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The present study sought to determine whether in vitromaturation (IVM) of pig oocytes in

a medium supplemented with insulin growth factor-I (IGF-I) and subsequent vitrification

with or without reduced glutathione (GSH) affect their quality and developmental

competence, and the expression of genes involved in antioxidant, apoptotic and stress

responses. In Experiment 1, cumulus-oocyte complexes were matured in the absence

or presence of IGF-I (100 ng·mL−1) and then vitrified-warmed with or without 2mM

of GSH. Maturation rate was evaluated before vitrification, and oocyte viability, DNA

fragmentation and relative transcript abundances of BCL-2-associated X protein (BAX ),

BCL2-like1 (BCL2L1), heat shock protein 70 (HSPA1A), glutathione peroxidase 1 (GPX1)

and superoxide dismutase 1 (SOD1) genes were assessed in fresh and vitrified-warmed

oocytes. In Experiment 2, fresh and vitrified-warmed oocytes were in vitro fertilized

and their developmental competence determined. Whereas the addition of IGF-I to

maturation medium had no effect on oocyte maturation, it caused an increase in the

survival rate of vitrified-warmed oocytes. This effect was accompanied by a concomitant

augment in the relative transcript abundance of HSPA1A and a decrease of BAX.

Furthermore, the addition of GSH to vitrification-warming media increased survival rates

at post-warming. Likewise, the action of GSH was concomitant with an increase in

the relative abundance of GPX1 and a decrease of BAX transcript. Blastocyst rates

of vitrified-warmed oocytes did not differ from their fresh counterparts when IGF-I
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and GSH were combined. In conclusion, supplementing maturation medium with 100

ng·mL−1 IGF-I and vitrification-warming solutions with 2mM GSH improves the quality

and cryotolerance of IVM pig oocytes, through a mechanism that involves BAX, GPX1

and HSPA1A expression.

Keywords: growth factors, IGF-I, antioxidants, GSH, apoptosis, cryotolerance, DNA fragmentation, swine

INTRODUCTION

Cryopreservation of gametes is considered an efficient tool
to maintain genetic resources, contributing to research and
development of assisted reproductive technologies (Zhou and
Li, 2009; Galeati et al., 2011). However, cryopreservation
causes damages to the oocyte structure, chromosomes, and
microtubules, including the meiotic spindle (Shi et al., 2006;
Wu et al., 2006; Fu et al., 2009). Furthermore, cold shock
alters mitochondrial activity, affecting apoptosis pathways (Dai
et al., 2015), and also induces premature extrusion of cortical
granules, thus reducing sperm penetration and further embryo
development (Ghetler et al., 2006).

Pig oocytes are highly sensitive to cooling and freezing due
to the large amount of lipids present in the cytoplasm (Galeati
et al., 2011), which increase their susceptibly to oxidative stress
and lipid peroxidation. Furthermore, vitrified pig oocytes have
higher levels of reactive oxygen species (ROS) than their fresh
counterparts (Gupta et al., 2010). As a result, developmental
competence of pig oocytes is seriously affected by vitrification
(Wu et al., 2013; Santos et al., 2017). Therefore, oxidative stress
during pig oocyte vitrification and warming results in DNA
damage and impairs fertilization and embryonic development
(Galeati et al., 2011; Wu et al., 2013; Spricigo et al., 2017).

Glutathione (GSH) is a ubiquitous, major non-enzymatic
antioxidant that plays a crucial role as a cellular protector
and in the maintenance of intracellular redox status (Hansen
and Harris, 2014; Trapphoff et al., 2016). Glutathione may
be found in its reduced form (GSH) or oxidized (glutathione
disulfide, GSSG), and the GSH:GSSG ratio is used to estimate
the redox state of the cell. Such a role is important for
the protection of the oocyte against oxidative stress during
vitrification (Mari et al., 2009). GSH is synthesized throughout
oocyte maturation and its highest concentration is reached
at the MII stage. Variations in intracellular GSH content or
GSH-related GSH/GSSG redox potential (EGSH) can induce
post-ovulatory aging, compromise male pronuclear formation,
augment apoptosis and impair embryonic development (Li et al.,
2012). Somfai et al. (2007) showed that in vitro maturation
(IVM) and cryopreservation significantly reduce overall GSH
content in pig oocytes. Supplementing maturation media with
GSH improves mitochondrial function and regulation of redox
homeostasis (Trapphoff et al., 2016). Moreover, the addition
of GSH to cryopreservation media stabilizes the nucleoprotein
structure of frozen–thawed boar spermatozoa (Yeste et al., 2014)
and increases blastocyst development of vitrified-warmed mouse
oocytes (Moawad et al., 2017).

The composition of in vitro maturation media has strong
impact on oocyte quality and cryotolerance. In this regard,

supplementation of maturation and culture media with insulin-
like growth factor I (IGF-I) stimulates oocyte maturation and
promotes blastocyst development in several species (Kocyigit
and Cevik, 2015; Pan et al., 2015; Arat et al., 2016; Chen
et al., 2017). In pigs, although IGF-I has been reported to
promote the synthesis of hyaluronic acid and the expansion of
cumulus cells (Nemcova et al., 2007), its role in IVM remains
unclear and has yield inconsistent results. Nevertheless, several
studies reported that the addition of IGF-I during in vitro
maturation and culture decreases apoptosis in bovine oocytes
(Wasielak and Bogacki, 2007; Rodrigues et al., 2016; Ascari
et al., 2017) and in porcine blastocysts (Wasielak et al., 2013).
Wasielak et al. (2013) also demonstrated that adding IGF-
1 at a concentration of 100 ng/ml into maturation medium
increases the BCL2L1:BAX transcript ratio in pig blastocysts,
and the increased expression of anti-apoptotic genes, such as
BCL2, and a decreased expression of apoptotic-related genes,
such as BAX, indicates higher blastocyst quality (Chen et al.,
2017). Finally, besides reducing apoptosis, IGF-I also enhances
the expression of cold-inducible RNA-binding protein (CIRBP),
which protects cells from vitrification and warming (Pan et al.,
2015).

Against this background, the hypotheses were: (1) adding
IVM medium with IGF-I improves the cryotolerance of
pig oocytes via anti-apoptotic and heat shock signaling
pathways; and (2) supplementation of vitrification–warming
media with GSH protects the oocyte from oxidative stress.
To test these hypotheses, the present study determined
whether supplementing IVM medium with 100 ng/mL IGF-
I and adding 2mM GSH to vitrification–warming media
alter the viability, DNA integrity, developmental competence
of vitrified-warmed IVM pig oocytes, as well as the relative
transcript abundance of genes involved in antioxidant (GPX1
and SOD1), apoptotic (BAX, BCL2L1) and stress responses
(HSPA1A).

MATERIALS AND METHODS

Ethics and Reagents
The present study was carried out after institutional
approval by Universidade Federal de Lavras, Brazil
(UFLA). All experimental protocols accomplished the
Ethical Principles of Animal Experimentation adopted
by the Institutional Animal Care and Use Committee
Guidelines from this institution (protocol number
043/14).

Unless otherwise specified, all reagents were purchased from
Sigma–Aldrich (St Louis, MO, USA).
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In vitro Maturation (IVM) of
Cumulus–Oocyte Complexes (COCs)
Ovaries were collected from pre-pubertal gilts at a local abattoir
(Frigoríficos Costa Brava, S.A.; Girona, Spain) and immediately
transported to the laboratory, inside an isolated recipient filled
with physiological saline solution supplemented with 1 mg·mL−1

kanamycin sulfate and pre-warmed at 38◦C. Cumulus–oocyte
complexes (COCs) were obtained by aspirating 3–6mm follicles,
using an 8-gauge needle attached to a 10mL disposable syringe.
In each replicated, approximately 50 ovaries, from 25 different
gilts, were aspired. After follicle aspiration, the conical tubes
containing the aspirated fluid were rested in a water bath at
38.5◦C for 10min. After this time, the supernatant was removed
to produce the follicular fluid necessary for supplementation
of the in vitro maturation media. Additionally, the pellet
containing the COCs were transferred to a Petri dish (35mm,
Nunc, Denmark) prefilled with 3mL Dulbecco’s phosphate-
buffered saline (DPBS) containing 1 mg·mL−1 polyvinyl alcohol
(PVA), and then selected under a stereomicroscope. Only COCs
with complete and dense cumulus oophorus and homogenous
cytoplasm were used. After three washes in the same medium,
groups consisting of 50 COCs were transferred into a Nunc 4-
well multidish containing 500 µL of modified North Caroline
State University 37 (NCSU37) medium (Petters and Wells,
1993), supplemented with 0.57mM cysteine, 5 mg·mL−1 insulin,
50µM β-mercaptoethanol and 10% (v/v) porcine follicular
fluid (PFF). COCs were cultured at 38.5◦C in a humidified
environment with 5% CO2 content in the air. The medium used
for the first 22 h of in vitro maturation was supplemented with
1mM dibutyrylcAMP (dbcAMP), 10 IU·mL−1 equine chorionic
gonadotropin (eCG; Foligon; Intervet International, Boxmeer,
Netherlands) and 10 IU·mL−1 human chorionic gonadotropin
(hCG; Chorulon; Intervet International, Boxmeer, Netherlands).
After 20–22 h of culture, COCs were transferred into fresh
maturation medium and cultured for a 20–22 h period without
any supplementation (Funahashi et al., 1997). Besides the
hormonal supplementation traditionally used in the first 22–24 h,
half of selected oocytes is maturated in presence of 100 ng.ml-
1 of IGF-I, which were added in the maturation media in both
periods, in other words, the IGF-I supplementation was made in
the entire process.

Evaluation of in vitro Maturation

In vitro maturation of oocytes was evaluated by orcein staining
(Hunter and Polge, 1966). Briefly, oocytes were mounted onto
glass slides (less than five oocytes per slide) under coverslip
(supported with paraffin-vaseline corners) and fixed in ethanol:
acetic acid (3:1; v: v) for 24 h. Then, oocytes were stained with
1% orcein (w: v) in 45% acetic acid (v: v) and assessed using
a phase-contrast microscope at 100x magnification. Oocytes
were classified according to the stage of nuclear maturation
as germinal vesicle (GV), metaphase I (MI) and metaphase
II/telophase I (MII/TI) (Figure 1).

Oocyte Vitrification and Warming
In vitro matured oocytes were vitrified using the Cryotop carrier
and the solution described by Kuwayama et al. (2005). All

manipulations were performed on a hot plate at 38.5◦C under
a laminar flow hood in a room at 25◦C. Briefly, immediately after
in vitro maturation, presumptive maturated denuded oocytes
were transferred into equilibration solution (ES) consisting of
7.5% ethylene glycol (EG) and 7.5% dimethylsulfoxide (DMSO)
in a holding medium, composed of TCM-199 HEPES and
supplemented with 20% fetal calf serum (FCS; GIBCO BRL,
Invitrogen, Barcelona, Spain). After 10–15min at 38.5◦C, oocytes
were transferred into 20-µL drops of vitrification solution (VS)
consisting of holding medium supplemented with 15% EG, 15%
DMSO and 0.5M sucrose. After 30–40 s, oocytes were loaded
into a manufactured Cryotop device with minimum volume
of vitrification solution and plunged immediately into liquid
nitrogen. The entire process, from VS exposure to plunging into
liquid nitrogen was completed within 60 s.

Vitrified oocytes were warmed by submerging Cryotop
devices directly in thawing solution (holding medium
supplemented with 1M sucrose) at 39◦C. After 1min, oocytes
were transferred into dilution solution (0.5M sucrose dissolved
in holding medium) for 3min. Subsequently, oocytes were
washed twice for 5min in TCM-199 HEPES supplemented with
20% FCS and then cultured in plain IVMmedium for 2 h.

In vitro Fertilization and Embryo Culture
In vitromatured oocytes from all treatment groups were fertilized
in vitro before and after vitrified-warmed process. Briefly, oocytes
were washed twice with pre-equilibrated modified Tyrode’s
albumin lactate pyruvate (TALP) prior to being transferred
in groups of 20 into four-well dishes containing 250 µL of
fertilization medium per well. Fertilization medium consisted of
TALP medium described by Rath et al. (1999), supplemented
with 3 mg·mL−1 fatty acid-free bovine serum albumin (BSA) and
1.1mM sodium pyruvate.

Sperm-rich fractions were collected by the gloved-hand
technique from a mature Duroc boar known to be fertile.
For in vitro fertilization, sperm cells were selected by washing
through a two-step (50% and 80%; v:v) Percoll gradient (Noguchi
et al., 2013). Briefly, 2mL of 50% Percoll was layered on top of
2mL of 80% Percoll in a 15mL conic centrifuge tube. Thereafter,
0.5mL of diluted semen (1:1 in BTS) was added with care to
avoid mixing solutions. Samples were subsequently centrifuged
at 700× g and 24◦C for 20min. Supernatant layers were removed
by aspiration; the resulting sperm pellet was re-suspended in
10mL pre-equilibrated TALP medium and then washed by
centrifugation at 500× g and 24◦C for 5min. The resulting pellet
was re-suspended in the same medium and sperm concentration
was determined with a Makler counting chamber (Sefi Medical
Instruments; Haifa, Israel). Finally, and after appropriate dilution
in TALP medium, 250 µL of sperm suspension was added
to each fertilization well containing oocytes to obtain a final
concentration of 1× 106 spermatozoa·mL−1.

At 1.5 h post-insemination (h.p.i.), oocytes were washed and
settled into culture with fresh TALP medium. After 7.5 h.p.i.,
extra spermatozoa were removed by repeated pipetting and
presumptive zygotes were washed twice in culture medium and
then transferred to 25-µL culture droplets (15–20 embryos/drop)
under mineral oil (Nidoil; Nidacon, Sweden). The basic culture
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FIGURE 1 | Classification of porcine oocytes using the orcein staining method: (A) germinal vesicle (GV); (B) metaphase I (MI); and (C) metaphase II (MII) stage.

Magnification of 100x. Bar: 65µm. CP, polar corpuscle.

medium used for embryo development was a modified NCSU-23
medium (Petters and Wells, 1993) supplemented with 0.57mM
cysteine, 5 mg·mL−1 insulin, 10 mL·mL−1 minimum essential
medium (MEM) non-essential amino acid solution, 20 mL·mL−1

basal medium Eagle (BME) amino acid solution and 4 mg·mL−1

BSA. From Day 0 (the day of IVF) to Day 2, the medium used
for embryo culture contained sodium pyruvate (0.17mM) and
sodium lactate (2.73mM) as energy sources. From Day 2 to
Day 7, the basic culture medium contained glucose (5.55mM;
Castillo-Martin et al., 2014a). All incubations were performed at
38.5◦C in a humidified environment with 5% CO2 in air.

Evaluation of Fertilization and Embryo Development

Presumptive zygotes were attached onto glass slides and fixed
with the same protocol used to evaluate oocyte maturation.
At 18 h.p.i., oocytes were evaluated under a phase-contrast
microscope at 100×magnification and the following parameters
were assessed: (1) penetration rate (number of fertilized
oocytes/number of inseminated oocytes); (2) monospermy
rate (number of oocytes containing only one male-head
sperm pronucleus/number of penetrated oocytes); and (3)
total efficiency of fertilization (number of monospermic
oocytes/number of inseminated oocytes). Degenerated and
immature oocytes were not considered. Embryo development
was assessed under stereomicroscope based on of cleavage (≥2-
cell stage) at 48 h.p.i. and blastocyst rates (number of blastocysts
at day 7/number of cleaved embryos).

Evaluation of DNA Fragmentation and
Oocyte Membrane Integrity
To determine plasma membrane integrity and DNA
fragmentation of in vitro matured fresh and vitrified-
warmed oocytes, ethidium homodimer-1 staining (EthD-1)
was combined with TUNEL assay (in-situ Cell Death Detection
System; Roche Diagnostic, Indianapolis, IN, USA) (Fatehi et al.,
2005). Briefly, denuded oocytes were rinsed in D-PBS containing
1 mg·mL−1 PVA and subsequently incubated with 4µM EthD-1
(Molecular Probes, Thermo Fisher Scientific; Waltham, MA,

USA) in PBS at 37◦C in the dark for 5min. Oocytes were washed
in PBS containing 0.3% polyvinylpyrrolidone (PBS–PVP) and
then fixed with 4% paraformaldehyde (Electron Microscopy
Science, Fort Washington, PA, USA) in PBS at 4◦C overnight.

After fixation, oocytes were washed four times in PBS-PVP
and permeabilised with 0.1% (v/v) Triton X-100 in PBS for 1 h.
Then, oocytes were washed twice in PBS–PVP and incubated
in TUNEL reaction cocktail at 37◦C for 1 h in a dark and
humidified environment. Positive and negative control samples
were included in each assessment. Positive control consisted of
a previous treatment with DNase I (50 U·mL−1) in PBS–PVP at
37◦C for 20min in the dark. Negative control did not contain
the terminal transferase. After washing in PBS–PVP, controls
and samples were mounted with 4 µL Vectashield Medium
(Vector Laboratories, Burlingame, CA, USA) containing 4′, 6-
diamidino-2-phenylindole (DAPI, 1.5 mg/ml) on a microscopic
slide, and then covered with a coverslip. Stained oocytes were
examined under a fluorescence microscope (Zeiss Axio Imager
Z1; Carl Zeiss, Oberkochen, Germany), at excitation wavelengths
of 365 nm for DAPI, 485 nm for TUNEL (conjugated with
fluorescein isothiocyanate, FITC) and 580 nm for EthD-1.

Total number of oocytes (DAPI+; blue), number of non-
viable oocytes (EthD-1+; red stain) and number of oocytes with
fragmented DNA (TUNEL+; green) were counted (Figure 2).
According to the obtained colorations, oocytes were classified
as: (a) viable oocytes with intact DNA (TUNEL−/EthD-1−); (b)
non-viable oocytes with intact DNA (TUNEL−/EthD-1+) and
non-viable oocytes with fragmented DNA (TUNEL+/EthD-1+).

RNA Extraction and Quantitative
Real-Time PCR Analysis (qPCR)
In vitro matured and vitrified-warmed oocytes from all
treatments were collected for analysis. Immediately after
maturation in vitro and vitrification recovery gene expression
time denuded oocytes were washed three times in D-PBS
containing 1 mg·ml−1 PVA at 38.5◦C, snap-frozen in liquid
nitrogen and stored at−80◦C until mRNA extraction and reverse
transcription.
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FIGURE 2 | Classification of pig oocytes using simultaneous ethidium homodimer-1 (EthD-1) staining and TUNEL assay: (A) DAPI+; blue, stains all nuclei; (B)

TUNEL+; green, fragmented DNA; and (C) EthD-1+; red stain–stains nuclei of non-viable oocytes. Magnification of 400x. Bar: 40 µm.

Poly(A)-RNA extraction was performed with pools of 20
oocytes per experimental group, following the manufacturer’s
instructions, using the Dynabeads mRNA Direct Extraction Kit
(Dynal Biotech; Oslo, Norway) with minor modifications. In
brief, each pool of oocytes was lysed in 50 µL of Lysis buffer
for 5min; the resulting lysate was then hybridized with 10 µL
pre-washed beads for 5min. After hybridization, poly(A)-RNA-
bead complexes were washed twice in 50µLwashing buffer A and
twice in 50µL washing buffer B. Next, samples were diluted in 16
µL elution buffer and heated to 70◦C for 5min. Following this, 4
µL qScript cDNA supermix (Quanta Biosciences; Gaithersburg,
MD, USA) was added and the Reverse Transcription (RT)
reaction was carried by out using oligo-dT primers, random
primers, dNTPs and qScript reverse transcriptase. The RT
reaction was performed in a thermocycler (Quanta Biosciences;
Gaithersburg, MD, USA) at the following conditions: first step
of 5min at 25◦C, followed by 1 h at 42◦C for RT of mRNA, and
10min at 70◦C to inactivate the RT enzyme. After RT, cDNA
was diluted with 25 µL elution solution and stored at −20◦C
until use.

The relative abundance of mRNA (cDNA) transcripts was
determined by real-time quantitative PCR (qPCR) using the
7500 Real Time PCR System (Applied Biosystems; Foster City,
CA, USA). The qPCR reaction mix contained 10 µL Fast SYBR
Green Master Mix (Applied Biosystems, Foster City, California,
USA), 0.25 µL forward primer and 0.25 µL reverse primer (Life
Technologies, Madrid, Spain) specific for the genes of interest
and 2.5 µL cDNA template. Final volume of 20 µL was reached
by adding nuclease-free water. PCR amplification was carried out
with one step of denaturation at 95◦C for 5min; 45 cycles of
amplification with denaturation step at 94◦C for 15 s, annealing
step for 30 s at the appropriate annealing temperature for
primers; and extension step at 72◦C for 40 s. The identity of PCR
products was verified with gel electrophoresis (2% agarose gel
containing 0.1 µL·mL−1 SafeView; Applied Biological Materials,
Vancouver, Canada). Three technical replicates per biological
replicate and individual gene were evaluated. Furthermore, no-
RT control, where the reverse transcription was carried out
without RT enzyme, and no template control (NTC), where PCR
was conducted without cDNA template, were included for each
probe set to ensure that no cross-contamination occurred (i.e.,
negative controls).

Five separate genes, BCL-2 associated X protein (BAX),
BCL2-like 1 (BCL2L1), heat shock protein 70 (HSPA1A),

glutathione peroxidase (GPX1) and cytosolic copper-zinc-
containing superoxide dismutase (SOD1), plus an endogenous
control gene (glyceraldehide-3-phosphate dehydrogenase,
GAPDH), were amplified (Table 1). The comparative threshold
cycle (CT) method was used to quantify relative gene expression
levels and quantification was normalized using the endogenous
control (GAPDH). To determine the threshold cycle for each
sample, fluorescence data were acquired after each elongation
step. Following the comparative CT method, the 1CT value
was determined by subtracting the GAPDH-CT value of each
sample from the CT value of each target gene within the
sample. Calculation of 11CT involved using the highest
sample 1CT value (i.e., the sample with the lowest target
gene expression) as an arbitrary constant to subtract from
all other 1CT sample values. Fold differences in relative
transcript abundance were calculated for target genes assuming
an amplification efficiency of 100% and using the formula
2(11CT).

Experimental Design
Two experiments were designed to determine whether the
addition of IGF-I to conventional IVMmedium and that of GSH
to vitrification-warming media improved oocyte survival and
development capacity after vitrification and warming. Based on
previous reports and preliminary experiments conducted in our
lab, the treatments tested were IGF-I at 100 ng·mL−1 (Wasielak
et al., 2013) and GSH at 2mM (0.62 mg·mL−1) (Yeste et al.,
2014).

In experiment 1, cumulus–oocyte complexes (COCs) obtained
from pre-pubertal gilts ovary were selected and matured
in vitro in conventional IVM medium (control) or in the
same medium supplemented with 100 ng·mL−1 IGF-I. For
each replicated, around of 50 ovaries were aspirated, and
220 oocytes were selected, which were divided into the two
groups previously described and matured in vitro. Between
40 and 44 h after the onset of IVM, half of the oocytes in
each treatment group (around 55 oocytes) were vitrified and
warmed in conventional medium (control vitrified-warmed),
or in the same medium added with 2mM GSH. The other
half of oocytes was used to evaluate maturation rates and
the quality of non-vitrified IVM oocytes. Before quality
evaluations post-vitrification, vitrified-warmed oocytes were
incubated for an additional 2-h period in their respective
IVM medium and were then collected to assess viability
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TABLE 1 | Primers used for quantitative reverse transcription–polymerase chain reaction.

NCBI official name (gene symbol) Primer sequence (5′-3′) Amplicon

size (bp)

GenBank Accession

no.

Glyceraldehide-3-phosphate dehydrogenase

(GAPDH)

F:CTCAACGACCACTTCGTCAA R:TCTGGGATGGAAACTGGAAG 233 NM_00120659.1

BCL2-associated × protein (BAX ) F:AACATGGAGCTGCAGAGGAT R:CGATCTCGAAGGAAGTCCAG 204 XM_003127290.2

BCL2-like 1 (BCL2L1) F:GGAGCTGGTGGTTGACTTTC R:CTAGGTGGTCATTCAGGTAAG 528 AF216205

Heat Shock Protein 70 kDA (HSPA1A) F:ATGTCCGCTGCAAGAGAAGT R:GGCGTCAAACACGGTATTCT 216 NM_001123127.1

Superoxide dismutase 1soluble (SOD1) F:GTGCAGGGCACCATCTACTT R:AGTCACATTGCCCAGGTCTC 222 NM_001190422.1

Glutathione peroxidase 1 (GPX1) F:CAAGAATGGGGAGATCCTGA R:GTCA TTGCGACACACTGGAG 217 NM_2142201.1

NCBI, National Center for Biotechnology Information

F, Forward; R, Reverse; bp, base pairs.

TABLE 2 | Effects of supplementing IVM medium with IGF-I, and adding vitrified-warmed solutions with GSH on cleavage rates and embryo development.

Groups Oocytes D2 Cleaved D7 Blastocyst Blastocyst rate

n n (%) n (%) %

Fresh Control 163 92 (56.30 ± 1.70) ab 22 (13.49 ± 0.60) a 24.03 ± 0.91 ab

IGF 167 95 (57.16 ± 1.75) a 29 (17.41 ± 0.56) a 30.56 ± 0.90 a

Vitrified-warmed Control 95 24 (25.27 ± 1.50) c 5 (5.13 ± 1.72) c 20.00 ± 6.94 b

IGF 104 34 (31.70 ± 2.38) cd 8 (6.04 ± 1.66) c 18.33 ± 5.09 b

Control +GSH 98 31 (32.58 ± 1.82) cd 6 (7.50 ± 1.28) c 23.33 ± 4.08 ab

IGF+GSH 105 36 (34.58 ± 1.82) bd 9 (8.58 ± 1.61) c 24.17 ± 4.72 ab

Data are shown as mean ± s.e.m. Different letter indicate significant differences between treatments (P < 0.05).

Blastocyst rate = blastocyst/cleaved.

and DNA fragmentation (n = 12 replicates/30 oocytes per
replicated) and gene expression (n = 4 replicates/20 oocytes per
replicated).

Additionally, the experiment 2 was conducted for evaluated
the influence of IGF-I and GSH on development embryotic
capacity of vitrified-warmed oocytes. In this experiment, the
process of maturation, vitrification and warming, is the same
of experiment 1. However, after 2 h of vitrification recovery,
oocytes from each treatment group were in vitro fertilized and
cultured, and the rates of fertilization, monospermy fecundation,
cleavage and blastocyst development were determinate. The
number of oocytes evaluated in this experiment was described in
Table 2.

Statistical Analyses
All statistical analyses were conducted using a statistical
package (IBM SPSS for Windows, Version 23.0; Armonk,
NY, USA). All parameters were previously checked for
normality and homogeneity of variances (homocedasticity)
using Shapiro-Wilk and Levene tests, respectively. When
necessary, data were transformed through arcsine square root
(arcsin

√
x).

In experiment 1, the effects of supplementing IVM with
IGF-I on in vitro maturation were determined with a t-test
for independent samples. The effects of treatment (i.e., IGF-
I, GSH, IGF-I+GSH) and vitrification (i.e., fresh vs. vitrified-
warmed) on oocyte viability, DNA fragmentation and relative

expression of BAX, BCL2L1, HSPA1A, GPX1, and SOD1
were determined with using a two-way ANOVA followed
by Bonferroni post-hoc test for multiple comparisons. In
experiment 2, the same tests were used and independent
variables were penetration, monospermy and cleavage rates,
total efficiency of fertilization, and blastocyst formation.
When, despite transformed, data did not fit with parametric
assumptions, a non-parametric Scheirer-Ray-Hare ANOVA for
ranked data was run. The Mann-Whitney test was used for
pair-wise comparisons.

Data are expressed as means ± standard error for the mean
(SEM). In all cases, P ≤ 0.05 was considered as significant.

RESULTS

Effects of Supplementing IVM Medium
With IGF-I and Vitrification-Warming
Solutions With GSH on Oocyte Maturation,
Viability and DNA Fragmentation
A total of 654 oocytes from 12 replicates were evaluated after
44 h of IVM. Supplementation of IVM medium with IGF-I did
not affect oocyte maturation, as the proportion of oocytes in all
nuclear stages was similar when control and IGF-I groups were
compared (Figure 3).

With regard to oocyte viability and DNA fragmentation,
the percentages of viable, fresh oocytes with intact DNA was
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FIGURE 3 | Effects of IGF-I supplementation on in vitro maturation of pig

oocytes. Data are shown as mean ± s.e.m. GV, Germinal Vesicle; MI,

Metaphase I; MII, Metaphase II; Deg, degenerated. No significant differences

between control and IGF-I were observed.

significantly higher (P < 0.05) than that observed for vitrified-
warmed oocytes. Non-vitrified oocytes presented similar viability
and DNA fragmentation rates for both treatment groups (i.e.
control and IGF-I) (Figure 4).

As far as in vitrified-warmed oocytes, previous in vitro
maturation in the presence of 100 ng·mL−1 IGF-I or
supplementation of vitrification-warming solutions with
2mM GSH (P < 0.05) increase the proportion of viable oocytes
with intact DNA. Remarkably, the highest proportion of viable
vitrified-warmed oocytes with intact DNA was found when
they were simultaneously in vitro matured in the presence of
IGF-I and vitrified-warmed in a medium supplemented with
GSH (Figure 4A). The same results were obtained when the
proportion of non-viable oocytes to fragmented DNA was
evaluated (Figure 4B).

Effects of Supplementing IVM Medium
With IGF-I and Vitrification-Warming
Solutions With GSH on the Expression of
BAX, BCL2L1, HSPA1A, GPX1, and SOD1
Data regarding relative transcript abundances produced in
response to the presence of both IGF-I in IVM medium
and GSH in vitrification-warming media are shown in
Figure 5. Supplementation of IVM medium with IGF-I
had no effect on the expression profiles of BAX, BCL2L1,
HSPA1A, GPX1, and SOD1 genes in fresh oocytes. In contrast,
supplementing IVM maturation medium with IGF-I and
addition of vitrification-warming solutions with GSH (P < 0.05)
positively affected the expression of BAX, HSPA1A, and GPX1
in vitrified-warmed oocytes but did not alter that of the SOD1
gene.

A higher expression of HSPA1A was observed after
vitrification-warming in all treatment groups, but the extent
of that increase was significantly (P < 0.05) higher in those
that were in vitro matured in the presence of IGF-I, with

or without GSH. On the other hand, while the relative
abundance of GPX1-transcripts was significantly higher
after cryopreservation, supplementing vitrification-warming
solutions with GSH led to the highest expression of this gene
(P < 0.05; see Figure 5). Moreover, relative abundance of
GPX1-transcripts was also significantly (P < 0.05) higher in
vitrified-warmed oocytes that had been in vitro matured with
IGF-I.

Relative transcript abundance of BCL2L1 gene was
significantly (P < 0.05) higher in vitrified-warmed oocytes
than the fresh oocytes, regardless of supplementing IVM and
vitrification-warming media with IGF-I and GSH, respectively.
Conversely, although relative BAX-transcript abundance was
significantly (P < 0.05) higher in control vitrified-warmed
oocytes, previous in vitro maturation with IGF-I and addition
of vitrification-warming solutions with GSH did counteract that
increase (Figure 5). Therefore, the level of transcripts for the
BAX gene was similar between fresh and vitrified-maturated
treated oocytes. Furthermore, the BAX:BCL2L1 ratio was
significantly (P < 0.05) higher in fresh oocytes than in those
vitrified after maturation with IGF-I or vitrified with GSH
(Figure 5).

Effects of Supplementing IVM MediumWith
IGF-I and Vitrification-Warming Solutions
With GSH on Monospermy and Penetration
Rates, and on Embryo Development
Addition of IVM with IGF-I did not influence monospermy,
penetration, cleavage and blastocyst rates in embryos derived
from fresh oocytes (Figure 6). Monospermy, penetration
and cleavage rates, as well as the blastocyst development,
were significantly (P < 0.05) lower in embryos derived
from vitrified-warmed oocytes than in those derived from
their fresh counterparts (Table 2). However, penetration
rates of vitrified-warmed control oocytes were significantly
(P < 0.05) lower than those previously matured in the
presence of IGF-I (Figure 6). Furthermore, when assessing
IVF rates for vitrified-warmed oocytes, cleavage rates were
significantly (P < 0.05) higher in oocytes previously matured
with IGF-I and vitrified-warmed with GSH than in control
oocytes (Figure 6). Conversely, neither the addition of
IVM medium with IGF-I nor supplementing vitrification-
warming solutions with GSH influenced monospermy
rates.

Regarding embryo development, the total number of
blastocysts formed was negatively affected by the vitrification-
warming technique, regardless of the composition of IVM
and vitrification-warming media (Table 2). Nevertheless, when
blastocyst rates were evaluated, that is, the ratio of blastocyst
formed to cleavage oocytes (% blastocyst at day 7), significant
(P < 0.05) differences between fresh and vitrified-warmed
oocytes groups were found. Indeed, fresh oocytes matured
with IGF-I gave significantly (P < 0.05) higher blastocyst rates
than oocytes vitrified-warmed without GSH (Figure 6). In
spite of the addition of IGF-I to the maturation medium and
GSH in the vitrification and warming media did not improve
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FIGURE 4 | Effects of supplementing IVM medium with IGF-I, and adding

vitrified-warmed solutions with GSH on oocyte viability and DNA fragmentation

before and after vitrification of porcine oocytes. Data are shown as mean ±
s.e.m. Different letters indicate significant differences (P < 0.05) (A)

TUNEL-/EthD-1-: viable oocytes with intact DNA; (B) TUNEL+/EthD-1+:

non-viable oocytes with fragmented DNA.

the rate of cleavage and percentage of blastocyst formed, in
making the relation between these two parameters, vitrified-
warmed oocytes in the presence of GSH presented blastocyst
rate similar to the group of fresh oocytes matured with IGF-I
(Table 2).

DISCUSSION

Our results suggest that supplementing maturation medium
with IGF-I and vitrification-warming solutions with GSH
improve the quality and cryotolerance of IVM pig oocytes.
Moreover, addition of IGF-I to IVM medium and/or of GSH
to vitrification-warming solutions also has some beneficial
effect on survival rates and developmental competence, and
affects the relative transcript abundance of genes related to
apoptosis and heat stress. These results are important, as
oocyte cryopreservation is known to decrease cell viability
and DNA integrity, as well as the cleavage and blastocyst
rates of embryos derived from these oocytes. Therefore, a

modified composition of IVM and vitrification-warming media
with IGF-I and GSH, respectively, appears to better preserve
in vitro matured pig oocytes. This is especially important as,
because of the composition of their cytoplasm and plasma
membrane, oocyte cryopreservation in pigs is considered to be
more difficult than in other mammalian species (Galeati et al.,
2011).

With regard to the addition of IGF-I to IVM medium, it is
worth noting that previous studies have reported its positive
effect on follicular cell proliferation, oocyte maturation and
steroidogenesis (Nemcova et al., 2007; Mani et al., 2010; Xie
et al., 2016; Sato et al., 2018). However, our results show that
nuclear maturation rates of pig oocytes matured in the presence
of 100 ng·mL−1 IGF-I do not differ from the control group.
Other studies can help us explain these results. Oberlender
et al. (2013b) divided recovered pig oocytes into two groups: (1)
oocytes from small follicles (2–4mm) and oocytes from large
follicles (5–8mm), and submitted them to in vitro maturation
in the presence of IGF-I. These authors observed that the
addition of IGF-I at concentrations around 100 ng·mL−1 to
IVM medium increased the maturation rates of small follicles.
In contrast, IGF-I had no effect on IVM when used on large
follicles. These data indicate that during follicular growth,
changes crucial for oocyte maturation occur in cumulus cells
and in the factors present in the follicular fluid. As high quality
oocytes from 3 to 6mm follicles were used in this experiment,
and the average maturation rate obtained was higher than 80%,
regardless of IVM media composition, which is considered
as good (Zhang et al., 2012), the effects of IGF-I on oocyte
maturation could have been not apparent enough. In addition,
the fact that IGF-I concentration in pig follicles with 4mm or
larger is about 171 ng·mL−1 (Oberlender et al., 2013a) could
explain why there were no significant effects of IGF-I on IVM
rate.

Besides the direct influence on oocyte maturation, the anti-
apoptotic effect of IGF-I leads to hypothesize that supplementing
maturation media with this growth factor may increase oocyte
cryotolerance. As expected, we observed that vitrification-
warming significantly affected the viability and DNA integrity
of pig oocytes. However, when these cells had been previously
matured in a medium supplemented with IGF-I, the percentage
of viable oocytes with intact DNA after vitrification-warming
was higher than that observed for oocytes matured and vitrified
in standard media. These results match with previous studies
conducted with pig blastocysts in which supplementing culture
medium with IGF-I was found to reduce DNA fragmentation
and apoptosis indexes (Dhali et al., 2011; Ascari et al., 2017) by
downregulating the expression of BAX and upregulating that of
BCL-2 (Wasielak et al., 2013; Pan et al., 2015). To explain these
results, one should bear in mind that BAX is a pro-apoptotic
gene involved in cell death and oocyte degeneration. Following
death stimuli (temperature, toxicants or oxidative stress), the
BAX-linked pathway is activated and the apoptosis cascade is
initiated (Finucane et al., 1999). In this study, the addition
of IGF-I to oocyte maturation medium significantly reduced
the relative abundance of BAX transcripts after vitrification-
warming, the levels being similar to those found in fresh oocytes.
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FIGURE 5 | Effects of supplementing IVM medium with IGF-I, and adding vitrified-warmed solutions with GSH on the relative expression of BAX, BCL2L1, HSPA1A,

GPX1 and SOD1, and on the BAX: BCL2L1 ratio before and after vitrification of porcine oocytes. Data are shown as mean ± s.e.m. Different letters indicate significant

differences between treatments (P < 0.05).

The apoptotic process is related with the balance between
pro- and anti-apoptotic genes. While BAX family indicates the
activation of an apoptosis cascade, the members of the BCL-2
family (anti-apoptotic gene) form heterodimers with apoptotic
genes and block their function (Kim et al., 2006). However, no

changes in the expression of BCL2L1 were found, in a similar
fashion to that observed for pre-implanted bovine embryos by
(Block et al., 2008). In contrast, Kim et al. (2006) evaluated the
effects of IGF-I on IVF pig embryos and observed that IGF-
I enhanced the expression of BCL2L1 and decreased that of
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FIGURE 6 | Effects of supplementing IVM medium with IGF-I, and adding vitrified-warmed solutions with GSH on penetration, monospermy, cleavage and blastocysts

rates before and after vitrification of porcine oocytes. Data are shown as mean ± s.e.m. Different letters indicate significant differences between treatments (P < 0.05).

% blastocysts at day 7 = number of blastocyst at day 7: number cleavage oocytes.

BAX. In addition to the expression of BAX and BCL2L1, we
also calculated the BAX: BCL2L1 ratio, which determines the
susceptibility of a cell to apoptosis and determines cell survival
or death (Oltvai et al., 1993). In the current study, although no
differences were found in BCL2L1 expression, the BAX: BCL2L1
ratio has the lowest in vitrified-warmed oocytes maturated in
presence of IGF-I and/or vitrified with GSH. This suggests
that IGF-I is able to modulate the apoptotic response (Laviola
et al., 2007) and also supports the protective effect of GSH
(Hansen and Harris, 2014).

Vitrified-warmed oocytes matured with IGF-I presented
the highest relative transcript abundance of HSPA1A. Heat
shock proteins (HSPs) play a critical role in the response
to environmental stressful stimuli, including the oxidative
stress generated during oocyte maturation and embryo culture
(Bernardini et al., 2004) and the thermal stress caused by
vitrification-warming procedures (Castillo-Martin et al., 2015).
HSPs are a set of highly conserved proteins synthesized in
response to stress, which act as molecular chaperones to
maintain cellular homeostasis. The intracellular response

triggered by IGF-I is modulated by IGF-1-like signaling (IIS)
pathway (Laviola et al., 2007), which positively regulates
the activity of heat shock factor-1 (HSF-1) (Chiang et al.,
2012). HSF-1, in turn, upregulates the transcription of genes
involved in the heat-shock response, such as HSPA1A (Chiang
et al., 2012). The present study showed that the relative
transcript abundance of HSPA1A was higher in vitrified-
warmed oocytes, especially in those previously cultured
with IGF-I.

Cryotolerance of oocytes does not only depend on their
quality, but also on the conditions provided during vitrification
and warming processes. These procedures, as well as other
stressing factors, have been reported to disturb the oxidation–
reduction (redox) status by both decreasing the reduced
glutathione (GSH) content and increasing intracellular reactive
oxygen species (ROS) levels in mice (Moawad et al., 2017)
and pig oocytes (Somfai et al., 2007; Gupta et al., 2010).
Intracellular GSH content is positively correlated with oocyte
quality (Hara et al., 2014) and this study indicates that pig
oocytes that are vitrified-warmed in GSH-supplemented media
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show better viability and DNA integrity than those vitrified-
warmed in standard media. These results agree with previous
works in which GSH was used to improve gamete preservation.
Trapphoff et al. (2016) observed that supplementing IVM
media with GSH increases cryotolerance of mice oocytes
by reducing ROS content and protecting the chromosomal
structure. Picco et al. (2010) showed that addition of maturation
medium with zinc increases intracellular GSH content and
DNA integrity of cumulus cells and bovine oocytes, and
this has a positive impact on embryo development. Yeste
et al. (2014) demonstrated that supplementing cryopreservation
medium with 2mM GSH protects the nucleoprotein structure
and maintains the viability of frozen-thawed boar sperm. It is
important to emphasize that, in this present study, the highest
survival rates were found when pig oocytes were previously
matured with 100ng·mL−1 IGF-I and were vitrified-warmed
with 2mM GSH. Therefore, both substances appear to have a
synergistic effect.

The pathway through which GSH protects the oocytes from
the damage inflicted by vitrification-warming remains unknown.
What is known is that the generation of endogenous GSH in the
oocytes is essential for their protection against the oxidative stress
and other forms of cellular injury (Somfai et al., 2007; Trapphoff
et al., 2016; Moawad et al., 2017). Therefore, and in the light
of our results, it is reasonable to suggest that supplementation
of vitrification-warming media with GSH partly counteracts the
damaging effects of vitrification by preventing lipid peroxidation
in the oocyte and removing the excessive ROS in the medium.
Additionally, the positive effect of GSH on the viability and
DNA integrity of vitrified-warmed oocytes observed in this study
could be explained by the increase in the relative transcript
abundance ofGPX1 and the decrease in that of BAX. Related with
this, relative GPX1-transcript abundance has been correlated
with embryo quality in cattle, with excellent/good blastocysts
having higher expression ofGPX1 in comparison with blastocysts
of lower quality (Cebrian-Serrano et al., 2013). Castillo-Martin
et al. (2014b) found a positive correlation between GPX1 and
survival rates of vitrified-warmed porcine blastocysts at 24 h
post-warming. Glutathione peroxidase is involved in the redox
balance of cells and is responsible for scavenging hydrophilic
peroxide species, such as hydrogen peroxide (H2O2). Therefore,
with an increase in the antioxidant enzyme content, there is
a decrease in the intracellular peroxide levels. Moreover, high
ROS levels causes injury on mitochondrial function, which can
trigger the intrinsic apoptotic pathway in oocytes and granulosa
cells (Dai et al., 2015). This helps explain our results as if the
increase in relative GPX1-transcript abundance is involved in
the reduction of intracellular ROS concentration, the activation
of the apoptosis cascade would be reduced, which would
agree with the observed decrease in the relative BAX-transcript
abundance.

Our data indicate that neither supplementation of IVM with
IGF-I nor addition of GSH to vitrification-warming media
improve blastocyst development or cleavage rates of vitrified-
warmed oocytes. However, when pig oocytes are matured with
IGF-I and vitrified-warmed with GSH, cleavage rates are better
than matured oocytes vitrified-warmed in standard medium.

Moreover, when oocytes are vitrified-warmed with GSH, the
percentage of cleaved embryos that developed into blastocysts
is similar to that of vitrified-warmed fresh oocytes, regardless of
the composition of maturation medium. Oocyte developmental
competence is related to meiotic spindle and chromosomal
configuration and vitrified-warmed IVM oocytes show lower
blastocyst rates due to meiotic spindle disorganization and the
consequent chromosomal dispersion (Fu et al., 2009; Gupta et al.,
2010). Trapphoff et al. (2016) showed a protective effect of GSH
on spindle organization and chromosome alignment of mice
oocytes, and Moawad et al. (2017) found that developmental
potential of mice embryos was higher when vitrified with GSH.
The spindle could be particularly protected by GSH because
higher GSH content prevents oxidation of cysteine sulfhydryl-
groups of αß tubulin dimers (Zhang et al., 2012). In spite
of this, one should note that the effects of supplementing
vitrification-warming media with GSH could differ between
species, as (Hara et al., 2014) reported that high content of
GSH in matured bovine oocytes does not suppress the high
incidence of multiple aster formation or improves embryo
development.

In conclusion, supplementation of IVM medium with 100
ng·mL−1 IGF-I and addition vitrification-warming solutions
with 2mM GSH improve survival and DNA integrity rate
of vitrified-warmed oocytes, and also increases the relative
transcript abundances of HSPA1A and GPX1, and decreases that
of BAX. When added together to maturation and vitrification-
warming media, respectively, IGF-I and GSH increase cleavage
rates in comparison of vitrified-warmed oocytes control, and
promoted similar values of blastocyst rates (formed blastocyst:
cleavage oocytes) between vitrified-warmed oocytes and fresh
oocytes. Our results support the relevance of the in vitro
maturation process for oocyte cryotolerance and demonstrates
the suitability of IGF-I and GSH as additives for maturation and
vitrification-warming media.
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