
 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

Parallelization of Rich Models for Steganalysis of
Digital Images using a CUDA-based Approach

Mahmoud Kazemi1, Meysam Mirzaee2, Reza Isfahani3

Received (2016-10-17)
Accepted (2017-03-17)

Abstract — There are several different methods
to make an efficient strategy for steganalysis of
digital images. A very powerful method in this area
is rich model consisting of a large number of diverse
sub-models in both spatial and transform domain
that should be utilized. However, the extraction of
a various types of features from an image is so time
consuming in some steps, especially for training
phase with a large number of high resolution
images that consist of two steps: train and test.
Multithread programming is a near solution to
decreasing the required time but it’s limited and
it ‘snot so scalable too. In this paper, we present
a CUDA based approach for data-parallelization
and optimization of sub-model extraction
process. Also, construction of the rich model is
analyzed in detailed, presenting more efficient
solution. Further, some optimization techniques
are employed to reduce the total number of GPU
memory accesses. Compared to single-thread and
multi-threaded CPU processing, 10x-12x and 3x-
4x speedups are achieved with implementing our
CUDA-based parallel program on GT 540M and it
can be scaled with several CUDA cards to achieve
better speedups.

Index Terms — CUDA, GPU, Parallelization,
Rich models, Steganalysis.

I. INTRODUCTION

With ever-increasing growth of electronic
information and communications, it is

important to design methodologies for enhancing
the security of exchanged information. One
of these methodologies is stegonagraphy that
is a procedure to hide some secret data into
a carrier multimedia such as image, audio or
video. In fact, the steganography is derived
from the Greek words “stegos” meaning “cover”
and “grafia” meaning “writing” defining it as
“covered writing” [1]. The most important goal
of the stegonagraphy is secret communication.
Other similar technology for embedding data
into multimedia is watermarking, however the
major aim of the watermarking is protection of
intellectual property through the embedded data
which is usually a signature to signify origin or
ownership of the multimedia [2].

As carrier multimedia, digital images are the
most popular because of their frequency on the
Internet. One the most important property of
the image stegonagraphy is imperceptibility. It
means that human visual system should not be
able to recognize significant differences between
original image and the image after embedding
secret information.

On the contrary, steganalysis is a procedure
to estimate existence of the secret data in the
image. For keeping invisibility, there is no
specific sign demonstrating the embedded data
and consequently, it seems the steganalysis is
an impossible task. But statistical analysis of the
images without the embedded data shows that
there is a significant correlation between adjacent
pixels [3]. Therefore, absence of the correlation
may demonstrate existence an embedded secret

1- ICT Research Center, University of Imam Hussein,
Tehran, Iran. (mkazemi@ihu.ac.ir)
2,3- ICT Research Center, University of Imam Hussein,
Tehran, Iran

82 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

message.
In fact, steganalysis is a process of reverse

engineering. For this, a huge set of basic
statistical criteria called feature are extracted
from the questionable image [4]. The features are
utilized in a two phases process called learning.
The phases are called train and test, respectively.

In the training phase, a large number of clear
and stego images are analyzed, to recognize the
features which are modified due to embedding
data. So, the values of the features are computed
for a set of clear and stego images. The results
(images, features and values) are considered as
training set and delivered by a classifier. In the
training phase, some parameters are generated
to utilize for classification in the test phase. The
strategy for selecting the features and classifier is
very critical to attain the best results.

Various algorithms are given in literature to
extract the useful features and classification of
the images into clear or stego categories [3-8].
Fridrich and Kodovský have presented a fully
comprehensive approach for steganalysis of the
images in the spatial domain [9]. In the approach,
first a rich model of noisy residuals is constructed.
The model is based on the difference of a pixel
and its adjacent pixels. The difference of the
pixels is considered as a noise and histogram of
the adjacent differences are investigated for clear
and stego images. Then, Ensemble classifier is
used for the classification process. In Fridrich’
scheme, a wide variety of forms for selection
of the adjacent pixels with various weights are
introduced, so that each of them is applicable
to identify a specific stegonagraphy algorithm.
Therefore, a large number of residual matrices
are generated and then co-occurrence histograms
of the residuals are calculated in vertical and
horizontal direction and next, the co-occurrence
matrices are symmetrized. The philosophy of the
symmetry is that a large number of sub-model
are generated, so that a lot of them have zero
value and thus they should be symmetrized. After
symmetry, some useful features are extracted
from the image. Fridrich and Kodovský have
demonstrated that the framework is efficiently
works when a secret message is embedded in the
spatial domain of an image by steganographic
algorithms like HUGO [10], edge-adaptive
algorithm by Luo et al. [11], and optimally-coded
ternary ± 1 embedding. So, the approach is also
called Spatial Rich Model (SRM). As mentioned,
SRM is a comprehensive approach and for each

stegonagraphy algorithm, some sub-models are
selected to recognize the stego image. On the
other hand, the diversity of models causes a so
time consuming task for the learning phase. In
fact, universality and comprehensiveness of
the Fridrich’s approach results in an acceptable
performance, however the extraction of the
features leads to a computationally intensive
process, especially when the resolution and
number of learning images are increased.

To accelerate time consuming algorithms,
parallel systems can be considered as an exciting
option. Graphics Processing Unit (GPU) as a
highly parallel, multithreaded and many-core
architecture can be applied by user for heavy
computational algorithms. To address the issue,
NVIDIA Corporation introduced Compute
Unified Device Architecture (CUDA) as a
general purpose parallel computing architecture
with a new parallel programming model and
instruction set architecture [12]. In fact, CUDA
is an extended model of standard C language for
parallel computing that allows the user to program
own algorithms on GPU easily. Comprehensive
information about parallel programming with
CUDA can be found in [12, 13].

It is notable that the data-level parallelization
should be performed for implementing
an algorithm on GPU, getting acceptable
performance. Image processing algorithms due to
their parallel nature are suitable cases, however it
is important to design an efficient parallelization
approach based on the GPU architecture [14-20].
In this paper, we provide some parallelization
techniques and a CUDA based implementation
for SRM steps.

The paper is structured as follows. In section
II, the proposed scheme for data parallelization of
SRM is explained. Also, the details of our GPU
implementation and optimization techniques are
provide in Section III. Speedup results by the
presented parallel approach are given in Section
IV. Finally, the paper is concluded in Section V.

II. THE PROPOSED PARALLELIZATION
SCHEME FOR GENERATING SUB-

MODELS

In SRM algorithm proposed by Fridrich [9],
4 steps are required to generate 34671 features
or sub-models from a gray-scale image. By

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 83

analyzing the SRM algorithm (refer to Section 4
for more details), it can be found that steps 1 and
2 are dominant parts of the process. Furthermore,
the steps 1 and 2 are dependent on the image
sizes and their execution time increases with
higher resolution images. However the output
of step 2 (co-occurrence values) can be a vector
with a constant length and consequently step 3
and 4 are completely independent of the image
sizes and consequently, compared to the total
execution time of the SRM, the execution time
of the steps 3 and 4 can be ignored, especially for
high resolution images. Thus, we need to propose
parallelization techniques only for two first steps
of the SRM. Our proposed techniques for an
gray-scale image of size M×N are described in
the following sub-sections.

A. Extraction of a Residual Vector R Containing
 458×M×N Elements From an Image

In the first step, 458 residual matrices each of
size M×N are generated from and input image
matrix of size M×N. In other word, for each pixel,
458 different values are calculated as residuals.
Different form for selection of adjacent of pixels,
different orders and quantization values results in
such diversity. In fact, a residual of a pixel can be
defined as quantized difference of the pixel value
from some its adjacent pixels (refer to [9] for more
details). Statistic information of the residuals can
lead to detect the existence a secret message in the
image. To calculate a specific residual, the process
is the same for different pixels. For example, to
calculate the first kind of residual, the value of
each pixel is subtracted from its right neighbor
(see Fig. 1), and then truncation and quantization
are performed. The process should be repeated
for all pixels of the image. So, the first step can
be so time consuming and we propose a pixel-
level parallelization for the step. In other word,
one CUDA thread is defined for each pixel and
consequently there are M×N parallel threads, so
that each thread calculates 458 different residuals
for each pixel. Totally, 458 residual matrices are
generated and we put their elements into a vector.
In the proposed scheme, all residuals generated
from all pixels are placed together in the vector
R. Fig. 2 exhibits the placement of different
residuals in vector R.

B. Computing Horizontal and Vertical
 Co-occurrences

In this step, two horizontal and vertical co-
occurrence matrices are generated for each
residual matrix. For this, number of occurrences
for different possible patterns of the elements in a
residual matrix is computed along the horizontal
and vertical directions and then the result is
normalized. According to the algorithm proposed
by Fridrich [9], the elements of residual matrices
are integer values between -2 and 2. On the other
hand, the considered patterns are 4 symbols (e.g.
-2 1 2 0), and consequently there are 625 different
patterns. In this saturation, for horizontal co-
occurrence, we should calculate that how many
times each pattern is happened along horizontal
direction. Similar procedure is performed to
compute the vertical co-occurrence matrix. As a
result, for each residual matrix, one horizontal co-
occurrence matrix and one vertical co-occurrence
matrix are constructed, so that we consider a
625-element vector to place the elements of each
co-occurrence matrix. Since, the computation of
co-occurrence arrays is a same process for all
residuals, a residual-level parallelization scheme
is proposed for the step 2. It means that in this
step, 458 CUDA threads are considered and each
thread is responsible for calculation of horizontal
and vertical co-occurrences of a residual matrix.

Also, in the step 2, the horizontal co-
occurrence matrices form the vector C_H
containing 458×625 elements and the vertical
co-occurrence matrices form the vector C_V
containing 458×625 elements. Fig. 3 shows the
placement of horizontal co-occurrences in C_H
or vertical co-occurrences in C_V. In the step 2,
each thread processes its corresponding residuals
(M×N elements of vector R) and calculates 625
elements of vector C_H and 625 elements of
vector C_V.

Fig. 1. The first kind of residual

84 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

As a result, by performing step 2, the
vectors C_H and C_V (each of size 458×625)
are produced. The obtained values should be
symmetrized in steps 3 and 4. The number of
elements of C_H and C_V are constant for each
input image with arbitrary size, and consequently
the execution time of the step 3 and 4 are not
increased, with high resolution images.

III. CONSIDERATIONS AND OPTIMIZATION
TECHNIQUES FOR OUR GPU IMPLEMENTATION

As mentioned, many processing cores are
provided by the modern GPUs. However, the
utilization of the GPU cannot guaranty reduction
of the processing time in all cases. The main
factors enhancing performance of a GPU-based
process can be listed as follows:

• There is a potential to invent an efficient
data-level parallelization approach.

• The data communications between the
parallel threads must be reduced, as possible.

• Also, the total number of memory accesses
must be reduced and instead, registers can
be utilized as possible. The modern GPU
architectures provide a significant number of
registers for threads to store date which are
frequently used. The registers are very faster than
global memory of the GPU. More utilization of
the registers can lead to enhance the performance.

• Finally, superiority of the GPU is revealed

when the process is CPU bound instead of
memory bound.

With respect to the mentioned factors,
we provide some solutions to enhance the
performance of the GPU program as follows.

• In the first step, 458 different kinds of the
residuals can be calculated for each pixel. On the
other hand, for each pixel, it is necessary to read
some neighbor values from the memory. The fact
imposes a huge number of repetitive memory
accesses, leading significant performance
degradation. To resolve the issue, we propose
that at begin of residual extraction process, the
values of the required neighbor pixels are read
from the global memory and then registered to be
used in the calculations.

• If consecutive memory demands of the
running threads exceed capability of the GPU,
then the kernel has been stopped and then
a message is appeared for the user (Display
driver stopped responding and has recovered).
In these cases, we are forced to reduce the
number of parallel threads. It means the degree
of parallelization should be reduced and the
kernel can be called serially to process all data.
The maximum number of parallel threads is
dependent on specifications of the GPU such as
memory bandwidth and also number of memory
accesses required for each thread. In step 2 of the
SRM algorithm, there are 458 parallel threads,
such that each thread attempts to read M×N
elements from the global memory and write 625
elements to the global memory. This amount of

Fig. 2. Placement of different residuals of an image of size M×N

Fig. 3. Placement of co-occurrence values in a vector

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 85

memory accesses (458 × (M×N×625)) is not
supported, even by state of the art GPUs. In
this situation, we should reduce the number of
parallel threads that run the kernel calculating co-
occurrences and then kernel is serially invoked in
a loop to process all of residuals. As the number
of parallel threads decrease, the more number
of iterations is needed. In this work, we propose
that the number of parallel threads is defined
parametric via determining CUDA Grid and
CUDA block sizes. As a result, we can adjust the
degree of parallelization in respect to available
GPU. Consequently, our scheme can be adapted
with various models of GPUs.

IV. EXPERIMENTAL RESULTS

The proposed parallelization scheme for the
SRM algorithm was implemented on NVIDIA’s
GPU using CUDA 7.5. Our GPU model is
Geforce GT 540M that contains 1GB global
memory and 64 CUDA cores with frequency of
1.3 GHz. To compare performance of the parallel
implementation with serial implementation on
a General Purpose Processor (GPP), the SRM
algorithm was coded by using single thread C
language and implemented on a PC with CPU
Intel Pentium 4. Moreover, a multi-threaded
version is implemented on intel core-i7 processor
using OpenCL framework. Note that all programs
were executed with 200 iterations and average
results are reported.

Timing analysis for the single-thread serial
implementation of the SRM algorithm is
performed and the detailed results are provided
in Table I.

Table I: Execution time of different steps of the SRM
algorithm (C implementation)

Image size Step1
(second)

 Step2
(second)

 Step3
(second)

 Step4
(second)

256×256 14.671 5.692 0.005 0.392

512×512 56.052 22.64 0.005 0.392

As can be seen in Table I, the execution times
of steps 3 and 4 are not variable with different
sizes of the input image and also ignorable
compared to the first steps. Furthermore, the
execution times of two first steps are proportional
to the square of image size and consequently they
are so time consuming when the image size is
increased.

Table II lists the execution times of the serial
and the proposed parallel implementation of the
SRM for steps 1 and 2. Note that in Table II,
data transfer overhead is not considered and the
results are only pure processing times.

As can be shown in Table II, using our CUDA
implementation, for step 1 (as the most time
consuming step) 101x-114x times speedups
are obtained. Also, 4 times speedup is achieved
for step 2, where the number of parallel thread
has been limited. This reduction in speedup
demonstrates the impact of memory bottleneck
on the achieved performance. For further
performance evaluation of the proposed CUDA-
based approach, the execution times of the multi-
threaded CPU implementation are also provided
in Table II. The proposed CUDA-based approach
attains almost 49.9x-53.5x and 2x-2.3x speedups
over the multi-threaded CPU implementation for
the steps 1 and 2, respectively.

Furthermore, the performance of a CUDA
program can be affected by the dimensions of
CUDA grid and CUDA block. To implement the
proposed parallel scheme on Geforce GT 540M,
optimal dimensions for steps 1 and 2 (leading
results listed in Table II) are given in Table III.

Here, M and N are the image sizes. It can be
found that it is feasible to run M×N parallel threads
for the step 1. However, in our implementations
on Geforce GT 540M, M and N are less than
or equal to 512. Furthermore, the used GPU is
capable to execute only 128 threads for step 2,
where a huge number of memory accesses is
required.

In our scheme, for computing rich models, an
image matrix should be transmitted from CPU
memory to the GPU memory and then steps 1 and
2 should be performed by the GPU cores. Next,
the results are written back to the CPU memory,
performing steps 3 and 4. Considering execution
times of 4 steps as well as the data transmitting
overhead, the total required times and acquired
actual speedups for constructing rich models are
listed in Table IV.

Table IV reveals that the actual speedups
obtained by our proposed scheme are about 10x
and 12x for gray-scale images of size 256×256
and 512×512 respectively. Also, in compared
with multi-threaded CPU implementation, our
scheme reaches up to 5x-6.2x speedups for
gray-scale images of size 256×256 and 512×512
respectively.

In fact, with reduction of parallelization degree

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 86

in step 2 (due to memory access constraint), the
overall performance of the parallel scheme is
degraded, significantly. However, due to the
excellent results of the step 1, the proposed
scheme is efficient for computing rich models
which is a computationally intensive process.

V. CONCLUSIONS AND FURTHER WORKS

Steganalysis of digital images requires a
learning process, where thousands stego or clear
images are analyzed, to extract the features
that can show existence of a secret message in
an image. When the number and dimensions
of the images are increased, significant growth
is seen in the processing time. Furthermore, a
comprehensive approach for steganalysis extracts
more than 34000 features for each image [9].

To address the illustrated problem, a

parallelization scheme for the algorithm
introduced in [9] was presented in this article.

We discussed that the algorithm has 4 steps,
such that execution times of two last steps are
ignorable compared to two others. Thus, we
offered a pixel-level parallelization scheme for
step 1, so that M×N parallel threads are defined
to compute the residuals. To optimize CUDA
implementation of the step, we suggested that
before calculating residuals, each pixel and its
adjacents are registered, significant reducing in the
total number of memory accesses. Furthermore,
we offered a residual-level parallelization
scheme for step 2, so that 458 parallel threads are
defined to compute the co-occurrences. Also, we
demonstrated that in the implementation, due to
memory bandwidth constraints, we should use
the limited number of parallel threads for the step
2.

Experimental results showed that our

Table II: Time comparison of serial and parallel implementations of steps 1 and 2 of the SRM algorithm

Image
size

Step 1 (second) Step 2 (second)

Single
thread

on
CPU

Multi
threaded
on CPU

Proposed
parallel scheme
on GPU using

CUDA

Speedup
GPU over

single-
thread CPU

Speedup
GPU over

multi-
threaded

CPU

Single
thread on

CPU

Multi
threaded
on CPU

Proposed
parallel scheme
on GPU using

CUDA

Speedup
GPU over

single-thread
CPU

Speedup
GPU over

multi-
threaded

CPU

256×256 14.67 6.85 0.128 114.61 53.52 5.692 2.93 1.42 4.01 2.06

512×512 56.05 27.46 0.55 101.91 49.93 22.64 13.01 5.61 4.04 2.32

Table III: Optimal dimensions of CUDA grid and CUDA block in this work
Step 1 Step 2

 grid block grid block

M/8 - N/16 8-16 4-1 8-4

Table IV: Total execution time (including overheads) of serial and proposed parallel implementations to construct rich
models

Image
size

Single thread on
CPU (second)

Multi threaded on
CPU (second)

Proposed parallel
scheme on GPU using

CUDA (second)

Speedup GPU
over single-
thread CPU

Speedup GPU
over multi-

threaded CPU

256×256 20.76 10.19 2.04 10.18 4.99

512×512 79.19 40.87 6.59 12.01 6.2

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 87

proposed parallelization scheme offers more
than 101x speedup for the step 1 and about 4x
speedup for the step 2. In total, with considering
data transmission overheads, our parallel
implementation achieves 10x and 12x speedups
for gray-scale images of size 256×256 and
512×512 respectively. Moreover, our proposed
CUDA-based approach is superior to multi-
threaded CPU implementation.

The utilized GPU model for our
implementations in this work was Geforce GT
540M. It is evident that with state of the art and
more power full GPUs, a significant growth in
achieved speedups are expected, especially for
the step 2, where the number of parallel threads
can be increased.

The steganalysis methodology presented in
[9] is efficient for steganography algorithms that
address spatial domain. For future work, we will
introduce parallelization methods to accelerate
a steganalysis algorithm that address frequency
domain.

Further, a hardware and parallel architecture
will be designed for the steganalysis process. The
architecture can offer a significant throughput
and will be implemented on FPGA.

ACKNOWLEDGMENT
The author wish to thank Dr. Zeinolabedin

Norouzi and Dr. Hamed Mehrara for their
guidelines, suggestions and technical supports
during the work.

REFERENCES
[1] Moerland, T., “Steganography and Steganalysis”,

Leiden Institute of Advanced Computing Science, www.
liacs.nl/home/ tmoerl/privtech.pdf.

[2] S. Fazli, M. Moeini, “A robust image watermarking
method based on DWT, DCT, and SVD using a new
technique for correction of main geometric attacks,” Optik,
Vol. 127, No. 2, 2016, PP. 964-972.

[3] H. Farida and S. Lyu, “Steganalysis Using Higher-
Order Image Statistics”, IEEE Transactions on information
Forensics and Security, February 2006, Vol. 1, PP. 111-119.

[4] Bohme, Rainer. Advanced Statistical Steganalysis.
s.l. : Springer, 2009.

[5] Z. Xia, L. Yang, X. Sun, W. Liang, D. Sun and Z.
Ruan, “A Learning-Based Steganalytic Method against
LSB Matching Steganography”. Changsha, 410082, China
: Hunan University, 2011.

[6] J. Fridrich and J. Kodovský, “Quantitative
Steganalysis Using Rich Models.”, .USA : Proc. SPIE 8665,
Media Watermarking, Security, and Forensics 2013, March
22, 2013.

[7] V. Holub, J. Fridrich, and T. Denemark, “Random
Projections of Residuals as an Alternative to Co-occurrences
in Steganalysis.”, Department of ECE, SUNY Binghamton,
NY, USA : Proc. SPIE 8665, Media Watermarking, Security,
and Forensics 2013, March 22, 2013.

[8] Q. Liu, A. H. Sung, “Feature Mining and Neuro-
Fuzzy Inference System for Steganalysis of LSB Matching
Stegonagraphy in Grayscale Images.” .New Mexico Tech,
Socorro, NM 87801, USA : s.n., 2007.

[9] J. Fridrich and J. Kodovský, “Rich Models for
Steganalysis of Digital Images”, IEEE Transactions on
Information Forensics and Security, vol. 7, no. 3, pp. 868 –
882, June 2012.

[10] T. Pevný, T. Filler, and P. Bas, “Using high-
dimensional image models to perform highly undetectable
steganography.” In R. Böhme and R. Safavi-Naini, editors,
Information Hiding, 12th Interna tiona l Workshop , volume
6387 of Lecture Notes in Computer Science, pp. 161–177,
Calgary, Canada, June 28–30, 2010. Springer-Verlag, New
York.

[11] W. Luo, F. Huang, and J. Huang, “Edge adaptive
image steganography based on LSB matching revisited”,
IEEE Transactions on Information Forensics and Security,
vol. 5, no. 2, pp. 201–214, June 2010.

[12] NVIDIA Corporation, NVIDIA CUDA C
Programming Guide 4.1, 2011.

[13] General Purpose GPU Programming (GPGPU)
Web site, http: //www.gpgpu.org, 2010.

[14] J.D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Krger, A.E. Lefohn, and T.J. Purcell, “A Survey
of General-Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, vol. 26, no. 1, pp. 80-113, Mar.
2007.

[15] I. K. Park, N. Singhal, M. H. Lee, S. CHo, and C.
W. Kim, “Design and Performance Evaluation of Image
Processing Algorithms on GPUs” IEEE Transactions On

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 88

Parallel and Distributed Systems, vol. 22, no. 1, pp. 91–104,
January 2011.

[16] H. Heidari, A. Chalechale and A. Mohammadabadi,
“Parallel implementation of color based image retrieval
using CUDA on the GPU”, International Journal of
Information Technology and Computer Science (IJITCS),
vol. 6, no. 1, December 2013, pp. 33-40.

[17] H. Heidari, A. Chalechale and A.A.
Mohammadabadi, “Parallel implementation of texture
based image retrieval on The GPU”, International Journal
of Image, Graphics and Signal Processing, vol. 5, no. 9, July
2013, pp. 36-42.

[18] A.A. Mohammadabadi, A. Chalechale and H.
Heidari, “Parallelized computation for Edge Histogram
Descriptor using CUDA on the Graphics Processing Units
(GPU)”, 17th CSI International Symposium on Computer
Architecture and Digital Systems (CADS 2013), Tehran,
2013, pp. 9-14.

[19] A.A. Mohammadabadi, A. Chalechale and
H. Heidari, “GPU implementation of edge histogram
descriptor and color moments fused features for efficient
image retrieval”, The CSI Journal on Computer Science and
Engineering, vol. 9, no. 2, 2013, pp. 22-33.

[20] H. Heidari, A. Chalechale, A.A. Mohammadabadi,
“Accelerating of color moments and texture features
extraction using GPU based parallel computing”, 8th Iranian
Conference on Machine Vision and Image Processing
(MVIP), Zanjan, 2013, pp. 430-435.

