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Abstract - Hadoop MapReduce framework is 
an important distributed processing model for 
large-scale data intensive applications. The current 
Hadoop and the existing Hadoop distributed file 
system’s rack-aware data placement strategy in 
MapReduce in the homogeneous Hadoop cluster 
assume that each node in a cluster has the same 
computing capacity and a same workload is assigned 
to each node. Default Hadoop doesn’t consider 
load state of each node in distribution input data 
blocks, which may cause inappropriate overhead 
and reduce Hadoop performance, but in practice, 
such data placement policy can noticeably reduce 
MapReduce performance and may increase extra 
energy dissipation in heterogeneous environments. 
This paper proposes a resource aware adaptive 
dynamic data placement algorithm (ADDP) .With 
ADDP algorithm, we can resolve the unbalanced 
node workload problem based on node load status. 
The proposed method can dynamically adapt and 
balance data stored on each node based on node 
load status in a heterogeneous Hadoop cluster. 
Experimental results show that data transfer 
overhead decreases in comparison with DDP and 
traditional Hadoop algorithms. Moreover, the 
proposed method can decrease the execution time 
and improve the system’s throughput by increasing 
resource utilization

Index Terms — Hadoop, MapReduce, Resource-
aware, Data placement, Heterogeneous

I. INTRODUCTION

IN  recent years, the World Wide Web has 
been adopted as a very useful platform for 

developing data-intensive applications, since 
the communication paradigm of the Web is 
sufficiently open and powerful. The search 
engine, webmail, data mining and social network 
services are currently indispensable data-
intensive applications. These applications need 
data from a few gigabytes to several terabytes or 
even petabytes.

Google leverages the MapReduce model to 
process approximately twenty petabytes of data 
per day in a parallel programming models[1]. 
Hadoop MapReduce is an attractive model for 
parallel data processing in high-performance 
cluster computing environments. MapReduce 
model is primarily developed by Yahoo [2][site 
apache]. Hadoop is used by Yahoo servers, where 
hundreds of terabytes of data are generated on at 
least 10,000 cores[3]. Facebook uses Hadoop to 
process more than 15 terabytes of data per day. 
In addition to Yahoo and Facebook, Amazon and 
Last.fm are employing Hadoop to manage the 
massive huge amount of data [1]. 

The scalability of MapReduce is proven to be 
high, because in the MapReduce programming 
model the job will be divided into a series of small 
tasks and run on multiple machines in a large-scale 
cluster[4]. MapReduce allows a programmer 
with no specific knowledge of distributed 
programming to create his/her MapReduce 
functions running in parallel across multiple 
nodes in the cluster. MapReduce automatically 
handles the gathering of results across the multiple 
nodes and return a single result or set of results 
to server[4]. More importantly, the MapReduce 
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platform can offer fault tolerance. MapReduce 
model can automatically handle failures and it is 
fault tolerance mechanisms. When a node fails, 
MapReduce moves tasks, which is run on the 
failed node, to be rerun on another node.[5]

In the Hadoop architecture, data locality is 
one of the important factors affecting Hadoop 
applications performance. However, in a 
heterogeneous environment, the data required 
for performing a task is often nonlocal ,which 
affects the performance of Hadoop platform[4]. 
Data placement decision of Hadoop distributed 
file system (HDFS) is very important for the 
data locality which is a determining factor for 
the MapReduce performance and is a primary 
criterion for task scheduling of MapReduce 
model. The existing HDFS’s rack- aware of 
data placement strategy and replication scheme 
works well with MapReduce framework in 
homogeneous Hadoop clusters[6], but in practice, 
such data placement policy can noticeably 
reduce heterogeneous environment performance 
and may cause increasingly the overhead of 
transferring unprocessed data from slow nodes to 
fast nodes [7]. The rest of this paper is organized 
as follows. In Section II, the Hadoop system 
architecture, MapReduce model, HDFS, and 
the motivation for this study is reported. Section 
III presents ADDP algorithm, mathematics 
formulas, variable description and scenarios. 
Experiments and performance analysis are 
presented in Section IV. Section V concludes this 
paper by summarizing the main contributions of 
this paper and commenting on future directions 
of our work.

II. RELATED WORK AND MOTIVATION

1. Hadoop
 
Hadoop is a successful and well-known 

implementation of the MapReduce model, which 
is open-source and supported by the Apache 
Software. 

Hadoop consists of two main components: 
the MapReduce programming model and the 
Hadoop’s Distributed File System HDFS [4], 
in which MapReduce is responsible for parallel 
processing and the HDFS is responsible for data 
management. In the Hadoop system, MapReduce 
and HDFS are responsible for management 
parallel process jobs and management data, 
respectively. JobTracker module in Mapreduce 

partitions a job to some tasks and HDFS partitions 
input data into blocks, and assigns them to every 
node in a cluster. Hadoop is based on distributed 
architecture it means HadoopMapreduce adopts 
master/slave architecture, in which a master 
node controls a group of slave nodes on which 
the Map and Reduce functions run in parallel. 
Slaves are nodes that process tasks that master 
assigns to them .In the MapReduce model, the 
master is called JobTracker, and each slave is 
called TaskTracker. In the HDFS, the master 
is called NameNode, and each slave is called 
DataNode. Master is responsible for distribution 
data blocks and assigning tasks slot to every 
node in Hadoop cluster. The default Hadoop 
assumes that the node computing capacity and 
storage capacity are the same in the cluster such 
a homogeneous environment, the data placement 
strategy of Hadoop can boost the efficiency of 
the MapReduce model, but in a heterogeneous 
environment, such data placement has many 
problems [1]. 

2. MapReduce

MapReduce is a parallel programming 
model used in clusters that have numerous 
nodes and use computing resources to manage 
large amounts of data in parallel. MapReduce is 
proposed by Google in 2004. In the MapReduce 
model, an application should process is called a 
“job”. Hadoop divides the input of a MapReduce 
job into some pieces called “map tasks” and 
“reduce tasks”, in which the map-tasks run the 
map function and the reduce tasks run the reduce 
function. Map function processes input tasks and 
data assigned by the Master node and produce 
intermediate (key, value) pairs. Based on (key, 
value) pairs which are generated by map function 
processes, the reduce function then merges, sorts, 
and returns the result. The MapReduce model is 
based on “master/slave” concept. It distributes a 
large amount of input data to many processing 
nodes to perform parallel processing, which 
reduces the execution time and improves the 
performance. Input data are divided into many 
of the same size of data blocks; these blocks 
are then assigned to nodes that perform the 
same map function in parallel. After the map 
function is performed, the generated output is an 
intermediate several key, value pairs. The nodes 
that perform the reduce function obtain these 
intermediate data, and finally generate the output 
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data[8] . The MapReduce model was conceived 
with the principle that “moving computation is 
much cheaper than moving data[5] .

3. HDFS

HDFS is based on the Google File System 
which is used with the MapReduce model. 
It consists of a NameNode module in the 
MasterNode and many DataNodes modules in 
the slaveNodes. The NameNode is responsible 
for the management and storage of the entire file 
system and file information (such a namespace 
and metadata). NameNode is responsible for 
partition the input files that are written in HDFS 
into many data blocks. These blocks are the same 
size with default size of 64 MB. HDFS allocates 
these data blocks to every DataNode. DataNodes 
are responsible for storing and processing these 
data blocks and sending the result to NameNode. 
Hadoop is fault tolerance and makes three replicas 
of each data block for the files that are stored on 
HDFS. HDFS’s replica placement strategy is to 
put one replica of the block on one node in the 
local rack, another on a different node in the same 
rack, and the third on a node in some other rack. 
When failure happens to a node, these replicas 
become very important and they should process 
instead of lost data blocks [1]. 

4. Background and motivation

The Hadoop default data placement strategy 
assumes that the computing capacity and storage 
capacity of each node in the cluster is the same 
.Each node is assigned the same workload. Data 
placement strategy of Hadoop can boost the 
efficiency of the MapReduce model, but in a 
heterogeneous environment, such data placement 
has many problems. In a heterogeneous 
environment, the difference in nodes computing 
capacity may cause load imbalance. The reason 
is that different computing capacities between 
nodes cause different task execution time, so 
the faster nodes finish processing local data 
blocks faster than slower nodes do. At this point, 
the master assigns non-performed tasks to the 
idle faster nodes, but these nodes do not own 
the data needed for processing .The required 
data should be transferred from slow nodes to 
idle faster nodes through the network. Because 
of waiting for the data transmission time, the 
task execution time increases. It causes the 

entire job execution time to become extended. 
A large number of moved data affects Hadoop 
performance. To improve the performance of 
Hadoop in heterogeneous clusters, this paper 
aims to minimize data movement between slow 
and fast nodes. This goal can be achieved by a 
data placement scheme that distributes and stores 
data across multiple heterogeneous nodes based 
on their computing capacities. Data movement 
can be reduced if  each node is assigned to the 
workload that is based on node’s data processing 
speed and node’s system load[4, 7].

Some task scheduling strategies have been 
proposed in Hadoop framework in recent 
years. Reference [9] proposed an Adaptive 
Task Scheduling Strategy Based on Dynamic 
Workload Adjustment  called (ATSDWA). Each 
tasktracker collects its own load information 
and reports it to jobtracker periodically, so 
tasktrackers can adapt to the change of load at 
runtime, obtaining tasks in accordance with the 
computing abilities. Reference [4] proposed 
data placement algorithm (DDP) which 
distributes input data blocks based on each node 
computing capacity in a heterogeneous Hadoop 
cluster. Reference[10]proposed a resource 
aware scheduling algorithm in which algorithm 
classifies the type of work and node workload 
to I/O bound jobs and CPU-bound jobs. Each 
workload assigns to a group of nodes. Algorithm 
selects appropriate tasks to run according to the 
workload of the node. Reference[11] explored 
an extensional MapReduce task scheduling 
algorithm for deadline constraints (MTSD) for 
Hadoop platforms, which allows the user to 
specify a job’s deadline and finish it before the 
deadline. Reference [6] proposed a novel data 
placement strategy (SLDP) for heterogeneous 
Hadoop clusters. That algorithm changes 
traditional Hadoop data block replication based 
on data hotness. SLDP adopts a heterogeneity-
aware algorithm to divide various nodes into 
several virtual storage tiers firstly, and then 
places data blocks across nodes in each storage 
tiers circuitously according to the hotness of data.

III. ADDP

1. Main Idea

Computing capacity of each node in the 
heterogeneous clusters is different so a load 
of each node changes dynamically. Therefore, 
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adaptive dynamic data placement algorithm 
(ADDP) is presented in this paper which uses the 
type and volume load of jobs for adjusting the 
distribution of input data block. The proposed 
algorithm consists of two main phases. In the 
first round, NameNode distributes data blocks 
based on each node computing capacity ratios 
in the Ratio table. In the next rounds, each 
node load parameters (average Cpu utilization, 
average memory utilization) are monitored and 
registered in the “History table” of the node then 
NameNode calculates each node appropriate 
data block numbers which is more compatible 
with load status based on comparing each node 
load parameters with cluster load parameters in 
the Load-Distribution-Patterns table. This table 
has load volume formulas for each load state of 
a node and these formulas determine the best 
workload that is more compatible with node load 
situation. The workload that is calculated for 
each node which is more compatible with node 
load state is stored in a Cluster-History table and 
will distribute to nodes in the next rounds.

 

Fig. 1.  Shows how the Name node deploys data blocks 
on data nodes

In the algorithm, there are two tables: “Ratio 
table” and ”Load-Distribution-Patterns table”. 
Ratio table is a table that stores computing 
capacity ratios of each node in different job type 
and Load-Distribution-Patterns table stores load 
parameters as defined average Cpu utilization 
(AvgCpuUsage) and average memory utilization 
(AvgMemUsage) of the whole cluster in different 
load states to compare each node load parameters 
with cluster load parameters. In the cluster, we 
assume three main states: the overloading state 
is defined as overload, the underloading state is 
defined as “underload” and the normal loading 
state is defined as “normalload”. There are some 
sub load states based on cluster load situation. 
These sub-states are for underload state. Every 

row in table belongs to a load state .There is 
volume load formula for each row. Every load 
parameters compare with every row. If a node’s 
load parameters will place in any row in the 
table, the formulas calculate data load volume 
that is appropriate for the node’s load state to 
change node’s load state and make it becomes in 
normalload. The load volume formulas show how 
much workload should add to the current node’s 
workload to make it becomes  more compatible 
with node’s load state so that the nodes use 
resources more efficient. The percentage of 
added workload is shown by λ factor. Next 
node’s volume load average (VLAi+1) is equal 
to previous volume load average (VLAi) plus 
a percentage of the current load average.This 
percentage factor is different from one row to 
another and depends on node load state. The 
percentage factors are defined in definition 
lambda factor table.

 
TABLE 1

LOAD-DISTRIBUTION-PATTERNS 
Load volume formula Average

Cpu Usage
AverageMemory 

Usage
load state

)(11 iiii VLAVLAVLA λ+=+ 1 2CpuUsageα α≤ ≤ 1 2MemoryUsageβ β≤ ≤ Underload

)(21 iiii VLAVLAVLA λ+=+ 2 3CpuUsageα α≤ ≤ 2 3MemoryUsageβ β≤ ≤ Normal
load

)(31 iii VLAVLAVLA λ−=+ 3 4CpuUsageα α≤ ≤ 3 4MemoryUsageβ β≤ ≤ Overload

TABLE 2
DEFENITION- LAMBDA-FACTOR 
Lambda
definition

Load State

11λ Very Underload

12λ Underload

13λ Underload near to 
Normal

2λ NormalLoad

21λ Optimize-NormalLoad

3λ Overload

Every load volume formula in the Load-
distribution-Patterns table tries to calculate 
workload that is  more compatible with node load 
situation. So in general, we have six load levels 
which will be explained in the next part.

If a node state is” Very underload”, lambda 
factor for it in the load volume formula is  ; 
so node’s workload which will be assigned to 
current node’s workload for the next round is at 
least 50% of node current workload plus current 
workload.
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If a node state is” Underload”, lambda factor 
for it in the load volume formula is ; so node’s 
workload which will be assigned to current node’s 
workload for the next round is at least 33% of 
node current workload plus current workload.

If a node state is” Underload near to 
NormalLoad”, lambda factor for it in the load 
volume formula is ; so node’s workload which 
will be assigned to current node’s workload for 
the next round is at least 20% of node current 
workload plus current workload.

If a node state is” NormalLoad”, lambda 
factor for it in the load volume formula is  .When 
node’s load state is in the normal situation, most 
of the time there is no need to add workload to 
node current workload, but sometimes cluster 
administrator can add some more workload to 
the node current workload to optimize node 
resource utilization. In this situation the lambda 
factore will be  and the percentage of this factor 
is based on administrator opinion. If a node state 
is ” Overload”, lambda factor for it in the load 
volume formula is  ; so node’s workload which 
will be assigned to current node’s workload is 
at least 10% of node current workload minus 
current workload.

2. Mathematical Formulation 

For making Ratio table, mathematical 
formulation 1 to 4 are needed and for making 
Load-distribution-Patterns table mathematical 
formulation 5 to 8 are needed
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∑
     (4)

( ) ( )1 1 1 2 2 2

1 2

user sys nice user sys nice
cpuUsage

Total Total
+ + − + +

=
−     (5)

1 1 1 1 1 1 1 1Total user sys nice idle IOwait irq softirq= + + + + + +     (6)

2 2 2 2 2 2 2 2Total user sys nice idle IOwait irq softirq= + + + + + +     (7)

Total Memory Free Memory Buffers CacheMemoryUsage
Total Memory

+ + +
=   (8)

3. Variable Description

In the mentioned mathematical formulation, 
Tavg(i) denotes the average execution time to 
complete a batch of tasks in the node(i) and  Tt(i) 
shows the average time required to complete one 
task for the node (I) [4].

In order to get the real-time information of 
CpuUsage, we can use related parameters in 
the file /proc/stat of Linux system to calculate 
CpuUsage. Seven pieces of items can be extracted 
from file /proc/stat: user-mode time (user), low-
priority user-mode time (nice), system mode time 
(sys), idle task-mode time (idle), hard disk I/O 
preparing time (iowait), hardware interrupting 
time (irq), and software interrupting time (softirq). 
File /proc/stat keeps track of a variety of different 
statistics about the system since it was restarted. 
The time unit is called “Jiffy” (1/100 of Figure 
axis labels are often a source of a second for×86 
systems). Thus, CpuUsage is calculated with the 
difference of values between two sample points. 
The memory utilization ( MemUsage) reflects 
the state of memory in real time. The relevant 
parameters are used from file /proc/meminfo of 
Linux system to calculate MemUsage. There are 
four pieces of useful items extracted from file /
proc/meminfo: total memory size (MemTotal), 
free memory (MemFree), block-device buffers 
(Buffers), and file cache (Cached). MemUsage 
can be calculated by (8) [9].
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The followings are algorithm ADDP workflow and  pseudocode.

Data Input
Job Input

Check if  Job Type is In the 
Ratio TableYES

Distribute Test DataSet and 
Test TaskSet

Calculate AvgCpuUsage
AvgMemUsage

ComputingCapacity
Ratio

Is  data Volume exist in 
ClusterHistoy Table

Check whether Utilize Field in 
Cluster History Table is true

Make a record in Ratio   Table and 
LoadDistributionPattern Table for job type

Distribute calculated Data Block Numbers on 
each node

Calculate each node block numbers  based on Ratio Table

Calculate all nodes 
AvgCpuUsage

AvgMemUsage

Are All Nodes AvgCpuUsage and 
AvgMemUsage Utilized based on

LoadDistributionPattern Table
 

Set Utilize Fild false in 
Cluster history Table

NO

Set Utilize Fild True in 
Cluster history Table

YES

Add each node blocks number 
in Cluster history Table 

Calculate Nubmer of Distribution 
Data block for each Node Based on 

LoadDistributionPattern Table

Add Type and 
Volume to 

ClusterHistory Table 
and Type to Ratio 

Table

NO

Add Type and 
Volume to 

ClusterHistory Table

NO

Distribute input Data 
volume based on  Block 

Number Result in 
ClusterHistory Table 

YES

YES

NO

End Of  Process One Job

Fig. 2. Workflow of ADDP algorithm
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Algorithm 1: Adaptive Dynamic Data Placement Algorithm(ADDP) 

Find number of cluster’s node and number of each node’s core 1. 

Find Job Type in Ratio Table 2. 
IF Job Type Doesn’t exist in Ratio Table do 3. 

Add Job Type and Job input Volume in Cluster-History Table and add Job Type  in Ratio Table  4. 

Distribute Test data and Test task on each cluster’s nodes  5. 
Make a record for Job in Ratio-Table  (see Algorithm(2))  6. 
Make Load- Distribution-Patterns Table (see Algorithm (3))  7. 

for  each node in the cluster do       8. 
   Calculate BlockNumbers  

9. BlockNumber= Total BlockNumber*[ 

∑
=

n

t
t xR

1

t

)(

(x)R
]

 

 

 
 

End  10. 
   
for  each node in the cluster do  11. 

Distribute the calculated Data Block Numbers 
 

 

 
 12. 

End  13. 
   
for  each node in the cluster do            14. 
          Calculate the AvgCpuUsage and the AvgMemUsage  

15. 
1

[ ]
n

x
AvgCpuUsage x

NumberOfNodes
=
∑   AvgCpuUsage =   

1

n

x
AvgMemUsage

NumberOfNodes
=
∑   

 

AvgMemUsage = 

 
 
 
 
 

 16. 

 end  17. 
    
each node in the cluster do for  18. 
Determine Node’s LoadState by comparing Node’s AvgCpuUsage and AvgMemUsage with Load- 
Distribution-Patterns Table 

  19. 

Calculate Node’s new volume-load based on Node’s LoadState by using Load- Distribution-Patterns 
Table’s formulas. 

  20. 

Store Node’s  new volume- load in Cluster-History Table   21. 
 end  22. 
    
All Node’s AvgCpuUsage and AvgMemUsage are Utilized based  on Load-Distribution-Patterns Table 
do   If  23. 

Set the Utilized flag = True   24. 
Store utilized flag in utilized field in the Cluster-History Table   25. 
  else  26. 
 Set  the Utilized flag = False   27. 
Store utilized flag in utilized field in the Cluster-History Table   28. 
 end  29. 
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Algorithm 1: Adaptive Dynamic Data Placement Algorithm(ADDP) (Continue) 
 

  Else 30. 
Input data volume exists in Cluster-History Table do If  31. 
Distribute the input Data volume based on the value of Block Numbers which exist in the Cluster-
History Table   32. 

Check utilized flag in utilized field in the Cluster-History Table   33. 
The Input data volume is utilized  based on utilized field in the Cluster-History Table do if   34. 
Print “ The Cluster  Is Utilized”  and  finish    35. 

Go to 14  els
e   36. 

 end   37. 
Go to  9 Else  38. 

  End  39. 
  End 40. 
 41.  End Of Algorithm 1 

 

Algorithm for making Ratio-Table:

Algorithm 2: Make Ratio-Table 
for   each node do 1. 

Distribute TestTasks   2. 

( )
1

N

total
i

T TaskExeTime i
=

=∑
 

Calculate Node’s TotalExeTime(Ttotal) =  3. 

( ) total
avg

TT x
Number of TaskSlots

=  Calculate Node’s AverageExeTime(Tavg) =  
  4. 

Calculate Node’s ComputingCapacity (Tt) =     
( )avgT x

NumberofTaskSlots
    5. 

Calculate Node’s ComputingCapacityRatio(Rt) = 
(x)

( )
t

x t

T
Min T x    6. 

 end 7. 
Fill Computing-Capacity-Ratio Table with (Rt) ratios 8. 
Add JobType  in Computing-Capacity-Ratio Table (RatioTable) 9. 
End Of Algorithm 2 10 
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Algorithm for making Load-distribution-Patterns Table:

Algorithm 3: Make Load-Distribution-Patterns  Table 
for each node in cluster do 1. 

Calculate Node’s Average CpuUsage(AvgCpuUsage)  

( ) ( )1 1 1 2 2 2

1 2

user sys nice user sys nice
cpuUsage

Total Total
+ + − + +

=
−

1 1 1 1 1 1 1 1Total user sys nice idle IOwait irq softirq= + + + + + +  

2 2 2 2 2 2 2 2Total user sys nice idle IOwait irq softirq= + + + + + +
 

 

 2. 

Algorithm 3: Make Load-Distribution-Patterns  Table (Continue) 
   

Calculate Node’s Average MemoryUsage(AvgMemUsage)  
Total Memory Free Memory Buffers CacheMemoryUsage

Total Memory
+ + +

=
 

 

 3. 

End 4 

( ) 1
( )

n

xCalculate Cluster AverageCpuUsage LoadParameter
AvgCpuUsage x

NumberOfNodes
=→
∑

 
5. 

( ) 1
( )

n

xCalculate Cluster AverageMemoryUsage LoadParamete
AvgMemUsage x

NumberOfNodes
r =→

∑
 

6. 

Fill Load-distribution-Pattern Table with LoadParameters 7. 
End Of Algorithm 3 8. 
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When a new job is submitted to a cluster 
and there is no information of that job in the 
NameNode, at the first round NameNode 
distributes input data blocks based on values in 
Ratio table. In the next rounds, the whole cluster 
will be monitored by monitoring module.

4. Scenarios

In the monitoring phase in general, NameNode 
monitors each node load state and compare these 
states with the values in the Load-distribution-
Patterns table until node’s new workload which 
is more compatible with node’s load state will 
be calculated. For every node these calculated 
workloads will be registerd in the Cluster- History 
table and will be distributed to each node in the 
next rounds .

In General, based on workflow for every job 
which is submitted to the cluster, there are there 
scenarios (three situations) described in next 
subsection. The first scenario happens when a 
new type of job submits to cluster and there are no 
information of job type and its input data volume 
in the cluster. The second scenario happens when 
the type of job isn’t new, but its data volume is 
new. The third scenario happens when the type of 
submitted job and its input data volume are not 
new for the cluster.

4.1 Scenario 1 (Statements 1 to 16):

 When a new job is submitted to a cluster 
and data are written into the HDFS, NameNode 
first checks the RatioTable. These data are used 
to determine whether this type of job has been 
performed. If there is no record of the job type in 
the RatioTable, It means this type of job is new 
and there isn’t any information of job type in the 
NameNode, so for distributing input data blocks, 
NameNode needs to make record of the job type 
in Ratio Table and make records of the job type 
and its data volume in Cluster-History Table.
Then NameNode makes Load-Distribution-
Patterns Table for the job type.After distributing 
input data blocks based on information in Ratio 
Table, monitoring phase will start.

4.2 Scenario 2 (Statements 18 to29):

If the RatioTable has a record of the submitted 
job, it means the type of job has been performed. 
Thus there is a record for the job in the Cluster-

History Table and there is Load-Distribution-
Patterns Table for the  job type. Then NameNode 
checks job input volume in the Cluster-History 
table.

If the input volume of the submitted job is 
not on the Ratio table , it means that there is no 
distribution pattern for input data in the Cluster-
History table. As a result the newly written data 
will be allocated to each node in accordance 
with the computing capacity which exists in the 
RatioTable. After assigning input data blocks, 
NameNode monitors and compares each node’s 
load state with the values in the Load-distribution-
Patterns table until the workload that is more 
compatible with node load situation is calculated 
by load formulas in the Load-distribution-
Patterns table. This workload will register for 
each node in the Cluster- History table and will 
distribute to nodes when that job with same data 
input will be submitted into the cluster.

4.3 Scenario 3 (Statements 30 to 35):

If there are records of the submitted job type 
and its load volume input data in the Ratio table and 
Cluster-History table, it means that NameNode 
has all information for distributing input data 
blocks to each node. NomeNode distributes input 
data blocks based on information that registered 
in Cluster-History table. If all nodes in the cluster 
are in normal load situation, the utilized field for 
that job with its input load volume in Cluster- 
History table will set True (T), otherwise will 
set False (F). These histories in Cluster-History 
table will help the NameNode to distribute input 
data blocks without any more effort when a job 
with the same workload is submitd to the cluster, 
because all information for distributing input data 
blocks is registered in the Cluster-History table.

IV. EXPERIMENTAL RESULT

This section presents the experimental 
environment and the experimental results for the 
proposed algorithm.
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TABLE 3
 EACH NODE SPECIFICATION

Machine Operating 
system

Memor
y
(GB)

Number 
ofCores

Disk(GB)

Master Windows7 6 4 930

Slave1 Ubuntu Linux15.0 2 1 19.8

Slave2 Ubuntu Linux15.0 3 2 19.8

Slave3 Ubuntu Linux15.0 6 4 583.4

A TestBed was designed for testing and 
comparing presented algorithm with DDP 
algorithm and Hadoop framework. WordCount 
is a type of job runs to evaluate the performance 
of the proposed algorithm in a Hadoop 
heterogeneous cluster. The WordCount is a 
MapReduce application running on a Hadoop 
cluster and it is an application used for counting 
the words in the input file.

The experimental environment is shown 
in the table. 3. We use Intel Core i5-4210U 
1.70GHZ  for salve1 and Intel Core i5-4210U 
1.70GHZ  for salve2 and Intel Core i7-4790 
3.60GHZ for salve3.We use VirtualBox 4.1.14 to 
create our computing node for slave1 and salve2. 
In order to achieve the effect of a heterogeneous 
environment, the capacity of the nodes is not the 
same. Different amounts of CPUs and memories 
were set on nodes. In total, four machines were 
created: one master and three slaves. One machine 
as the master has 4 CPUs, 6 GB of memory, and 
930 GB disk; one virtual machine as a slave1 has 
1 CPU, 2 GB of memory, and a 19 GB disk; one 
virtual machine as a slave2 has 2 CPUs, 3GB of 
memory, and  a 19 GB disk; one machine as a 
slave3 has 4CPUs, 6GB of memory, and a 538 
GB disk.

Table 3 presents the specifications of each 
node. All of the slave machines adopt the 
operating system as Ubuntu 15.0 LTS, and the 
master machine adopts the operating system as 
windows 7.

TABLE 4
RATIO  TABLE

Job Type Slave1 Slave2 Slave3

WordCount 1 2 4

TABLE 5
RATIO  TABLE EXAMPLE

Job Type Input Data Slave1 Slave2 Slave3

WordCount

α 1
1 2 4

α ×
+ +

2
1 2 4

α ×
+ +

4
1 2 4

α ×
+ +

Parametri
c Each 
node 
workload

β 2 β 4 β

350 MB 50 MB 100 MB 200 MB

Table 4 shows ratios for WordCount job in 
the RatioTable. Table 5 is made by ratios in the 
RatioTable and is shown if input data block is 
350 MB, slave1 is assigned 50 MB, slave2 is 
assigned 100 MB and slave3 is assigned 200 
MB. In proposed algorithm number of tasks that 
run on each node is based on node core numbers. 
Slave1 has one core, so slave1 just runs 1task 
in each round .Slave2 has two cores, so it runs 
2 tasks in each round simultaneously. Slave3 
has four cores, so it runs 4 tasks in each round 
simultaneously. Each job processes different 
input data in which the size of input data for slave 
1, slave2 and slave3 are 50 MB, 100 MB and 350 
MB, respectively.

Experiment 1: 

In the experiment 1, a comparison is made 
between the DDP algorithm and the ADDP 
algorithm when an overload state happens in the 
cluster. Fig 3. Shows the normal execution time 
of three slaves of cluster when the workloads in 
normal load are 50, 100 and 200 MB for slave 1 
to 3, respectively.

Slave 2 in the cluster is overloaded (Fig.4.), 
because it takes 240 s to finish its job (more than 
its normal execution time). The execution time 
of WordCount is measured for each node in all 
rounds in DDP algorithm and ADDP algorithm 
in this situation and the results is shown in Fig. 
4 to Fig. 11.

The both algorithms in the first round distribute 
data blocks based on computing capacity ratios 
(Fig.4, Fig5.). 

In round 2, the DDP algorithm distributes 
data blocks based on computing capacity, but 
the presented ADDP algorithm distributes data 
blocks based on values which is registered in 
Cluster-History table. 

NameNode assigns data blocks based on 
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this values which are calculated by Load-
Distribution-Patterns table formulas. Slave2 is 
overloaded, so 10% of slave2 workload must be 
added to workload of salve3 which is underload. 
As a result, in round2 the nodes’ workloads 
become 50MB, 90MB, 210MB and the execution 
times are 33s, 190s and 61s for slave1, slave2 and 
slave3, respectively.(Fig.7)

The execution time 190s for slave2 is still too 
much, so 10% of slave2 workload must be added 
to workload of salve3. As a result, in round3 the 
nodes’ workloads become 50MB, 81MB, 219MB 
and the execution times are 33s, 141 s and 73 s for 
slave1, slave2 and slave3, respectively (Fig.9). 

 The execution time of slave2 is still too much, 
so in similar approach, 10% of slave2 workload 
is added to workload of salve3 in round 4. Thus, 
in round4 the nodes’ workloads become 50MB, 
73MB, 227MB and the execution times are 
33s, 91s and 80s for slave1, slave2 and slave3, 
respectively (Fig.11). 

After four rounds the cluster with 350 MB 
input data volume, is balanced and the average 
execution time of the whole cluster is 68 seconds, 
but the average execution time of the whole 
cluster in DDP algorithm is 108.66 seconds.
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state  (Round (1))
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Fig. 10.Execution time of each slave for DDP in overload 
state (Round (4))
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In fact, the whole cluster executions time 
of the presented ADDP algorithm are reduced 
in each round, but executions time of the DDP 
algorithm is the same in all rounds (Fig.4, Fig6, 
Fig8 and Fig10).

The DDP algorithm allocates data to each node 
in accordance with the nodes computing capacity 
which is accordance to hardware, so it doesn’t 
work well in overload state and underload states. 
In contrast, the presented ADDP algorithm not 

only considers computing capacity in assigning 
data, but also monitors and considers load state 
of nodes in assigning data block.

Experiment 2: 

In the experiment 2, a comparison is made 
between the DDP algorithm, the ADDP algorithm 
and Hadoop1.2.1 when an overload state happens 
in the cluster. Fig. 12 shows cluster in overload 
states in the Hadoop-1.2.1 framework. Fig. 13 
shows execution time of the whole cluster in the 
Hadoop framework, the DDP algorithms and 
the presented ADDP when slave2 is overload. 
As the results shown, Hadoop framework and 
DDP algorithm can’t understand overloading 
state in the nodes and can’t handle underload 
and overload state in the cluster, but ADDP can 
make the corresponding adjustment to achieve 
the optimal state and realize self-regulation and 
decrease the execution time in each round. 
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overload state
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V. CONCLUSION

This paper proposes adaptive dynamic data 
placement algorithm (ADDP) for map tasks of 
data locality to allocate data blocks. This algorithm 
belongs to the resource aware scheduling 
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algorithms classification. IN a heterogeneous 
environment, the difference in nodes computing 
capacity may cause load imbalance and creates 
the necessity to spend additional overhead to 
transfer unprocessed data from slow nodes to fast 
nodes. To improve the performance of Hadoop in 
heterogeneous clusters, we aim to minimize data 
movement between slow and fast nodes. This 
goal can be achieved by a data placement scheme 
that distributes and stores data across multiple 
heterogeneous nodes based on their computing 
capacities and workloads. The proposed ADDP 
algorithm mechanism distributes fragments of 
an input file to heterogeneous nodes based on 
their computing capacities, and then calculates 
each node appropriate workload base on load 
parameters of each node to allocate data blocks, 
thereby improving data locality and reducing 
the additional overhead to enhance Hadoop 
performance. The presented algorithm improves 
the performance of Hadoop heterogeneous 
clusters and significantly benefits both DataNodes 
and NameNode. 
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