
297

BOSNIAN JOURNAL of

Basic Medical Sciences WWW.BJBMS.ORG

INTRODUCTION

Pancreatic cancer (PC) is an aggressive malignancy with 
a high mortality rate [1-4]. In the United States (US), a 5-year 
relative survival rate was estimated to be only 8% [4]. Despite 
improvements in the diagnosis and management of PC over 
the last few decades [1,2], PC was reported to be the seventh 
cause of cancer-related death in China [3]. According to the 
most recent American Cancer Society (ACS) report, in the 
US, the number of new PC cases and deaths was 55,440 and 
44,330, respectively in 2018, and PC was the fourth leading 
cause of cancer death in 2015 [4]. Also, by 2030, PC is pro-
jected to become the second leading cause of cancer-related 
death in the US [5,6]. Radical surgery combined with neo-
adjuvant chemotherapy is considered to be the most effec-
tive treatment for PC. However, due to the absence of early 
symptoms, 80–85% of PC patients are diagnosed at the stage 
of locally advanced or distant metastatic, unresectable disease. 
Moreover, clinical and preclinical data indicate that PC metas-
tases develop during the early stages of pathogenesis, before 
the primary tumor can even be detected [5]. Thus, to improve 
the diagnosis, treatment and outcomes of PC patients it is nec-
essary to better understand the molecular mechanisms of PC 

onset, progression and metastasis and to identify targetable 
pathways.

Aspartate β-hydroxylase (ASPH) is a highly conserved 
dioxygenase enzyme found to be overexpressed in multiple 
malignancies, including PC. ASPH appears to be involved 
in the regulation of proliferation, invasion and metastasis 
of PC cells through multiple signaling pathways, suggesting 
its role as a tumor biomarker and therapeutic target. In this 
review, we briefly summarize the possible mechanisms of 
action of ASPH in PC and recent progress in the therapeutic 
approaches targeting ASPH.

THE STRUCTURE AND FUNCTION 
OF ASPH

ASPH was first described in 1989, it is a type II trans-
membrane protein of ~86 kDa in size and the member of 
α-ketoglutarate-dependent dioxygenase family [7-13]. ASPH 
has a very low expression in normal adult tissue and is pre-
dominately expressed during embryogenesis, to promote cell 
migration for organ development [7,8]. The ASPH gene is 
214,085 bases long and has 33 exons. By alternative splicing, 
it encodes four protein isoforms: ASPH, junctin (structural 
protein of sarcoplasmic reticulum), humbug (ASPH-type 
junctate that lacks the catalytic domain), and junctin-type 
junctate [14,15]. The ASPH protein consists of four domains: 
amino or N-terminal cytoplasmic domain, transmembrane 
domain, a highly charged region that projects into the lumen 
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of endoplasmic reticulum (ER), and COOH-terminal cata-
lytic domain [14]. Different studies showed that the Wnt/β-
catenin, insulin (IN)/insulin-like growth factor 1 (IGF-1)/
insulin receptor substrate 1 (IRS1)/phosphatidylinositol-3-ki-
nase (PI3K)/protein kinase B (Akt), and IN/IGF-1/IRS1/
mitogen-activated protein kinase (MAPK)/extracellu-
lar-signal-regulated kinase (ERK) signaling pathways play 
an important role in the transcriptional regulation of ASPH 
(Figure 1) [16,17]. When Wnt signaling is aberrantly activated, 
Wnt ligand binds to Frizzled (FZD) cell-surface receptors 
and low density lipoprotein (LDL)-receptor-related proteins 
5 and 6 (LRP5 and LRP6) which leads to the degradation of 
the β-catenin destruction complex (contains adenomatous 
polyposis coli [APC] and AXIN) and inhibition of glycogen 
synthase kinase 3β (GSK3β), and consequent accumulation 
of β-catenin in the cytoplasm. Subsequently, β-catenin moves 
into the nucleus where it interacts with T-cell factor/lym-
phoid enhancer-binding factor (TCF/LEF) proteins to form a 
transcriptional regulatory complex and activate the transcrip-
tion of target genes [16]. Among the proposed target genes 
is IRS1, where the TCF/LEF/β-catenin complex upregulates 
its expression possibly by binding to TCF consensus binding 

elements (enhancers) located in the first intron of the IRS1 
gene and downstream of its transcriptional start site [18,19]. 
The overexpressed IRS1 can relay signals from activated IN/
IGF-1 receptors to downstream effector cascades such as the 
ERK/MAPK and PI3K/Akt signaling, and thus upregulate the 
expression of ASPH as a downstream target of these path-
ways [19]. Namely, binding of IN and IGF-1 to insulin recep-
tor (IR) and IGF-1 receptor (IGF1R), respectively leads to the 
autophosphorylation of the receptor on tyrosine residues and 
activation of the intrinsic tyrosine kinase. The kinase catalyzes 
the phosphorylation of tyrosine (Y-P) on intracellular IRS1 and 
activates PI3K, which then phosphorylates phosphatidylinosi-
tol (4,5)-bisphosphate (PIP2) on the 3C position and generates 
phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 inter-
acts with protein kinases such as phosphoinositide-dependent 
kinase 1 (PDK1) which initiates a cascade of phosphorylation 
events, finally leading to the activation of Akt and/or atypical 
protein kinase C (PKC) [18,20]. In addition to the PI3K cas-
cade, tyrosine phosphorylation of IRS1 can result in the activa-
tion of the downstream MAPK pathway, i.e., PY-IRS1 interacts 
with growth factor receptor-bound protein 2 (Grb2) and syn-
aptophysin (Syp) proteins leading to the sequential activation 

FIGURE 1. The role of the Wnt/β-catenin, insulin (IN)/insulin-like growth factor 1 (IGF-1)/insulin receptor substrate 1 (IRS1)/phosphatidy-
linositol-3-kinase (PI3K)/protein kinase B (Akt), and IN/IGF-1/IRS1/mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated 
kinase (ERK) signaling pathways in the transcriptional regulation of aspartate β-hydroxylase (ASPH). The binding of Wnt ligand to Frizzled 
(FZD) cell-surface receptors and low density lipoprotein (LDL)-receptor-related proteins 5 and 6 (LRP5 and LRP6) leads to the accumula-
tion of β-catenin in the cytoplasm. β-catenin then moves into the nucleus where it interacts with T-cell factor/lymphoid enhancer-bind-
ing factor (TCF/LEF) proteins to form a transcriptional regulatory complex and activate the transcription of target genes such as IRS1. The 
overexpressed IRS1 relays signals from activated IN/IGF-1 receptors to downstream effector cascades such as the ERK/MAPK and PI3K/
Akt signaling, and thus upregulate the expression of ASPH as a downstream target of these pathways. Namely, binding of IN and IGF-1 to 
insulin receptor (IR) and IGF-1 receptor (IGF1R), respectively leads to the activation of the intrinsic tyrosine kinase. The kinase catalyzes the 
phosphorylation of tyrosine (Y-P) on intracellular IRS1 and activates PI3K, which then phosphorylates phosphatidylinositol (4,5)-bisphos-
phate (PIP2) and generates phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 interacts with phosphoinositide-dependent kinase 1 
(PDK1), initiating a cascade of phosphorylation events and leading to the activation of Akt. The tyrosine phosphorylation of IRS1 can also 
result in the activation of the downstream MAPK pathway, i.e., PY-IRS1 interacts with growth factor receptor-bound protein 2 (Grb2) and 
synaptophysin (Syp) proteins leading to the sequential activation of p21ras, mitogen-activated protein kinase kinase (MAPKK), and MAPK 
[16,19,21,22].
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of p21ras, mitogen-activated protein kinase kinase (MAPKK), 
and MAPK [21,22].

One of the downstream targets of IRS1-mediated signaling 
pathways is ASPH. For example, de la Monte et al. [22] found 
that the stimulation of insulin and IGF-1 increased ASPH 
mRNA and protein expression, and consequently the motility 
of human hepatocellular carcinoma (HCC) cell lines, which 
was mediated by the ERK/MAPK and PI3K/Akt pathways [22].

ASPH is rarely expressed in normal adult tissue, except pla-
cental trophoblastic cells [23-25]; however, its overexpression 
has been observed in a number of malignancies, including chol-
angiocarcinoma, HCC, lung, breast and colon cancer, as well as 
in the neoplasms of the nervous system [22,26]. Moreover, in 
HCC patients, Wang et al. [25] showed a significant association 
between ASPH overexpression and higher recurrence and lower 
survival rate following surgery. Also, ASPH overexpression could 
predict worse surgical outcome in the early-stage HCC patients 
[25]. The overexpression of ASPH was also observed in PC, and 
its important role in the promotion of proliferation, migration, 
invasion, and malignant transformation of PC cells, through 
multiple signaling pathways, was suggested [27].

THE MECHANISM OF ASPH IN PC

ASPH activates the Notch signaling pathway

The mechanisms how ASPH affects cell proliferation and 
tumor invasion/metastasis in PC are not completely clear. 

Dong et al. [27] indicated that ASPH activates the Notch 
signaling pathway as the mechanism of malignant transfor-
mation in PC cells. For example, they showed that activated 
Notch1 and hairy and enhancer of split-1 (HES1), which is a 
Notch responsive gene, were overexpressed in the cytoplasm 
and nuclei of pancreatic ductal adenocarcinoma (PDAC) cells 
compared to adjacent normal tissues [27].

The Notch signaling cascade is a highly conserved path-
way with a critical role in cell-cell signaling and the control 
of cell fate determination during embryogenesis. Due to the 
diverse functions of Notch pathway, including the mainte-
nance of stem cell populations and the regulation of cell pro-
liferation, survival, apoptosis and differentiation, it plays an 
important role in the development and progression of human 
cancers. In mammals, four different Notch receptors exist 
(NOTCH1–4), which respond to five different ligands. Four 
of these ligands Jagged (JAG) 1 and 2 and Delta-like (DLL) 1 
and 4 may act in cis to inhibit Notch receptor or in trans to 
interact with neighboring cells, whereas the fifth ligand DLL3 
has the cis-inhibitory function. While the expression and acti-
vation of Notch receptors and ligands appear to be downregu-
lated in normal adult pancreas tissues, as in many other cancer 
types, they are activated during pancreatic tumorigenesis and 
may act as oncogenes or tumor suppressors [28]. Numerous 
studies have shown that Notch signaling is associated with 
the occurrence and progression of PC [29-33]. For example, 
the activation of Notch signaling pathway can promote the 

FIGURE 2. The proposed mechanism how aspartate β-hydroxylase (ASPH) may affect the progression of pancreatic cancer (PC) through 
the activation of Notch signaling pathway [27]. ASPH catalyzes the hydroxylation of aspartyl and asparaginyl residues present in epider-
mal growth factor (EGF)-like domains of Notch receptors and ligands. The C-terminal catalytic domain of ASPH contains the amino acid 
(AA) sequence M670HPGTH675. After ASPH overexpression is induced, the enzyme interacts with the EGF-like repeats in Notch receptor 
extracellular domain (ECD), promoting the interaction between Notch receptor and its ligand (e.g., Jagged [JAG]). The receptor-ligand 
interaction induces a conformational change of the Notch receptor, leading to S2 and S3 cleavage. The S3 cleavage releases the active 
Notch intracellular domain (NICD) from the plasma membrane, which then enters the nucleus and mediates the conversion of the CSL 
[CBF1–Su(H)–LAG1] repressor complex into a transcriptional activation complex and the recruitment of mastermind-like 1 (MAML1) 
coactivator protein, leading to the transcriptional activation of a number of downstream target genes, including those from hairy and 
enhancer of split (HES) and hairy-related transcription factor (HRT or HEY) families, cyclin D1 (CCND1), c-myc, cyclooxygenase-2 or pros-
taglandin-endoperoxide synthase 2 (PTGS2), matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGFA).
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epithelial-to-mesenchymal transition (EMT) and facilitate the 
invasion and metastasis of cancer cells in PC tissues [34].

ASPH catalyzes the hydroxylation of aspartyl and aspar-
aginyl residues present in epidermal growth factor (EGF)-
like domains of various proteins, including Notch receptors 
and ligands (Figure 2) [27,35,36]. The C-terminal catalytic 
domain of ASPH contains the amino acid (AA) sequence 
M670HPGTH675. The AA H675 is involved in Fe2+ coordination 
and is critical for the enzymatic activity of ASPH [14,27]. After 
ASPH overexpression is induced, the enzyme interacts with 
the EGF-like repeats in Notch receptor extracellular domain 
(ECD), promoting the interaction between Notch receptor 
and its ligand. The receptor-ligand interaction induces a con-
formational change of the Notch receptor, leading to S2 cleav-
age by tumor necrosis factor-α-converting enzyme (TACE/
ADAM17) and then S3 cleavage by the presenilin/γ-secretase 
complex. The S3 cleavage releases the active Notch intracel-
lular domain (NICD) from the plasma membrane, which 
then enters the nucleus and mediates the conversion of the 
CSL [CBF1–Su(H)–LAG1] repressor complex into a tran-
scriptional activation complex and the recruitment of mas-
termind-like 1 (MAML1) coactivator protein, leading to the 
transcriptional activation of a number of downstream target 
genes, including those from HES and hairy-related transcrip-
tion factor (HRT or HEY) families, cyclin D1 (CCND1), c-myc, 
cyclooxygenase-2 or prostaglandin-endoperoxide synthase 2 
(PTGS2), matrix metalloproteinase-9 (MMP9) and vascular 
endothelial growth factor (VEGFA). The overall effect of these 

processes in PC is the promotion of cell proliferation, migra-
tion, invasion, tumor growth, and metastasis [34,37].

ASPH promotes mitochondrial DNA D-loop 
mutations by inhibiting H2A histone family, 
member X (H2AX)-mitochondrial transcription 
factor A (mtTFA) signal

Somatic mitochondrial DNA (mtDNA) mutations have 
been detected in various tumor types, including PC [38-41]. 
In HCC tissues and cell lines, the overexpression of ASPH 
was significantly correlated with decreased copy numbers of 
displacement loop (D-loop) and nicotinamide adenine dinu-
cleotide (NADH) dehydrogenase subunit 1, and increased 
somatic mutations in the D-loop [38]. The D-loop is a non-
coding region of mtDNA which contains the origin of replica-
tion for heavy (H) mtDNA strand and the promoters for the 
transcription of H and light (L) strands [41].

In HCC cell lines, Tang et al. [38] demonstrated that the 
overexpressed ASPH disrupts the mtDNA integrity and 
affects mitochondrial function through H2AX-mtTFA signal 
(Figure 3) [38]. mtTFA is a key regulator of mtDNA transcrip-
tion and is also important in the maintenance and repair of 
mtDNA. H2AX has been suggested to function as a shuttle 
protein transporter with a critical role in mitochondrial pro-
tein transport [42-44]. mtTFA was identified as protein that 
is transported by H2AX [44] from the cytoplasm to the mito-
chondria, to participate in the replication, transcription and 
repair of mtDNA (Figure 3A) [42,43]. However, it appears 

FIGURE 3. Aspartate β-hydroxylase (ASPH) disrupts the mitochondrial DNA (mtDNA) integrity and affects mitochondrial function 
through H2A histone family, member X (H2AX)-mitochondrial transcription factor A (mtTFA) signal in hepatocellular carcinoma (HCC) 
cells [38]. (A) H2AX transfers mtTFA from the cytoplasm to the mitochondria to participate in the replication, transcription, and repair of 
mtDNA. (B) ASPH competes with mtTFA for binding to H2AX, consequently blocking the binding between mtTFA and mtDNA displace-
ment (D)-loop. This ultimately disrupts the function of mtTFA in mtDNA replication, transcription and repair, leading to increased muta-
tions in the D-loop and other mtDNA regions, reduced mtDNA copy number and decreased expression of mitochondrial respiratory 
chain enzymes. These alterations affect the mitochondrial function, resulting in aberrant mitochondrial membrane potential, decreased 
adenosine triphosphate (ATP) production and increased levels of reactive oxygen species (ROS), and promoting tumor growth. H: Heavy 
mtDNA strand; L: Light mtDNA strand.

A
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that overexpressed ASPH competes with mtTFA for bind-
ing to H2AX, thus blocking the translocation of mtTFA into 
the mitochondria and resulting in reduced binding of mtTFA 
to the D-loop [38,44]. This ultimately disrupts the function 
of mtTFA in mtDNA replication, transcription and repair 
(Figure 3B), leading to increased mutations in the D-loop 
and other mtDNA regions, reduced mtDNA copy number 
and decreased expression of mitochondrial respiratory chain 
enzymes. These alterations affect the mitochondrial function, 
resulting in aberrant mitochondrial membrane potential, 
decreased adenosine triphosphate (ATP) production and 
increased levels of reactive oxygen species (ROS) [38,45]. In 
primitive neuroectodermal tumor 2 (PNET2) human neu-
ronal cells exposed to H2O2, Lawton et al. [46] showed that 
ASPH, hypoxia-inducible factor 1-alpha (HIF-1α) and neuro-
nal migration were stimulated by the mild oxidative stress and 
suggested that the cross-talk between these molecules within 
a hydroxylation-regulated signaling pathway, which ultimately 
affects cell motility and migration, is transiently driven by fluc-
tuations in oxidative stress and chronically regulated by the 
insulin/IGF signaling [46]. Changes in cellular microenviron-
ment can lead to increased oxidative stress which is character-
ized by the overproduction of ROS in mitochondria, leading 
to increased mutations in mtDNA and disruption of its stabil-
ity and function [45], possibly resulting in tumor development. 
However, due to low occurrence of somatic mtDNA D-loop 
mutations in a series of PC, Navaglia et al. [41] suggested that 
those molecular changes are epiphenomena, probably related 
to the damaging effects of ROS, rather than a direct cause of 
PC [41,47].

ASPH suppresses the natural killer (NK) cell-
surveillance activity

NK cells play a pivotal role in immune surveillance of 
tumors and exert their function by producing cytokines such 
as interferon-γ (IFN-γ) and cytolytic proteins (perforin and 
granzymes), and by expressing NK cell-activating receptors 
(e.g., NKG2D, NKp30, and NKp44) [48]. IFN-γ is a critical 
molecule for innate and adaptive immunity and has antivi-
ral, immunostimulatory, immunoregulatory, and antitumor 
properties [49]. Perforins do not only generate poly-perforin 
tubular channels (pores) on tumor cell membrane, increasing 
membrane permeability, but also mediate delivery of gran-
zymes which induce apoptosis of target cells [48]. NKG2D 
triggers cytotoxicity by recognizing ligands (induced-self 
proteins) overexpressed by transformed and infected cells. 
Together with NKp30 and NKp44, it is the most important 
molecule in NK cell-mediated tumor cell lysis [50]. In MP2 
PC cells, the cytotoxic activity of NK cells was enhanced by 
the combined effect of curcuminoids, omega-3 fatty acids, and 
antioxidants [51].

The activation and function of NK cells is controlled by 
two different categories of receptors, activating and inhib-
itory receptors, which are expressed on the surface of NK 
cells  [52,53]. In normal conditions, the inhibitory receptors 
on NK cells interact with their ligands (mostly major histo-
compatibility complex [MHC] class I molecules), suppressing 
the activation of NK cells [54]. In cancer cells, these types of 
ligands can be downregulated and the ligands of activating 
receptors upregulated, leading to the engagement of activat-
ing receptors and consequent activation of NK cells. Finally, 

FIGURE 4. Natural killer (NK) cell-surveillance activity in tumor. The activation and function of NK cells is controlled by two different 
categories of receptors, activating and inhibitory receptors. In normal conditions, the inhibitory receptors on NK cells interact with their 
ligands (mostly major histocompatibility complex [MHC] class I molecules), suppressing the activation of NK cells. In cancer cells, these 
types of ligands can be downregulated and the ligands of activating receptors upregulated, leading to the engagement of activating 
receptors (e.g., NKG2D and NKp44) and consequent activation of NK cells. Activated NK cells can rapidly kill tumor cells by releasing 
molecules such as interferon-γ (IFN-γ), perforins and granzymes [52-55].
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activated NK cells can rapidly kill tumor cells by releasing mol-
ecules such as IFN-γ, perforins and granzymes (Figure 4) [55].

A recent study showed that a recombinant ASPH 
(rASPH) had a negative effect on the activity and function 
of primary human NK cells. Namely, the rASPH reduced the 
viability and cytotoxicity of NK cells in a time and dose-de-
pendent manner, inhibited NK cell aggregation, promoted 
apoptosis and necrosis, reduced the mRNA expression of 
INF-γ, mRNA and protein expression of activating recep-
tors NKG2D and NKp44, and mRNA expression of inhibi-
tory receptor NKG2A [56]. Overall, it appears that one of 
the mechanisms of ASPH in promoting tumor formation 
and viability is by inhibiting NK cell-surveillance activity 
[56]. Other studies also demonstrated that the inhibition of 
NK cell activating receptor expression and function, e.g., by 
methylprednisolone or histone deacetylase inhibitors, signifi-
cantly reduces NK cell cytotoxicity  [57,58], allowing tumor 
cells to escape immune surveillance.

THERAPEUTIC APPROACHES 
TARGETING ASPH

ASPH has been proposed as an important biological tar-
get to control tumor cell migration and invasion, as its over-
expression has been observed in 70–90% of human tumors, 
including PC [22,27]. After ASPH overexpression is induced 
in tumor cells, the protein transfers from the ER to the plasma 
membrane, where it is exposed to extracellular environment 
and, thus, could be used as a tumor associated antigen (TAA) 
in immunotherapy [59].

The activation of both cluster of differentiation (CD)4+ 
T  cells and CD8+ cytotoxic T cells (CTLs) is required for 
a sustained anti-tumor response [59-61]. In an experimen-
tal murine model, ASPH-loaded dendritic cells (DCs) had a 
substantial anti-tumor effect on HCC, and both CD4+ and 
CD8+ cells contributed to these effects [59]. Furthermore, in 
peripheral blood mononuclear cells (PBMCs) derived from 
HCC patients, ASPH protein-loaded DCs could also acti-
vate CD4+ T cell and CD8+ CTLs, via ASPH-derived human 
leukocyte antigen (HLA) class I- and class II-restricted pep-
tides [61]. These findings indicate the usefulness of ASPH as 
a molecular target in immunotherapy, especially in HCC. 
For example, ASPH-DCs immunotherapy could potentially 
delay the recurrence of HCC following surgical resection [59]. 
Similarly, Noda et al. [62] showed that immunization with 
ASPH-loaded DCs had a cytotoxic effect on cholangiocarci-
noma cells in vitro, suppressed intrahepatic tumor growth and 
metastasis in rats, and was associated with an increased infil-
tration of CD3+ lymphocytes into the tumor [62]. However, 
the effect of ASPH-loaded DCs on immune response in PC 
remains to be investigated.

Recently, molecular targeted therapy against ASPH has 
gained considerable attention. Dong et al. [27] reported that 
MO-I-1100, a small molecule inhibitor (SMI) of β-hydroxylase, 
reduced ASPH activity by 80%, inhibited ASPH-induced pro-
liferation, migration, invasion and colony formation, and sup-
pressed Notch signaling in PC [27]. Sturla et al. [63] showed that 
SMI MO-I-1100 and MO-I-1151 significantly reduced viability 
and directional motility of glioblastoma multiforme (GBM) 
cells, and similar effects were observed in GBM cells using 
lentivirus-sh-ASPH construct, confirming the role of ASPH in 
these processes [63]. Revskaya et al. indicated that radiolabeled 
human monoclonal antibody (mAb) PAN-622 targeting ASPH 
on the surface of cancer cells is a promising approach in imag-
ing and, possibly, treatment of metastatic breast cancer [64]. In 
addition, antisense oligodeoxynucleotide inhibition of ASPH 
expression significantly reduced the motility of cholangiocar-
cinoma cells [65] and small interfering RNAs (siRNAs) target-
ing the exon 2 of ASPH gene inhibited the expression of ASPH 
and reduced directional motility in HCC cells [22]. In another 
study, mAb against the ASPH C-terminal (ASPH-C) increased 
antibody-dependent cellular cytotoxicity of NK cells on HeLa, 
MCF-7 and HepG2 cells, suggesting the use of this mAb in 
cancer immunotherapy [66]. Considering the above-described 
findings, ASPH may play an important role in the development 
of therapeutic agents for PC.

CONCLUSION

ASPH is overexpressed in many cancer types, including 
PC. It plays an important role in tumor development and 
progression by activating the Notch signaling pathway, pro-
moting mtDNA D-loop mutations/disrupting mitochondrial 
function, and inhibiting the NK cell activity. Different studies 
demonstrated the potential of ASPH as a biomarker and ther-
apeutic target in cancer. Recently, our study has found that the 
Notch signaling pathway is pivotal for exosome secretion and 
biological activity in MIA-Paca2 cell lines. Hence, we hypoth-
esize that ASPH stimulates PC cells to secrete/release specific 
exosomes and acquire invasive properties by activating the 
Notch signaling. Overall, it appears that the ASPH-mediated 
regulation of PC development, progression and metastasis 
may be more complex than originally thought.
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