.15: 911-922.

[5] Gharehchopogh, Soleimanian, F; et al. (2014). A
Novel PSO based Approach with Hybrid of Fuzzy C-Means
and Learning Automata in Software Cost Estimation. Indian
Journal of Science and Technology 7.6: 795-803.

[6] Maleki, I. Gharehchopogh, Ayat, F. S, Ebrahimi,
L. (2014). A Novel Hybrid Model of Scatter Search and
Genetic Algorithms for Software Cost Estimation. MAGNT
Research Report, 2 (6): 359-371.

[7] Leung, Hareton, Zhang, F. (2002). “Software cost
estimation.” Handbook of Software Engineering, Hong
Kong Polytechnic University.

[8] Gharehchopogh, Soleimanian, F; et al. (2014). A
Novel Hybrid Artificial Immune System with Genetic
Algorithm for Software Cost Estimation. MAGNT Research
Report, 2 (6): 506-517.

[9] Atashpaz, G. E. et al. (2008).Colonial competitive
algorithm: a novel approach for PID controller design in
MIMO distillation column process. International Journal of
Intelligent Computing and Cybernetics 1.3: 337-355.

[10] Boehm, B. W. (1981). Software engineering
economics. Englewood Cliffs, NJ: Prentice Hall.

[11] Hari, C. H., and Reddy, P. V. G. D. (2011). A
Fine Parameter Tuning for COCOMO 81 Software Effort
Estimation using Particle Swarm Optimization. Journal of
Software Engineering 5.1.

[12] Catal, C., Mehmet, S. A. (2011). A Composite
Project Effort Estimation Approach in an Enterprise
Software Development Project. SEKE.

[13] Bardsiri, V. k; et al. (2013). A PSO-based model
to increase the accuracy of software development effort
estimation. Software Quality Journal 21.3: 501-526.

[14] Maroufi, Awat, Ahmad, J.(2015). ANew Approach
in Software Cost Estimation with Hybrid Imperialist
Competitive Algorithm and Mamdani Fuzzy Model.

[15] Atashpaz, G. E., Lucas, C. (2007). Imperialist
competitive algorithm: an algorithm for optimization
inspired by imperialistic competition. Evolutionary
computation.

