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The heart rhythm of a person following heart transplantation (HTX) is assumed to

display an intrinsic cardiac rhythm because it is significantly less influenced by the

autonomic nervous system—the main source of heart rate variability in healthy people.

Therefore, such a rhythm provides evidence for arrhythmogenic processes developing,

usually silently, in the cardiac tissue. A model is proposed to simulate alterations in

the cardiac tissue and to observe the effects of these changes on the resulting heart

rhythm. The hybrid automata framework used makes it possible to represent reliably and

simulate efficiently both the electrophysiology of a cardiac cell and the tissue organization.

The curve fitting method used in the design of the hybrid automaton cycle follows

the well-recognized physiological phases of the atrial myocyte membrane excitation.

Moreover, knowledge of the complex architecture of the right atrium, the ability of

the almost free design of intercellular connections makes the automata approach the

only one possible. Two particular aspects are investigated: impairment of the impulse

transmission between cells and structural changes in intercellular connections. The first

aspect models the observed fatigue of cells due to specific cardiac tissue diseases. The

second aspect simulates the increase in collagen deposition with aging. Finally, heart

rhythms arising from the model are validated with the sinus heart rhythms recorded in

HTX patients. The modulation in the impairment of the impulse transmission between

cells reveals qualitatively the abnormally high heart rate variability observed in patients

living long after HTX.

Keywords: discrete models of cardiac tissue, cardiac right atrium modeling, heart rate variability, cellular

automata, arrhythmia modeling

1. INTRODUCTION

Biological functionality of an organism is maintained by both the dynamics of individual elements
and the network of couplings that arise from the spatial distribution of these elements (Müller
et al., 2016). The human heart provides a generic example of such a functionality. The heart tissue
has a unique ability to initiate a cardiac action potential and then to spread this impulse from cell
to cell, triggering the contraction of the entire heart. Structural modifications of the atrial tissue,
caused by heart diseases and/or the normal aging process, influence the performance of the heart
contraction. In the following, assuming that the cardiac tissue other than the right atrium works
properly, we investigate relations between degradation in right atrial tissue modeled by hybrid
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automata and the resultant rhythm of heartbeats. From these
relations, we expect to find hints about the sources of the unusual
heart rate variability (HRV). We also want to learn whether early
stages of tissue impairment can be discerned from an analysis of
heart rate variability. To this end, we compare rhythms obtained
from the model with the rhythms recorded on patients after heart
transplantation.

In the case of myocyte electrophysiology, the empirical
approach, based on the numerical fitting of the essential
myocyte characteristic—the membrane action potential (AP),
is particularly substantial. It allows for the straightforward
representation of the physiological phases of myocyte excitation
by the hybrid automaton states, see e.g., Ye et al. (2005), Ye
et al. (2008), and Sloth and Wisniewski (2013). So the important
matters of the cellular excitation, for example the variation in
the duration of the AP, are directly accessible. However, the
main issue of the hybrid approach is its possibility of an almost
free design of intercellular relations. The right atrium displays
a strong heterogeneous structure. Two clusters of specific and
specially organized cells: the sinoatrial node (SAN)—the thin
and elongated piece of cardiac tissue built of self-exciting cells,
and the atrioventricular node (AVN)—which collects excitations
wandering on the atria, and then uniformly transmits them
downwards to cause the contraction of ventricles, are crucial
elements for the electrophysiology of the heart. The other regions
of the atrium, consisting of cardiomyocytes arranged in the crista
terminalis, the irregular arrangement of the muscle myofibrils
within the pectinate muscle, or Bachmann’s bundle leading to the
left atrium, impose the complexity in the spread of activation over
the atrium (Sánchez-Quintana et al., 2002).

The best way of improving our understanding of such
complex and not well-elucidated architecture is through
simplified models, such as these based on mechanistic
approaches, see for example Nattel et al. (2008), Podziemski
and Zebrowski (2013), Nishida and Nattel (2014), and Kharche
et al. (2017). Such models allow dealing with many factors acting
across multiple temporal and spatial scales. Additionally, it has
appeared that continuous models, operating on average electrical
properties, are not always satisfactory in capturing details of
local heterogeneity of the interacting elements (Gokhale et al.,
2017). They are also not adequate in reproducing the diversity
of the observations (Chang et al., 2015). Therefore, there are
expectations for the development of new techniques, including
hybrid models, which allow the combination of discrete and
continuous methods, and then allow for the unification of
diverse experimental findings (Trayanova, 2014; Mirams et al.,
2016). Hybrid automata, which intuitively replace short-lived,
transient behaviors with discrete transitions (Henzinger, 1996),
offer an attractive approach in this direction. This formalism
provides a well-established and efficient tool for simulating
real-time systems of complex structure, with elements acting on
both continuous and discrete timescales. Therefore the hybrid
automata gained considerable attention in systems driving the
implantable cardiac medical devices (Jiang et al., 2012; Chilton
et al., 2017) or for educational purposes (Spector et al., 2011).

There is also an expectation that the models are helpful
in the routine clinical treatment (Trayanova, 2014). In the
following, we consider the easy and inexpensive measurement

of the heart’s electrical activity, namely ECG. Details of ECG
curves are inspected by clinicians with the aim of classifying
whether a given beat has developed properly, thereby making it
possible to refer to it as a sinus (or normal) beat. The length of a
normal heartbeat cycle, called RR-interval, changes according to
the actual needs of the body for oxygen and other nutrients. In
healthy people, this variability is assumed to be driven mainly by
the autonomic nervous system and serves an indirect estimation
of the autonomic activity (TaskForce, 1996). But people who
underwent heart transplantation (HTX) have the nerve pathways
providing the autonomic regulation severed during the surgery,
so the autonomic regulation of the heart rhythm is provided by
hormones circulating in the blood. Consequently, changes in RR-
intervals can be considered to represent the intrinsic dynamics
of heart performance. Therefore, HTX patients’ heart rhythm
can be seen as providing a unique opportunity to investigate
the relations between structural changes in the heart tissue and
resulting alterations in the rhythm of heartbeats.

With current surgical techniques and postoperative
immunosuppression, 1-year survival after HTX is about
90%, 5-year survival approximates 70%, and the median
survival exceeds 10 years (Thajudeen et al., 2012). There is
substantial evidence that heart tissue of an HTX patient is
transformed with the passing time. Despite the biological
aging process, the permanent intake of immunosuppressive
drugs and the complications involved with infections, graft
rejection, diabetic and hypertension effects, etc., influence and
weaken heart tissue. Also the results of surgery, suture lines,
become sources of extra tissue heterogeneity. So long-term
HTX recipients have enabled us to track alterations in the
dynamics of heartbeats, as has been presented in Makowiec
et al. (2016), Wdowczyk et al. (2016), and Wdowczyk et al.
(2018).

The objective for our modeling work is to identify in signals
of RR-intervals the early warning signs of the underlying
tissue remodeling processes. To achieve this goal, we propose
a mechanistic model of the right atrium, based on individual
cells arranged in a specially designed network. The model is
able to generate sequences of RR-interval types specific to the
given atrial tissue transformation. So our model allows the
investigation of the heart rhythm effects caused by modifications
in the intercellular connections, caused by collagen deposition
in the cardiac tissue, and also the impact of the overall
increase in fatigue of cardiac cells induced by aging or
immunosuppressive or other drugs. Thanks to this, the critical
dependence between the increase in collagen deposits and the
impaired conduction of the impulse and/or the impact of
individual cell performance on this conduction could be reliably
investigated.

Reconstruction of the short-term dependencies in RR signals
observed in HTX patients is the ultimate goal of our modeling.
Therefore, the model is validated by nocturnal rhythms of HTX
patients recorded by clinical monitoring drug visits to the 1st
Department of Cardiology of the Medical University of Gdansk.

The model can be modified and expanded in many
straightforward ways. For example, effects of different HTX
surgery techniques: biatrial or bicaval, the additional SAN
together with the suture line separating the native SAN from the
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donor atrium (the specificity of biatrial surgery) can be easily
simulated. This case is considered in the Appendix. However the
specific architecture of nodes, especially the AVN, is left for future
model advancement.

The paper is organized as follows. In section 2, the arguments
for the chosen method of modeling are given. Section 3 contains
a presentation of the methods and materials used. In section 3.1,
the model is defined and its numerical motivations are explained.
In section 3.2, the signals used for validation of the model
are presented. Section 4 contains the results. First we present
properties of the model (section 4.1); next properties of real
signals are shown (section 4.2). In Section 5 the model is used
to explain the high heart rate variability of HTX patients. Finally,
in section 6 the model is summarized and we derive conclusions
from our findings. In the Appendix, the numerical details of the
simulations performed are provided. The source files (dev-cpp
project) of the model, as well as the executable file (Windows 7),
are accessible from Makowiec (2018).

2. MOTIVATION: DISCRETE VS
CONTINUOUS MODELING

Mathematical and computational models of cardiac physiology
have been an integral component of cardiac electrophysiology
since its inception (Mirams et al., 2016). The Luo-Rudy model
(Luo and Rudy, 1994; Hund and Rudy, 2004) is assumed to
be the primary cardiac cell model reconstructing the real AP.
It has its roots in the ion-channel description proposed by
Hodgkin and Huxley to model excitation of the neuron axon.
The initial model has been enriched in many ways, by adding
a much larger number of ion currents and also by including
other mechanisms of cellular electrophysiology such as active
ions pumps, intercellular compartments for calcium transport,
and calcium buffers, see http://www.physiome.org/jsim/models/
webmodel/NSR/Luo-Rudy/ or other projects of CellML (Miller
et al., 2010). In consequence, the most detailed Luo-Rudy model
of the human ventricular myocyte, known now as O’Hara-
Rudy (O’Hara et al., 2011), involves 41 state variables in more
than 100 differential-algebraic equations; see the latest review of
electrophysiological models of the ventricular cell in Carro et al.
(2017).

Moreover, myocytes exist in a three-dimensional network
built of endothelial cells, forming vascular smooth muscle,
and in an abundance of fibroblasts, as well as transient
populations of immune cells (Guyton and Hall, 2006).
On the scale of groups of cells when the interaction
between cells has to be taken into account, the AP is
only one aspect of a model reconstructing the cardiac
tissue (Trayanova, 2014). Consequently, there are applied
FitzHugh-Nagumo (Fitzhugh, 1961; Nagumo et al., 1962)
or Fenton-Karma (Fenton and Karma, 1998) simplified
phenomenological approaches derived from the biophysical
models. What is important is that they are concentrated on
capturing the AP shape. To learn more about the variety of
dynamics used in modeling cardiac cells, see e.g., Fenton and
Cherry (2008).

It is expected that physiological models of cardiac tissue would
realize the promise of translational research (Mirams et al., 2016).
Namely, they would provide clinical applications for patient-
specific approaches such as ablation, cardiac resynchronization
and contractility modulation therapies. However, there are still
many obstacles to achieving this promise. The reasons are
twofold. The first reason is related to variability in cellular
activity. It occurs that action potential (AP) shape varies from
cell to cell and also in time. The atrial action potential is of a
triangular shape and its duration at 90% repolarization (APD90)
shows variations of between 150 and 500 ms (Fatkin et al., 2007).
The second reason comes from the fact that the function of the
atria is strongly affected by its anatomical structure (Ho et al.,
2002; Ho, 2009). The atria have a number of electrophysiological
features which distinguish them from the ventricles and establish
their arrhythmic susceptibility (Goette et al., 2016). This partially
results from the fact that atrial architecture involves the two
nodes: SAN and AVN, and the exits of vessels delivering blood
to and from the heart. Both these cardiac nodes: the SAN
and the AVN, are sited in the right atrium. The SAN has an
elongated shape and its structure of intercellular connections
is described as rather loose and free (Sánchez-Quintana et al.,
2005). There are two major conduction bundles on the right
atrium: crista terminalis (CT), which go along the SAN and lead
to the AVN, and pectinate muscle (PM), which in a comb-like
fashion spreads throughout the appendage—the large part of the
right atrium. Myocytes along the CT are aligned longitudinally,
favoring preferential conduction. By contrast, it is not possible
to infer the myocyte orientation within other parts of the right
atrium (Ho, 2009). Finally, the AVN, which is responsible for the
conduction of electrical impulses from the atria to the ventricles,
exhibits strong cellular heterogeneity. This heterogeneity leads to
the richness of node intrinsic structures and gives rise to a diverse
range of macroscopic functions during AVN conduction (Kurian
et al., 2010; Hwang et al., 2014).

The complex architecture, together with uncertainty in the
AP development, has pushed research toward the probabilistic
methods of the Monte Carlo techniques (Mirams et al., 2016),
and/or to the cellular automata approach (Lin et al., 2017).
However, in any approach, discrete space and discrete time
representations of the continuous equations and the types of
discrete models used to represent tissue geometry are the
numerical protocol requirement; see Clayton et al. (2011) for a
discussion on numerical aspects of cardiac models.

2.1. Grid Models
In the series of papers of the team from Manchester University,
see Li et al. (2008), Li et al. (2014), and Kharche et al. (2017),
a mixed approach has been used. The propagation of the AP is
considered on the numerical grid made of automata. Eighteen
distinct automata and over 3 million elements in a 3D network
were applied to capture the diversity of the right atrium tissue (Li
et al., 2014). Thanks to that they manage to successfully simulate
a wide range of physiologically known facts about the atrium
electrophysiology.

In Podziemski and Zebrowski (2013) an even simpler model
of the atria has been proposed. It follows the coupled map
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lattice approach, namely, a two-dimensional square plane is used
to represent the geometry. The implementation of the model
allows putting non-conductive regions inside the model matrix
to simulate anatomical details necessary for the arrhythmia to
develop. It consists of 100 × 100 simulation cells divided into
dedicated regions: the SAN, AVN and regions of normal atrial
conductive tissue in between. However, for cellular dynamics and
intercellular interactions, FitzHugh-Nagumo and Fenton-Karma
sets of dynamics for the ion-channels activity of cardiac cell were
used.

2.2. Cellular Automata Approach
In the classical Greenberg-Hastings cellular automata model of
excitation, three-state (denoted: active A, firing F and refractory
R) automata are placed on a regular lattice (Greenberg and
Hastings, 1978). Each automaton in the active state becomes
firing if the number of firing neighbors exceeds a certain
threshold. Then an automaton moves from firing to the
refractory state, to return back to its original state of being
active in a few time steps. The emergence and disappearance
of dynamical objects typical of cardiac arrhythmia episodes—
spirals—have been shown with heterogeneous Greenberg-
Hastings automata (Bub et al., 2005). Also, atrial fibrillation—
the most commonly known atrial arrhythmia, as the effect of
impaired functioning of cells and/or fibrosis, has also been
reproduced with this approach (Christensen et al., 2015; Manani
et al., 2016).

2.3. Hybrid Automata Approach
As electrophysiological processes in a myocyte are driven by a set
of thresholds for opening and closing paths for ion movements
across the cellular membrane, myocytes can be reliably
represented by hybrid automata where the continuous oscillatory
dynamics is mixed with transitions between automaton states (Ye
et al., 2006; Sloth and Wisniewski, 2013). It has become apparent
that such hybrid automata can very accurately reproduce the
membrane potential (Ye et al., 2008). Then, a stochastic network
of timed automata (Ye et al., 2008; Bartocci et al., 2010) makes
it possible to model directly ionic currents and, as follows,
wavefront propagation with respect to the atrial anatomy.

In a series of papers (Ye et al., 2005, 2006, 2008) one can
find a systematic comparison of the results obtained from a
lattice of nonlinear differential equations commonly used to
represent the myocyte ion channel dynamics, to the hybrid
automata approach in which short-lived, transient behaviors are
replaced by discrete transitions. By this approach, one achieves
the solution efficiently, namely about ten times faster than
with the approach which uses the complete set of differential
equations (Ye et al., 2005). Furthermore, it has been found that
simpler automata, called timed automata, can effectively capture
details of the biochemical dynamics of a myocyte and specificity
of cell-to-cell interactions (Bartocci et al., 2010; Jiang et al., 2012).

All of the above described modern computer techniques
provide a framework in which their computational capabilities,
possible problems, can be systematically verified and justified.

3. MATERIALS AND METHODS

3.1. Timed Automata Model of the Right
Atrium
3.1.1. A Timed Automaton
A timed automaton according to Ye et al. (2008) and Jiang et al.
(2012) refers to:

(a1) a graph G(V ,E) where the set of vertices V represents the
system states (often denoted as S) and the set of edges E

(often denoted as
6
→), which contains labeled transitions

between the states;
(a2) a finite set X = {x1, . . . , xn} of real variables called clocks,

because all these variables evolve synchronously, either
increasing its value by 1 in each time step or resetting its
value to 0 in the case of transitions;

(a3) a family of clock invariants for each state: conditions
(formally, predicates) on the clock values for a given state;

(a4) a family of transition guards for each edge: constraints
(formally, predicates) on the values of the clocks which have
to be true for a transition represented by a given edge.

Accordingly, the clocks record the passage of global time in the
system, what synchronizes elements in the system. Transitions
are controlled by the state invariants which preserve the system
in a given state and clock constraints which push transitions
between the states. Thanks to these double time guards, each
automaton can pursue its individual life.

Often, a timed automaton is considered to be a transition
system with two types of transitions:

T1: time transitions by any time interval δ > 0 when only time
progresses but the automaton state is not changed;

T2: state transitions when the automaton state changes. T2 is
usually accompanied by a time reset.

Specifically, a phase oscillator, i.e., oscillator characterized by the
phases only, can be represented by an oscillator timed automaton.
This automaton is built on (a1) graph consisting of one state
S and one T1 -type edge, (a2) with one clock variable x, (a3)
for which the invariant for the S state means x ≤ T where
T is the oscillator period, and (a4) the transition occurs when
x ≥ T. The transition means resetting the clock value to 0.
Such oscillators are basic elements in the Peskin model (Peskin,
1975) and Kuramoto model (Kuramoto, 2003), with which the
collective synchronization of pulse-coupled oscillators has been
successfully investigated. It is easy to notice that an angular phase
of an oscillator is replaced in the timed automaton by the time
elapsed in a given period, see Figure 1.

3.1.2. A Cell—Myocyte Electrophysiology as

Oscillator Timed Automaton
Formally, we will be considering the following automaton,
further referred to as a cell (Ye et al., 2006; Bartocci et al., 2010):
A cell is an oscillator timed automaton represented by a graph

G(S,
6
→) of states S and labeled transitions

6
→, a clock set X and

sets of state invariants inv and transition guards 2, where
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FIGURE 1 | A phase oscillator as an oscillator timed automaton. A digraph of

state transitions: S is a state name, T is the cycle length which determines the

state invariant and transition guard. x is a clock variable, the value of which

advances by one in each time step, and which is reset to 0 after reaching the

threshold T value.

(a1) S = {F,R,A} is a three-state space, and
6
→= {(A

fire
−→

F), (F
refract
−−−→ R), (R

activate
−−−−→ A)} contains three

transitions between these states, the labels of transitions are
fire, refract and activate, respectively;

(a2) a clock set X consists of one variable x;
(a3) an invariant inv() is defined for each state as:

inv(F) = {x ≤ f },

inv(R) = {x ≤ r},

inv(A) = {x ≤ a},

for some real and positive numbers f , r and a;
(a4) a clock guard 2() is defined for each transition:

2(F
refract
−−−→ R) = {x ≥ f },

2(R
activate
−−−−→ A) = {x ≥ r},

2(A
fire
−→ F) = {x ≥ a},

for the real and positive numbers f , r and a introduced in
invariants. Each transition is followed by the clock reset to 0.

Thus the actual properties of a cell can be described by a pair (s, x)
of values representing a state s ∈ S and a time count x, elapsing
with the time steps that a cell stays in s. Then, the intrinsic cell
cycle can be rewritten as the following transition system:

T1: a time pass move by δ > 0

(s, x)
δ>0
−−→ (s, x+ δ) only if x+ δ ≤ inv(s); (1)

T2: an instantaneous transition from s to s′ state with time reset:

(s, x)
(s

a
→s′)∈

6
→

−−−−−−→ (s′, 0) if x ≥ 2(s → s′). (2)

Both rules T1 and T2 are deterministic and therefore the resulting
evolution will be called deterministic. We say that the evolution
is stochastic if a cell performs T2 with the following constraint:

ST2: a cell can refuse the fire transition with probability prefuse
despite the count variable crossing the invariant value a.

The approach formulated above follows the so-called empirical
approach (Sloth and Wisniewski, 2013), which means that it
results from the combined analysis of the shape of curves
obtained from the numerical integration of differential equations
describing the action potential evolution and from the empirical
observations; see Figure 2. Such an approach preserves the
solution accuracy in about ten times shorter computational time;
see Ye et al. (2005).

3.1.3. A Stochastic Network of Cells
In the reconstruction of the sinus beats and the right atrium
performance, specific elements, like the SAN and AVN, have to
be included. The cellular grid considered by us, see Figure 3,
follows commonly assumed atria architecture; see e.g., Nattel
et al. (2008), Nishida and Nattel (2014), and Goette et al. (2016).

In particular, to mimic the elongated shape of a real node,
the SAN is represented as a group of cells in a rectangular
shape. The SAN cells cannot read signals from outside; they
only send signals to the atrium, which is in agreement with the
known physiological facts about the SAN (Sánchez-Quintana
et al., 2005). Moreover, we consider limitations in connections
between the SAN and the atrial cells by assuming that only half
of randomly chosen bordering SAN cells are able to transmit
excitations to the atrium. The AVN is assumed here to be a
passive element. A small group of cells located in the middle of
the bottom boundary collects activation of the surrounding atrial
cells.

The formal specifications of the stochastic network N

representation of the right atrium architecture is as follows:

(i) cells with randomly set refractory time threshold

r = r0 + rnoiseξ (3)

for ξ ∈ U[0, 1] a uniformly distributed random variable, are
arranged in the vertices of a regular square lattice of linear
size L;

(ii) each automaton, except those of the boundary, is connected
with the probability pV = 1 to its vertical neighbors N and
S, with probability pH to its horizontal neighbors E and W,
and with probability pL to its lateral neighbors NE, NW, SW
and SE (lettering used follows geographic map directions);
the resulting mean number of neighbors is

meanJO(J) = 2(pV + pH)+ 4pL, (4)

whereO(J) denotes a set of cells neighboring the cell J ∈ N ;
(iii) the SAN is represented as a compact group of cells of a

rectangular shape located in the left upper part of the lattice,
the SAN vertical connections between cells are stochastically
free, namely pV = pH = pL;

(iv) the AVN is a small compact group of cells located in the
middle of the bottom boundary. To enhance the role of
AVN as an organ, we assume the AVN excitation only
if simultaneously a large part of AVN cells (here, 1/3) is
excited.
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FIGURE 2 | Left: Schema (piecewise linearization) of the myocyte membrane action potential in a typical SAN cell (dashed lines) and a typical atrial cell (solid lines).

Changes in the membrane potential result from the activity of specific ionic currents. In an atrial cell, the rapid depolarization (red) results from the activation of the

inward Na+ currents. The length of the action potential is determined by the balance between the inward currents (mainly Ca2+, which tend to keep the cell

depolarized) and the outward currents (mainly K+, which tend to repolarize it) during the action potential plateau (blue). Then, the membrane potential returns to the

initial level (green) and remains there until the next excitation. In a pacemaker cell, the membrane depolarization results from the inward Ca2+ (red), which is then

pacified by the outward K+ (blue). Moreover, for a SAN cell, after reaching the lowest membrane potential again, the funny inward current is activated, which slowly

leads the cell to the self-excitation. Right: Graph of the oscillator timed automaton of three states F, R and A and cyclic transitions between them. The graph displays

the intrinsic cycle of an isolated SAN cell. The states are related to linear pieces of the membrane action potential, i.e., F corresponds to rapid currents of Na+(atrial

cell) or Ca2+(SAN cell) while R to the action of Ca2+ and K+. The transitions between states F , R and A are limited by clock guards f , r, and a. Note, that an atrial

cell and a SAN cell can be represented by the same timed automaton, but with different clock invariants and guards.

FIGURE 3 | Left: A schema of atria to show the anatomical arrangement of right and left atrium, and the SAN and the AVN. Right: The frame within which our model

works. Arrows around the SAN display discrete connections between the SAN and atrial cells— the SAN-atrial pathways. Additionally a cellular grid with stochastic

intercellular connections driven by parameters pV , pH and pL is shown.

3.1.4. Interactions Between Cells
It is also known that interactions between myocytes
influence the performance of the cellular cycle (Anumonwo
et al., 1991; Coster and Celler, 2003). It is known that
earlier excitation of a myocyte or its prolonged stay in
the refractory state can result from a high excitation
level of the surrounding myocytes. The following
transition scheme remains in agreement with the known
physiology.

For each cell J ∈ N , let the expression [sJ == F] give the
result of the test if the state of the cell J is F. Then
T1*

(R, x)
6J′∈O(J)[sJ′==F]>NR
−−−−−−−−−−−−→ (R,

⌊x

2

⌋

) (5)

with NR being the threshold for effectiveness of the external
stimulation when a cell is in R state.
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T2*

(A, x)
6J′∈O(J)[sJ′==F]>NF
−−−−−−−−−−−−→ (F, 0) (6)

with NF being the threshold for effectiveness of the external
stimulation when a cell is A state.

The effects of the above rules on the synchronization in a complex
network of oscillator timed automata are discussed in detail in
Makowiec (2014).

3.2. Short-Term Heart Rate Variability by
Probability Matrix of Patterns
Twenty-four-hour ECG Holter measurements were collected
from the patients of the HTX group within the standard clinical
observation procedure. The following exclusion criteria were
applied: a history of pacemaker implantation, non-sinus rhythm,
clinically unstable condition, and unwillingness to participate in
Holter monitoring. At the time of the measurements, the patients
were in good physical condition without echocardiographic signs
of acute rejection, heart failure or left ventricular dysfunction.We
also excluded ECG Holter recordings with frequent ventricular
and supraventricular arrhythmia and with more than 10%
artifacts. All the subjects gave their written, informed consent,
which was approved by the Ethics Committee of the Medical
University of Gdańsk.

The recordings were analyzed on a Del Mar Reynolds system
(Spacelabs Healthcare, United States). The sampling rate of ECG
was 128 Hz, which led to 8 ms accuracy in the identification
of R-peaks of the QRS complex. The quality of the ECG
recordings and accuracy of R-peak detection were verified by
visual inspection by experienced cardiologists. All normal beats
were carefully annotated so that only normal sinus rhythms were
considered in our investigations. The period of nocturnal rest was
discerned individually, in each recording separately, according
to the appearance of consecutive hours with a low heart rate.
Then each signal was edited to preserve RR-intervals between
normal-to-normal beats only. Short segments with artifacts or
not normal beats (less than 5 events) were substituted by the
medians estimated from the last seven normal beats. Longer
segments with wrong data were deleted, which was annotated
correspondingly. Finally, signals consisting of twenty thousand
beats were selected, starting at the beginning of the nocturnal
period.

Having extracted successive RR-intervals: RR0,RR1, . . . ,RRN
the sequence of differences between consecutive RR-intervals,
was derived: δRR1, . . . , δRRN with δRRk = RRk − RRk−1 for
k = 1, . . . ,N. Then, for each signal there was estimated a
probability for two-event patterns (1RR(i),1RR(j)) with 1RR(i)
and 1RR(j) describing the two events subsequent in the signal.
The matrix of these probabilities P(1RR(i),1RR(j)) has been
found to represent in the best way the extraordinary (erratic)
events in the heart rhythms (Makowiec et al., 2016; Wdowczyk
et al., 2018).

4. RESULTS

4.1. Model Characteristics From
Simulations
All the practical details of our simulations are listed in the
Appendix. Below we review the observed results focusing on
the critical dependence emerging in a system when the model
parameters are modified. We concentrate on parameters which
influence the stationary state organization and have an important
physiological meaning. Accordingly, we focus on the following
aspects:

• The rule ST2 of the cell definition given in section 3.1.2,
which allows any cell with probability prefuse to refuse for
the excitation, can be interpreted as the mean ability of the
atrial tissue to respond to stimulation. In particular, the tissue
impaired by cardiac disease, aging and/or drugs could be
considered to display this kind of tissue fatigue. Consequently,
prefuse > 0 refers to the impaired tissue.

• The relation between the density of intercellular connections
and the fibrosis of the cardiac tissue is commonly accepted.
In the following, assuming that all atrial cells are vertically
connected, we concentrate on the density of the non-vertical
connections, assuming that lateral and horizontal connections
are equally probable, pL = pH .

• Additionally, we test the effect of the variability in the APD of
cardiac cells by considering the stochastic setting of the length
of the refractory state of atrial cells. This dependence is driven
by rnoise of Equation (3).

All other parameters are kept constant. For these reasons
the results presented are quantitative only. The critical values
presented below are dependent on the settled values of other
parameters as, for example, they depend on the ratio of AVN cells
excited to count the excitation of the AVN; see (iv) of section 2.4.

4.1.1. Limit States Classification
The heart rhythm is denoted from time steps between subsequent
AVN excitations. The wavefront reaching the AVN must be
consistent enough to excite the AVN. As we assume that from
AVN the impulse propagates unperturbed, we can consider a
series of subsequent step distances between the AVN excitations
to be comparable to the sequence of heart contractions RR(i).

Figure 4 shows typical limit states of the excitatory front
observed under certain model parameters. In Figure 5 we
propose the classification of these states according to properties
of the RR(i) signals.

This proposition for the classification of limit states is
idealistic in the sense that it refers to the length of the typical
RR-interval observed in a given simulation and stability of
the rhythm. Basically, we compare simulation results to the
human RR-intervals variability, see TaskForce (1996). Namely,
in a healthy man, an increment 1RR(i) greater than 200
ms is assumed as physiologically questionable. Considering
that 800 ms represents the mean RR-interval, one could find
200ms/800ms = 0.25 as the estimates for the variability of a
healthy man’s rhythm. Below we will use this relation. Also, we
give further arguments for our classification rules.
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FIGURE 4 | Typical wavefronts observed in simulations for pL = pH = 0.50, rnoise = 0, prefuse = 0%: (A) normal state wavefront; (B) loss of the regular wavefront

due to high level of prefuse = 50%; (C) SAN arrhythmia due to self-sustained excitation resulting from a path around the SAN; (D) fibrillation—sustained rotating waves

of origin different from the SAN, which result from the rapid switch from the lost front state (B) with prefuse = 50% to prefuse = 0%. The red color marks cells in F,

white in R, and green in A.

FIGURE 5 | The rules for classification of states observed in simulations. The

classification is driven by properties of a series RR(i).

In Figure 4A, the line of the wavefront propagates from
the SAN to the AVN. Each SAN excitation results in the
formation of the front line. At each time step, only one front
line propagates over the system. So each AVN excitation follows
a SAN excitation. The heart beats at the frequency of the SAN
excitation, i.e., mean(RR(i)) approximates TSAN the period of
SAN cells self-organized excitation TSAN = fSAN + rSAN + aSAN.
Following the facts mentioned above about the variability of the
normal human rhythm, we expect the normal rhythm (the sinus
rhythm) to satisfy the following condition:

max
i

RR(i)−min
i

RR(i) < 0.25TSAN . (7)

When the ratio of cells refusing the excitation becomes large
enough, namely prefuse increases, the loss of the line of the

wavefront is observed; see Figure 4B. Some SAN excitations do
not reach the AVN; they are missed. Eventually, at a very high
level of prefuse, there are many waves wandering over the tissue.
Only a few of them reach the AVN. The AVN excitation rhythm
is almost absent, or if it occurs, it is very different from the rhythm
of the SAN. Such a rhythm will be called dead. In the following,
we propose to consider a state as a dead state if the mean(RR) is
three times larger than the SAN period. This denotes that more
2/3 SAN excitations are lost.

Due to the special arrangement between SAN and atrial cells,
it can happen that one observes two fronts propagating over the
network; see Figure 4C. The first front comes from the SAN
excitation; the second front results from the sustained activity
circulation around the SAN. This second front is a manifestation
of self-organization between the cell dynamics and the network
structure. In consequence, two fronts reach the AVN within one
SAN normal period. Hence, the AVN excitations are doubled
when compared to the SAN excitations. The minimal RR(i)
distance depends on the length of the atrial cell refractory r. We
will call such a rhythm the SAN-atrial re-entry rhythm or, in
short, SAN arrhythmia.

Finally, in Figure 4D, we present a state of fibrillation, i.e., the
emergence of self-supporting rotating waves acting among atrial
cells independently of the SAN. Such states can develop when
prefuse is not stable, i.e., when after a period when prefuse is high
enough, the system recovers a low value of prefuse.

4.1.2. Results of Deterministic Dynamics: prefuse = 0
The deterministic evolution results from rules T2 and T2*
applied with prefuse = 0. The only source of stochasticity is
the random network organization and diversity of cells. The
network organization includes a density of intercellular lateral
and horizontal connections quantified by pH = pL. Diversity of
cells, governed by rnoise, denotes stochastic variety in the action
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FIGURE 6 | Statistics of limit states in case prefuse = 0.0, for different density of transversal connections and for different cell organizations: (A) cells with identical

APD; (B) cells with stochastically distributed APD at rnoise = 10.

potential duration driven by the formula r = r0 + rnoiseξ for
ξ ∈ U[0, 1].

In the case of the deterministic evolution, the following
three limit states develop: normal, SAN arrhythmia and
dead. However, the proportions between them depend on the
specificity of the network organization and on the presence
or absence of diversity among cells. In Figure 6, we show the
observed relations between the states.

It is noticeable that in the case of a low intercellular density of
connections two limit states dominate: SAN arrhythmia and dead
state. The normal rhythm occurs negligibly rarely. The sharp
transition to occurrence of more than 50% of normal states takes
place if pH = pL ≥ 0.40.

Note that when the atrial cells are stochastically heterogeneous
due to the random spread of action potential duration
(APD), namely rnoise = 10 then normal states occur more
frequently at the low intercellular density of connections. Hence,
differentiation of cells enhances the functionality of the system at
low densities of intercellular connections. However, in the case
of high density, this observation is not true. The participation of
states with SAN arrhythmia is higher than in a system of identical
cells. In the following, we have considered rnoise = 10 which
allows us to enter about 20% uniform variation in the length of
the R state.

4.1.3. Effects of Dynamical Stochasticity: prefuse > 0
As could be expected, with switching prefuse > 0, two families of
lost rhythm occur. These new states can be described as missed-
beat states. There are two classes of these states. The first class
arises from the sinus rhythm, in which some SAN excitations
are lost before reaching the AVN. The second class consists of
rhythms related to arrhythmia states, as these rhythms display the
presence of RR-intervals significantly shorter than the period of
the SAN. They partially relate to SAN arrhythmia with lost beats
but also they are a manifestation of an other self-organization of
cellular excitations than from the SAN, namely fibrillation.

In Figure 7 we show the probabilities to find the system
in the given states: normal, SAN arrhythmia, lost normal, lost
arrhythmia, and dead, according to increasing density of non-
ventricular connections pL = pH and increasing fatigue of
the cells driven by prefuse > 0. We see that the areas of high
probability of the occurrence of a particular state have rather
sharp borders. To support this observation, we present the table
with probability values of the most probable states for a given
model parameter.

One can see that the state space of the model parameters
(pH = pL, prefuse) is critically divided into regions of substantial
domination of a particular state. It is important to repeat that the
statistics presented here strongly depend on what we mean by
AVN excitation. In particular, the results shown in Figure 7 were
obtained assuming that the AVN excitation takes place when
three of eight AVN cells are simultaneously excited.

4.1.4. Velocity of Excitation
The velocity of the impulse propagation is one of the most
important characterizations for quantification of the cardiac
tissue transformation caused by collagen deposits and/or cell
impairment. In the case of timed automata, this property is
clocked by synchronized steps of the whole system. However,
propagation of the wavefront resulting from the first SAN
excitation can be considered to display the spatial organization of
the actual system. Because all the cells are vertically connected,
this first front reaches the bottom border in the fastest way
possible with the actual arrangement of cellular dynamics, i.e.,
the value of prefuse. Therefore, one can assume that the tissue
performance for the propagating impulse can be estimated by
the difference between the time steps in which this first front
reaches the AVN and the time steps in which this front reaches
the bottom border. This means that the larger this difference is,
the smaller the velocity of the front propagation is.

In Figure 8, we present mean values of this difference, based
on the simulations performed with a uniform stochastic APD
distribution due to rnoise = 10. One can see that a high density of
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FIGURE 7 | The contour plots displaying probability to observe the given limit state. The last bottom panel provides probability values of the most probable state for

the given pL = pH and prefuse. The values are in case the APD is set stochastically with rnoise = 10.

FIGURE 8 | Velocity of the spread of the impulse according to the difference in

transmission signals with a perfect network organization and otherwise.

transversal connection guarantees efficient impulse propagation,
even in conditions when a large number of cells refuse excitation.
It is noticeable also that the density of transversal connections
pH = pL = 0.5 separates a stable system organization from a
possible unstable system organization.

4.2. Short-Term Variability for Long-Term
HTX Patients
The probability matrix P(1RR(i),1RR(j)) provides estimates
for the short-term dynamical dependence in the normal-to-
normal heartbeat RR-increments (Makowiec et al., 2015). These
probability matrices, shown as contour plots, in a compact way
display the abundance of acceleration (negative 1RR(i)) and
deceleration (positive 1RR(i)) patterns.

In the case of most studied HTX patients whose postoperative
course went without clinical complications, the probability
matrix plots were plain. The patterns were concentrated around
(0, 0) ms events which means that the RR-intervals did not
change in time with the accuracy of 8 ms, i.e., at the recording
resolution. Accelerations or decelerations were of small size,
namely less than 50 ms; see Wdowczyk et al. (2018). However,
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FIGURE 9 | Contour plots of the probability matrix of RR-increments P(1RRi ,1RRj ) of observing 1RRi and 1RRj in subsequent time steps for two HTX patients. The

top plots display rhythms of the first patient (course free of clinical complications), but at different moments after HTX. The bottom plots display the rhythm of the

second patient (course with many clinical complications) twice: full scale and zoomed to present the most probable events.

there were HTX patients whose signals with normal RR-
intervals presented abnormal patterns. Moreover, heart and/or
other diseases have appeared to influence the dynamics of the
sinus rhythm. In Figure 9, two of such particular rhythms are
presented.

In Figure 9, in the first line, we show matrices obtained from
signals recorded in a very long-term HTX patient whose course
after the surgery was without complications and other chronic
diseases, with the exception of hypertension. The extremely
large variability of the patterns of accelerations and decelerations
observed 14 years after the HTX surgery, after 4 years
transformed into a rhythm concentrated at small size events.
However, large departures from this rhythm were evidently
present. As that patient underwent the biatrial HTX surgery
which preserved the patient’s SAN, the observed abnormal
variability was hypothesized to be a result of some wide leak of

the excitations from their own SAN through the suture line rather
than the effect of tissue reinnervation (Wdowczyk et al., 2016).

The course of the patient whose heart rhythm is shown in
the second line of Figure 9 was with complications. The patient
(after bicaval HTX surgery) suffered from graft vasculopathy,
diabetes mellitus, and chronic renal failure. Moreover, there
were two events of acute graft rejection. This rhythm, in
general, was concentrated at (0, 0) pattern; see the right plot.
However, it can be hypothesized that the fatigue of cells, which
probably developed in the cardiac tissue, could lead to the
number of events with the loss of the excitation front; see the
extremal events presented in the left plot. These events can
be compared to the missed beats found in simulations. It is
important to note that the sophisticated properties of the signals
shown in Figure 9 could be misinterpreted as standard features
of HRV.
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5. MODELING HUMAN RR-INTERVAL
VARIABILITY

The results reported in the previous section were obtained with
constant values of all simulation parameters. However, in the case
of tissue of a living human, the parameters are presumed to vary
in time. In the following, we propose to investigate the effects of
prefuse variability. From Figure 7, one can learn that by varying
this parameter, we can visit different parts of the state-space.

In particular, let us assume that prefuse performs a randomwalk
with probability pwalk in the real valued interval [0, z] with some
step ε, i.e.,

for ζ ∈ U[0, 1]

prefuse =

{

prefuse ± ε if(ζ < pwalk and prefuse ± ε ∈ [0, z])

prefuse if(ζ ≥ pwalk or prefuse ± ε /∈ [0, z])

where + or − is chosen at random.

(8)

In this way, when starting with a normal state we can simulate the
combined effects of swings and returns from and to the normal
rhythm.

It occurs that from the state with pattern (A) of Figure 4, when
a high rate of fatigue cells occurs, the wavefront loses its stability.
If prefuse goes back to smaller values, then many sustained fronts
circulating over the cellular network can occur. Such a state leads
to an erratic heart rate variability.

Depending on the density of transversal connections, the
switch from the normal state to the lost front state occurs
at a different z value. Based on our results, see the table of
states in Figure 7, we have found that in the case of transversal
connections established with probability pH = pL = 0.5, the
swing out and back to the normal state can be achieved when this
limit value is set to z = 0.45. Additionally, to reduce the number
of missed beats, we assume AVN excitation if at least two AVN
cells are simultaneously excited. In Figure 10, one can find a plot
of typical time signal obtained from an experiment when a system
evolved with prefuse which performed a randomwalk described in
(8) with pwalk = 0.001 and ε = 0.05.

In Figure 10wemay observe directly how transitions in prefuse
act on the system evolving with the normal rhythm. The small
levels of prefuse slightly influence the normal rhythm. At mid
levels of prefuse some beats are missed. Then with increasing
prefuse the system produces a large spectrum of beats: very short
and very long ones.

In Figure 11, distributions are shown of the probability of
increments P(1RRi,1RRj) to illustrate two increments 1RRi
and 1RRj in a sequence in a time series obtained from the
model simulations. The left plot reports properties of the signal
presented in Figure 10. One can observe the presence of the
peaks which are different from (0, 0). These peaks are related to
switches to the SAN arrhythmia state.

As the model is dedicated to the HTX patients, therefore,
we also investigated one special aspect of the right atrium
architecture which is characteristic for an HTX patient after so-
called biatrial surgery. In such a case, the right atrium consists

of two parts: the donor part with the donor pacemaker, and
the native part in which the native pacemaker acts; for details,
see Figure A2 in Appendix: Model of a biatrial HTX patient.
These two parts are separated by the suture line. However, with
time passing this line can leak the native SAN activation to the
graft. The right plot of Figure 11 shows the distribution obtained
from simulations with this special architecture of right atrium,
in a case when the suture line was leaking. Additionally, to
enrich the interaction structure, links between cells were locally
modified (seeMakowiec, 2005 for description of the modification
procedure). In consequence, the native SAN activity with slower
beats actively perturbed signals issued by the donor SAN. One
observes a broad variety of large size RR-increments.

Comparing the two plots of Figure 11 with the plots obtained
from the real HTX patients presented in Figure 9, one may
hypothesize that our modeling can provide an explanation for
the observed dynamical landscape of the heart rhythm of the
long-term HTX patient. Note that both arrhythmias: the SAN
arrhythmia and the native SAN rhythm, are normal rhythm
perturbations which are hardly recognizable from the ECG, even
by a highly qualified cardiologist.

6. DISCUSSION AND SUMMARY

Progress in our understanding of multi-component, multi-
layered and spatially complex composite systems has created
an excellent foundation for exploring and evaluating the
structural and dynamic characteristics of real systems based on
experimental data (Bashan et al., 2012; Havlin et al., 2012; Müller
et al., 2016).

In the model we assumed that each AVN excitation
propagated further over the remaining cardiac tissue smoothly,
resulting in a proper ventricular contraction. Based on this
we could describe the rhythm of heart contractions by time
intervals between subsequent AVN excitations. Subsequently,
the standard heart rhythm analysis might be applied which
means that computer model series might be directly verified
by clinical observations. However, only the heart rhythm of
HTX patients could be of interest to us because the model does
not consider autonomic system regulation. There are also other
evidentmodel limitations.We did not consider the role of cardiac
fibroblasts in the maintenance of the extracellular matrix which
provides the framework for cardiac tissue and is crucial in the
passive mechanical properties. However, the global effect of the
fibroblasts, namely, the growing fibrosis, was in the center of our
interest. Also the AVN has been modeled in a simplified way. The
few cells, which we considered as the AVN, represent merely the
transition region to the node. Therefore, the role of the AVN has
been limited to detecting of the arrival of a wave-type signal. In
particular, we have considered that 1/3 of the AVN cells should
be excited to result in further signal transmission. However, in the
simulations presented in section 5, we assumed that simultaneous
excitation of two of AVN cells is enough to excite the AVN.
This way, the ratio 1/3 has become a non-named parameter of
a model, which role could be investigated in further research.
Finally, we have to underline that the partition of the space of
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FIGURE 10 | Plots of a walk of prefuse performed following Equation 8 (the brown curve) and a resulting signal with RR-intervals (the blue curve). The values of the

signal are adjusted (multiplied by 7) to correspond better to the range of real signals. The right axis serves a description for prefuse. The curve of prefuse is plotted

above the RR-signal to provide insights how the level of prefuse influences both the value and variability of RR-intervals.

FIGURE 11 | Probability of transition matrix obtained from simulations (20000 RR-increments), log-plots. The left plot refers to the time series shown in Figure 10.

The right plot starting point was characterized by the high presence of the native SAN.

limit states shown in Figure 7 depends strongly on the definition
of the normal rhythm given in Equation (7). The classification
of limit states, presented in Figure 5, is based on RR-intervals
variability and only discussed above excitability of the AVN.

Though our approach is dealing with a simplistic
representation of the complex architecture of the human
right atrium, as we could see, it was sufficient to determine
whether the system is critical. Namely, we could point at the
model parameters, a slight change in which could result in
a strong perturbation, or even in the loss of the rhythm of
heartbeats. As these parameters are physiologically grounded,
we could provide observations on a rather large variety of very
general cardiac electrophysiology relations and/or their aspects.
In particular:

(i) Influence of the increase of collagen deposits on the
impaired conduction of the impulse which was mimicked

by the decrease in density of horizontal pH and lateral
connections pL. We have found this dependence critical. For

high levels of pH and pL, the development of the normal

rhythm is almost sure. Then the probability that the normal

rhythm occurs is switched to zero in a rather narrow interval

of the model parameters.
(ii) An impairment or fatigue of the individual cells caused by

the cardiac or other diseases, so the impact of individual cell

performance was studied in two aspects. The first aspect,

revealing the heterogeneity of APD length, wassimulated

with the parameter rnoise by considering a randomspread

of APD value. The second aspect—the dysfunctionof a
cell, was mimicked by variation with the parameterprefuse
describing the level of the refuse of a cell to follow

the excitation. It is noticeable that we have admittedthe

stabilizing role of the stochasticity when these twoaspects
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have low levels. But after crossing some thresholdswe
observe the critical breakdown of the wavefront.

(iii) The important characteristic of 2D propagation is a
dependency of velocity on curvature (Clayton et al., 2011).
As it was expected, the convex fronts developed at a
higher density of transversal connections propagated faster
than the fronts observed in cases when the transversal
connections were rare.

The architecture proposed by us can be compared to a model
considered in Podziemski and Zebrowski (2013) or Kharche
et al. (2017). However, the localization of the SAN in our
model enabled observation of re-entry around the SAN. Also,
our model can be seen as motivated by the ideas of the
Christensen et al. (2015) model. Similarly to them, we considered
automata which were always vertically connected (pV = 1).
However, additionally, we included randomly established lateral
connections. We assumed also that all cells were dysfunctional,
i.e., each automaton with the probability prefusecould refuse the
excitation. However, the main novelty of our model is that
it has been rewritten into the hybrid automaton formalism
which underlines and provides a direct link to the relations
between a discrete transitions graph and continuous dynamics
of processes involved in a myocyte excitation. Therefore further
model development is straightforward. The possible extensions
include effects of limits in pathways between the SAN and atrium,
local areas of fibrosis, further diversity of cells.

There is clinical evidence that continuous models might
fail to capture the specificity of arrhythmia (Gokhale et al.,
2016, 2017). This fact promotes discrete modeling (Trayanova,
2014). The hybrid automata appear to be the perfect modeling
tool in revealing both intracellular and intercellular biological
relations (Ye et al., 2006; Bartocci et al., 2010; Li et al., 2014;
Christensen et al., 2015). The computational efficiency of
these models makes it possible to test various predictions
about heart electrophysiological behavior with relatively

low computational cost. The model proposed here is an
efficient real-time model. The enumerated specification
provides an easy path for the further development of the
model.

The model is especially dedicated to the heart
electrophysiology after HTX, i.e., to humans with a strongly
reduced presence of the autonomic nervous system. Because of
this, we were able to link directly the heart rate variability of real
people to results obtained in simulations. In particular, we have
shown that the evidence of high levels of heartbeat variability
in the absence of regulation served by the autonomic nervous
system may be related to an increase in cellular fatigue, which
possibly results from the remodeling of cardiac tissue caused by
immunosuppressive drugs or the active presence of the native
SAN.
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