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Binding energies of quantum dipole in plane

Eugene A. Koval'* and Oksana A. Koval?3-**

'Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Re-
gion, Russia

2Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Moscow Region,
Russia

3Obukhov Institute for Atmospheric Physics, Moscow, Russia

Abstract. We propose a numerical algorithm based on a discrete variable representation
and shifted inverse iterations and apply it to for the analysis of the bound states of edge
dislocation modelled by a quantum dipole in a plane. The good agreement with results
of recent papers of Amore et al [J. Phys. B 45, 235004 (2012)] was obtained. The
error estimates of the previous results of low-lying states energies of other authors were
not known due to limitations of the variational approaches and this paper fills this gap
presenting calculated low-lying bound states energies by non-variational technique. The
probability densities of low-lying states were calculated.

1 Introduction

The aim of this paper is study the low-lying bound states of the straight edge dislocation in solids.
The interaction of electron with such dislocation deformation, oriented along the Z axis, is modelled
by anisotropic potential of the form [1]:

Vio.9) = p“’;(‘”, (1)

where p and ¢ are the polar coordinates, defined in the XY plane, p is the strength of the dipole
potential. It can be realized as a dipole built by bringing two infinite line charges of opposite sign
close together [1].

An anisotropy of an interaction strongly affects the system properties, as it was revealed in physics
of ultracold atoms and polar molecules [2], Rydberg atoms in external fields [3], excitons in semicon-
ductor heterostructures [4], producing exotic stable configurations in ultracold gases [5].

Due to the nonseparability of the potential (1) the quantitative analysis is difficult because tra-
ditional analytical techniques are no longer applicable and effective numerical methods are required
for solving of the full Shrodinger equation. We propose such a numerical algorithm and numerically
solve the corresponding two-dimensional (2D) Schrédinger equation [1]:
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In the units of length % and energy 2'2;" " 2D SE reads:

10 0 1 6 cos(¢) B
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The potential is invariant under reflection about the X axis V(p,#) = V(p,—¢), and due to this
symmetry of the potential the bound states are either even ¥(p,¢) = ¥(p,—¢) or odd (¥(p,¢) =
—%¥(p, —¢)). The potential is illustrated on Fig. 1, demonstrating that for p > 0 the bound states are
allowed in x < 0 region.

As it was noted by Dasbiswas et al [1], from the initial Landauer estimate (-0.102 arb.u.) [6]
of ground state energy (GSE) there were several attempts of other authors [6—11] with different ba-
sis functions to calculate it more precisely within variational approach. The comparison of results
of several real-space discretization methods (RSDM), such as the biconjugate gradient method, the
Jacobi-Davidson algorithm and Arnoldi-Lanczos algorithm, was shown in Ref. [1]. In the paper [1]
it was noted, that the RDSM methods are preferable for low-lying states than variational studies, but
the best GSE value (-0.139 arb.u.) was calculated by RDSM only with 2% accuracy. Amore et al [12]
showed, that variational technique for Slater-type orbitals are converged faster and seems to be more
accurate for the GSE value, than the Coulomb basis set. It was also noted in Ref. [12], that, possi-
bly, bad convergence of variational studies for low-lying states comes from limited accuracy of the
method due to not complete basis of the basis function set. Handy et al [13] proved this statement,
expanding the wave function over a complete basis with the help of an orthogonal polynomial pro-
jection quantization analysis, which substantially decreased the needed for convergence variational
parameters number.

2 Edge dislocation bound states

One of the remained problem is that within variational approach there is no technique for estimating
the accuracy of the results, that depend on the appropriate choice of the form of the trial function. We
fill this gap employing the proposed numerical algorithm for solving the 2D Schrédinger equation. It
is based on the method of shifted inverse iterations and the variation of the discrete-variable method,
proposed in the paper of Melezhik [14] for a solution of the multichannel scattering problem and
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Figure 1. The potential surface of the deformation potential (1).
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applied for study of the 2D scattering of two unpolarized dipoles [15, 16] and the 2D Hydrogen atom
in a tilted magnetic field [17, 18].

The eigenfunctions &,,(¢) = %ei’”‘p of the operator 10 (¢) = % are used as a basis of functions
for wave function expansion over angular variable.

Wave function is expanded as follows:

M WM M
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where f;l}. = 52 = %e‘im("’f"” — is the inverse mathrix to the square matrix (2M + 1) x

QM +1) &,y = En(9)), that is defined on the uniform angular grid ¢; =

In the angular grid’s nodes ¢;: ¥ (p, ¢j) =~ yi(p)] \p-
In representation (4) 2D Schrodinger equation transforms in the system of (2M + 1) coupled
second-order differential equations:

2M+1(where j=0,1,..,2M).

(92
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The nondiagonal matrix of /© = o operator is defined by the expression:

W) = - Z i€ (©6)

j'=-M

Since, expression i / /o must be finite at p = 0, radial components ; vanish at p — 0 and left
boundary condition reads:

¥;(0) = 0. (7)

The bound state wave function natural decay in the infinity impose the right boundary condition:

Yip—0)—0 (j=0,1,...,2M). (8)

To discretize the boundary problem (5, 7, 8) we employ nonuniform grid over radial variable: p, =
pNt,%, (n=1,2,...,N), which nodes are mapped p, € [0,poxy — oo] on a uniform grid ¢, € [0, 1].
The seven-point finite difference approximation of six-order accuracy is used for the derivative. The
matrix eigenvalue problem is solved by the method of inverse iterations with shift. An obtained on
each iteration matrix problem is tackled with the matrix modification of the sweep algorithm for band
matrix.

The algorithm advantages are recapped below. Comparing with variational studies there is the ap-
proximation error estimate of the used wave function expansion (4), that indicates a fast convergence
over the number of angular grid nodes. Obtained matrices has band structure, which allows optimal
resource using. The fast convergence over inverse iterations is confirmed by the small average inverse
iterations number ~ 10, needed for the first six digits remain stable.

With the help of the proposed numerical scheme we calculated up to 6 significant digits the binding
energies of a quantum dipole model in 2D and eigenfunctions of the five low-lying even bound states
and improved the results accuracy of the previous studies [1], proving recent results [12, 13]. In
Table 1 the comparison of the calculated by us with 6-digit accuracy binding energies €, of five
(n =1 -5) low-lying even bound states (3rd column) with the results of other authors, obtained with
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Table 1. The comparison of the calculated by us with 6-digit accuracy binding energies ¢, of five (n = 1 —5)

low-lying even bound states (3rd column) with the results of other authors, obtained with variational techniques

over 2D Coulomb eigenfunctions [1] and over Slater function [12] (the unit of energy is 2';:—{’2).

n g[l1] & [12] €

1 0.0970 0.137741 0.137748
2 0.0328 0.041152 0.041158
3 0.0221 0.019967 0.019973
4 0.0167 0.011852 0.011858
5 0.0119 0.009747 0.009747

Table 2. The dependence of the binding energies ¢, (in the units 2’;’—52) of five (n=1-5) low-lying even bound

states on the number of angular-grid points M.

&
M| n=1 n=2 n=3 n=4 n=>5

6 | 0.137671 0.040562 0.019291 0.011255 0.008853
8 | 0.137747 0.041110 0.019845 0.011702 0.008571
10 | 0.137748 0.041156 0.019957 0.011825 0.009115
20 | 0.137748 0.041159 0.019974 0.011859 0.009747
40 | 0.137748 0.041159 0.019974 0.011859 0.009747

variational techniques over 2D Coulomb eigenfunctions [1] and over Slater function [12] is presented.
The analysis of Table 1 shows the obtained good agreement with papers [1, 12].

In Table 2 the dependence of the binding energies €, (in the units 2’;‘5 2) of five (n = 1-5) low-lying
even bound states on the number of angular-grid points M confirms the fast convergence over angular
grid (M = 20 is enough for 6-digit accuracy).

The corresponding calculated probability densities are presented on Fig. 2. The analysis of Fig. 2
demonstrates, that their shapes correspond to the anisotropic potential form.

3 Conclusion

The bound states of edge dislocation modelled by a quantum dipole in a plane are numerically inves-
tigated with the help of the proposed numerical algorithm based on a discrete variable representation
and shifted inverse iterations. We reproduced the results of other authors [12, 13], obtained by varia-
tional studies, and calculated low-lying states energies with 6-digit accuracy. The obtained probability
densities of low-lying states correspond to the anisotropic potential form.

The authors acknowledge the support by the Russian Foundation for Basic Research,
Grant No. 19-32-80003.
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Figure 2. Probability density plots of five (n = 1,2,...,5) low-lying even bound states. Dark blue regions
correspond to low and bright blue ones to high densities. The quantities are given in atomic units.
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