
Implementation Model of Source Code Generator
Ivan Magdalenić, Danijel Radošević, and Dragutin Kermek

Abstract - The on demand generation of source code and its
execution is essential if computers are expected to play an active
role in information discovery and retrieval. This paper presents a
model of implementation of a source code generator, whose
purpose is to generate source code on demand. The
implementation of the source code generator is fully configurable
and its adoption to a new application is done by changing the
generator configuration and not the generator itself. The
advantage of using the source code generator is rapid and
automatic development of a family of application once necessary
program templates and generator configuration are made. The
model of implementation of the source code generator is general
and implemented source code generator can be used in different
areas. We use a source code generator for dynamic generation of
ontology supported Web services for data retrieval and for
building of different kind of web application.
Index Terms - source code generator, generative programming,
Web service, data retrieval

I. INTRODUCTION

The emphasis of Semantic Web is on semantic data
description, which allows computers to play an active role in
information discovery and retrieval. If computers are expected
to give an automatic response to a user request, in addition to
the semantic description of data it is necessary for computers
to have an additional functionality such as on demand
generation of source code, including its compilation and
execution.

This paper presents an implementation model of a source
code generator (IMSCG). Although IMSCG is developed for
the purpose of dynamic generation of ontology supported Web
services for data retrieval, its definition is general and can be
used in different areas. The role of the source code generator
within Semantic Web applications is to generate source code
for new applications and to enable computers to respond
dynamically depending on a semantically defined user’s
request. The architecture and model of dynamic generation of
ontology supported Web services for data retrieval is already
presented in [1][2], albeit without a detailed description of the
implementation model of the source code generator. We have
also use IMSCG for building a web application [3].

Manuscript received July 11, 2010; revised April 16, and May 31, 2011.
This work has been partially supported by Ministry of Science and

Technology, Croatia, in 2010.
Authors are with the Faculty of Organization and Informatics, Varaždin,

University of Zagreb, Zagreb, Croatia (email:fivan.magdalenic, danijel.
radosevic, dragutin.kermek@foi.hr).

IMSCG uses previously developed scripting model of
application generator (SMG; [4]) for model description, but its
implementation uses new configuration that is separated from
generator's code, meaning that generator is now fully
configurable.

The main intention of this paper is to provide a
implementation model of the source code generator that is
fully configurable and can be easily adopted for many problem
domains. The definition of IMSCG is independent of the
programming language and can be implemented in different
programming languages. However, the implementation of
IMSCG is easier in programming languages which support
recursion. The advantage of using a source code generator thus
defined is rapid and automatic development of a family of
application once necessary program templates and generator
configuration are made. Since the source code generator is
fully configurable, its adoption to a new application is done by
changing the generator configuration and not the generator
itself. The verification of the presented IMSCG is done by its
implementation in Java for the purpose of dynamic generation
of Web services for data retrieval.

The paper is organized as follows: Related work is
presented in section 2. The implementation model of the
source code generator with an illustrative example is presented
in section 3. Section 4 describes the verification of the model
described in section 3. The conclusion is given in section 5.

II. RELATED WORK

Recent advances in Software Engineering have reduced the
cost of coding programs at the expense of increasing the
complexity of program synthesis, i.e. the process of coming up
with the final program. Model Driven Development and
Software Product Lines (SPL) are two cases in point [5]. SPL
provides a means for composing software products that match
the requirements of different application scenarios from a
single code base and can be developed using a variety of
implementation techniques [6]. The well-known concepts in
this area are Generative Programming [7], pre-processor
definitions, components, Aspect Oriented Programming,
Feature-Oriented Programming (FOP) [8],[6], Aspectual
Feature C Modules (AFMs) [9] and frames like XVCL [10].
Using SPL helps to increase the software making productivity,
by producing it in a way comparable to industrial production.
By using concepts of Generative Programming (GP), SPL can
be fully automated, which is an important characteristic of
IMSCG.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 7, NO. 2, JUNE 2011 71

1845-6421/11/8217 © 2011 CCIS

FOP treats software features as fundamental units of
abstraction and composition. IMSCG uses application
specification that defines which program code templates will
be used in the final output. This is similar to FOP, but at a
lower lever of definition of features.
The way in which pre-processor definitions are used in
making problem-domain adjustments is presented in [6]. In
IMSCG problem-domain adjustments are made by changing
the configuration of the source code generator, which does not
affect the existing program code templates.
IMSCG is oriented to working with code-fragment-sized
components. The same approach is used in [11]. Other GP
based projects, like Uniframe [12], [13], avoid descending to
code-fragment-sized components.
Some approaches are based on manipulation or generation of
programs within the language, which requires a language with
metalanguage capabilities. Languages like `C (Poletto 1999)
[14] and DynJava [15], provide such facilities. C++ provides a
solution with template metaprogramming [7], where generated
programs are expressed as parameterized types, and code is
produced by a compiler through inlining [6]. IMSCG avoids
inlining specific to a particular programming language, which
enables the generation of source code in any programming
language.
The main specific difference between IMSCG and other
template engines, such as Velocity [16], is in moving the
instruction for handling templates from program code
templates into a separate file that is used for configuration of
the source code generator.
Our approach in building the source code generator has some
similarities with frames-based approaches, especially XVCL
[10]. Both models are hierarchic, implemented as a tree-like
multi-level structure of code templates (XML frames in XVCL
[10]). Also, the basic principle in both models is that lower
template levels adapt their superposed templates during the
process of generation. This is opposite to standard inheritance
in object-oriented programming, where lower-level classes
inherit the members of superposed classes. However, the
differences between our approach and that used in XVCL are
even more important: our specification is separated from
templates (while in XVCL specification among frames is
shared); there is no need to specify semantic elements like
class or variable names in specification, because the generator
works as a macro mechanism that can produce all kinds of
textual outputs (e.g. documentation as well as the program
code); finally, all templates are reusable, i.e. can be used at
different parts and hierarchic levels while the XVCL frames
contain the information about their superposed frames.

III. IMPLEMENTATION MODEL OF THE SOURCE CODE
GENERATOR

The main components of the source code generator are
presented in Fig. 1. Inputs to the source code generator are
program code templates, application specification, and
configuration of the source code generator. The output of the
source code generator is a string representation of the program
code.

Fig. 1. Model components of source code generator

A. Program code templates

Program code templates are code fragments stored in
separate files. Program code templates contain the program
source code and replacing marks. Replacing marks are user
defined names separated with special characters. Replacing
marks are enclosed with a special character #, e.g.
#replacingMark1#. Examples of five program code templates
are shown in Fig. 2. These program code templates are made
for the purpose of retrieving data from different data sources.
The replacing marks in program code templates in Fig. 2 are
italicized.
As shown in Fig. 2, replacing marks are used for different
purposes: for type and variable names (e.g. #argumetType#
#argument#), method names (e.g. #methodName#), pieces of
data (e.g. #username# and #password#) but also for
representing larger pieces of code (e.g. #dataSource# should
be replaced by source code for retrieving data from a different
kind of data source and #filters# by code to implement data
filters) where lower-level templates are used.

public void (){

}

 {
 databaseAccessObject.Xml d=
 new databaseAccessObject.Xml();
 d.setPath(" ");

 while (dx.hasNext(){
 System.out.print("Model="+modelName+
 ":price="+d.get(" "));
 }
 }

 {
 databaseAccessObject.Xml d=
 new databaseAccessObject.Xml();
 d.setCredentials(" "," ");
 d.setTableName(" ");

 while (dx.hasNext(){
 System.out.print("Model="+modelName+
 ":price="+d.get(" "));
 }
 }

d.setFilter(" ",);
Fig. 2. Examples of program code templates

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 7, NO. 2, JUNE 2011

B. Application specification

The application specification is a list of property-value
pairs. The application specification defines one application
from a family of possible applications defined by
configuration of the source code generator. The application
specification and configuration of the source code generator
define the process of source code generation by choosing the
appropriate program code template and by providing concrete
values for replacing marks in program code templates.

An example of application specification is shown in Fig.
3. It specifies a method named “listCarPrices”. The method
has two input arguments: “modelName” of type “String” and
“modelAge” of type “int”. It retrieves prices of cars from two
data sources. The first data source is an XML file stored in
“C:\files\Cars.xml”. The second data source is a table with the
name “new_cars” in the Oracle database. The part of
specification which defines access to the Oracle database has
more properties compared to the data source of xml type. In
this example, the application specification specifies the
argument name because it is used later as a value in property
filterValue. Other types of application can generate argument
names automatically.

methodName:listCarPrices
argumentType:String
argument:modelName
argumentType:int
argument:modelAge
dataSourceType:xml
source:C:\\files\\Cars.xml
filterName:model
filterValue:modelName
filterName:age
filterValue:modelAge
response:price
dataSourceType:oracle
source:new_cars
username:dw
password:dw
filterName:car_name
filterValue:modelName
filterName:car_age
filterValue:modelAge
response:product_price

data
source

data
source

argumen
ts

method
filters

filters

Fig. 3. Example of application specification

Fig. 4. Example of application specification diagram

The application specification has a hierarchic structure. If
a certain property is related to another property, it can be listed
only if the related property comes before in the list. The
hierarchy structure can be presented in many ways. This paper
uses a simple structure diagram for presentation of a hierarchy
structure of application specification (for a similar approach
see: Limbourg and Kochs [17]). An example of such a
structure diagram is shown in Fig. 4 for an example of
application specification presented in Fig. 3.

Rectangles in Fig. 4 represent property names. Properties

marked by [] are containers for lower-level properties. The
usage of property values is defined in configuration of the
source code generator.

C. Configuration of source code generator

The configuration of the source code generator defines
what source code generator have to do with replacing marks in
program code templates. The main difference between the
approach in this paper and other approaches is that the
generator’s executable code does not have to be changed for
particular problem domains and that the entire logic of
replacement of program code templates is stored in the
configuration of the source code generator. The configuration
of the source code generator defines a family of similar
applications.

The essential part of the procedure of generating source
code is the replacement of replacing marks with a value from
its specification or with another program code template.

In the former case it is necessary to clearly define which
property value from the application specification is going to be
used at a certain point since each property can occur multiple
times (for example, methods may have more arguments with
different data types).

In the latter case it is necessary to determine which
program code template has to be called and used instead of the
replacing mark. In other words, it is necessary to create a
specific way to manage the selection of one program template
code between all the available ones. The conventional
approach to this problem is to store the logic of selection of a
certain program code template into the executable code
generator or into program code templates. Subsequent changes
are difficult because they require recompiling of the source
code generator executable code. Therefore, if the selection
logic is stored in program code templates and changes are
required, they have to be changed or new program code
templates have to be made. This paper proposes the creation of
the source code generator that has selection logic stored in a
separate configuration file. The source code generator
performs the steps shown in Fig. 5, which are described
simultaneously with the parameters describing the
configuration file of the source code generator. After the
source code generator loads the program code template, it
performs a search for replacing marks and performs steps for
each replacing mark presented in Fig. 5. An illustrative
example of all the steps is shown in the next subsection.

MAGDALENIĆ et. al.: IMPLEMENTATION MODEL OF SOURCE CODE GENERATOR 73

Fig. 5. Steps in replacing marks replacement

For each replacing mark in step 1 the source code

generator searches for its definition in the configuration of the
source code generator.

A replacing mark is replaced with a property value from
the application specification if the definition of replacing
marks has syntax:

replacingMark_specification=propertyName

where replacingMark is the name of the replacing mark in

the program code template, _specification is the keyword for
replacement with the property value from the application
specification, and propertyName is the property name from the
application specification whose value is used to replace the
replacing mark. If there are more properties with the same
name, the source code generator takes the value form the
property that occurs first in the list.

When this step is completed, the source code generator
handles the next replacing mark. If a replacing mark has to be
replaced with a program code template, the source code
generator performs steps 2, 3, 4, 5 and 6 from Fig. 5.

Step 2 offers the implementation of for statement. For
each defined property occurrence in the application
specification, a program code template is called, which name
is formed in steps 3 and 4. The syntax is following:

replacingMark_foreach=propertyName

where replacingMark is the name of the replacing mark in

the program code template, _foreach is the keyword for

implementation of for statement, and propertyName is the
property name from the application specification.

In step 3, the source code generator reads the name of the
program code template from the configuration of the source
code generator. The definition in the configuration of the
source has the following syntax:

replacingMark_name=value

where replacingMark is the name of the replacing mark in
the program code template, _name is the keyword for the
definition of the program code template name, and value is the
actual name of the program code template that will be called.
This definition is mandatory for replacing marks which are
changed with a program code template. All program code
templates have the extension .code.

Step 4 is optional and enables the forming of the program
code template name by concatenating the name formed in step
3 with values from application specification properties. The
syntax is following:

replacingMark_virtual_1=propertyName_1 (1)
replacingMark_virtual_2=propertyName_2 (2)

…
replacingMark_virtual_n=propertyName_n (3)

where replacingMark is the name of the replacing mark in

the program code template, _virtual is the keyword for the
definition of the suffix of the program code template name, _n
is the sequence number of the suffix, and propertyName_n is
the property name from the application specification whose
value is concatenated with the program code name from step
3.

This way of name formation offers a new functionality
and introduces program logic into the process of calling
program code templates. Since the name of a program code
template is formed with values of properties, the generation
process is controlled by the application specification. The
names of called program code templates are defined
dynamically and are not known before the process of source
code generation. This process can be used to implement if
statement by choosing an appropriate program code template
depending on the values of properties from the application
specification, which is an important feature of IMSCG.

Step 5 offers additional source code processing, when all
replacing marks are replaced by another program code
template or by property values. An example of such
processing is the removal of the last comma in some
enumerations. This step is used for handling exceptions that
cannot be solved by appropriate program code templates.
Functions called in this step have to be implemented within
the source code generator. The syntax is following:

replacingMark_function=value

where replacingMark is the name of the replacing mark in

the program code template, _function is the keyword for
calling a function, and value is the function name implemented
in the source code generator.

74 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 7, NO. 2, JUNE 2011

In step 6 each replacing mark is replaced with string
representation of source code from called program code
template. Once it has been decided which program code
template is going to replace which replacing mark, the source
code generator first searches for replacing marks in that
program code template and performs the steps from Fig. 5.
The process of handling replacing marks is recursive and the
program code template that is called last, returns the string
representation of source code etc.

Fig. 6 shows the configuration of the source code
generator for generation of a method whose functionality is
retrieving prices from different data sources and printing them
on the screen. The meaning of the configuration of the source
code generator presented in Fig. 6 is as follows. The replacing
mark #arguments# is replaced with a program code template
with the name argument.code as many times as the property
argumentType occurs in the application specification (as
shown in Fig. 8). For the last called program code template a
function is called which will remove the last comma in the
string representation of source code.

arguments_foreach:argumentType
arguments_name:argument
arguments_funtion:comma

datasource_foreach:dataSourceType
datasource_name:dataSource
datasource_virtual_1:dataSourceType

filters_foreach:filterName
filters_name:filter

methodName_specification:methodName
argumentType_specification:argumentType
argument_specification:argument
source_specification:source
response_specification:response
username_specification:username
password_specification:password
filterName_specification:filterName
filterValue_specification:filterValue

- configuration for
replacing mark
#arguments#

- configuration for
replacing mark
#datasource#

- configuration for
replacing mark

#filters#

- configuration
for replacing
marks with
values from
application

specification

Fig. 6. Example of source code generator configuration

The replacing mark #datasource# is replaced with a

program code template with the name
dataSourcePROPERTYVALUE.code, where
PROPERTYVALUE is the value of property dataSourceType.
This program code template is called as many times as the
property dataSourceType occurs in the application
specification (as shown in Fig. 9). The replacing mark
#filters# is replaced with a program code template with the
name filter.code as many times as the property filterName
occurs in the application specification.

D. Illustrative example of source code generation

An example of the process of source code generation
using the presented model is shown in Fig. 7, 8, and 9. In this
example program templates from Fig. 2, application

specification from Fig. 3, and configuration of source code
generator from Fig. 6 are used.

Fig. 7 shows how the replacing mark #methodName# is
replaced with a value from the application specification. The
field line marked with 1 refers to step 1 in Fig. 5.

Fig. 7. Example of the source code generation process – Part 1

Fig. 8 shows how the replacing mark #arguments# is

replaced twice with the program code template
argument.code, because property argumentType occurs twice
in the application specification (steps 2, 3, 5 and 6 from Fig.
5).

Fig. 8. Example of the source code generation process – Part 2
In the second program code template argument.code is

removed comma by calling a function that is built into the
source code generator and defined in the configuration of the

MAGDALENIĆ et. al.: IMPLEMENTATION MODEL OF SOURCE CODE GENERATOR 75

source code generator. Numbered field lines show which step
from Fig. 5 is performed.

Fig. 9 shows how the replacing mark #dataSource# is
replaced with program code templates dataSourcexml.code
and dataSourceoracle.code (steps 2, 3, 4, and 6 from Fig. 5).

method.code
public void listCarPrices(String modelName, int modelAge){

#dataSource#
}

generated source code
public void listCarPrices(String modelName, int modelAge){
{

databaseAccessObject.Xml d=
new databaseAccessObject.Xml();

d.setSource("C:\\files\\Cars.xml");
d.setFilter("model", modelName);
d.setFilter("age", modelAge);
while (dx.hasNext(){

System.out.print("Model="+modelName+
":price="+d.get("price"));

}
}
{

databaseAccessObject.Oracle d=
new databaseAccessObject.Oracle();

d.setSource("new_cars");
d.setFilter("car_name", modelName);
d.setFilter("car_age", modelAge);
while (d.hasNext(){
System.out.print("Model="+modelName+

":price="+d.get("product_price"));
}

}
}

datasource_foreach:dataSourceType

2

dataSourcexml.code
{

databaseAccessObject.Xml d=
new databaseAccessObject.Xml();

d.setPath("#source#");
#filters#
while (dx.hasNext(){

System.out.print("Model="+modelName+
":price="+d.get("#response#"));

}
}

dataSourceoracle.code
{

databaseAccessObject.Xml d=
new databaseAccessObject.Xml();

d.setCredentials("#username#","#password#");
d.setTableName("#source#");
#filters#
while (dx.hasNext(){

System.out.print("Model="+modelName+
":price="+d.get("#response#"));

}
}

2

dataSourceType:xml
3

dataSourceType:oracle

2

3

datasource_name:dataSource

datasource_virtual_1:dataSourceType

datasource_name:dataSource

4

4 4

datasource_virtual_1:dataSourceType

4

processing of all replacing marks and
program code templates

dataSourcexml.code and
dataSourceoracle.code

6

dataSourceType:xml dataSourceType:oracle
3 3

Fig. 9. Example of the source code generation process – Part 3

76 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 7, NO. 2, JUNE 2011

The configuration line dataSource_name:dataSource
defines that the beginning of the name of the program code
template is dataSource. The configuration line
dataSource_virtual_1:dataSourceType defines that the value
of property with the name dataSourceType is used to
concatenate with the already defined beginning of the name of
the program code template. In the first case that value is xml,
and in the second case oracle. The processing of replacing
marks in program code templates dataSourcexml.code and
dataSourceoracle.code is not described in detail. Fig. 9 shows
the final result of the source code generation process.

Filled rectangles in Fig. 7, 8, and 9 represent pieces of
program specification, filled rectangles with round corners
represent the configuration of the source code generator, while
rectangles which contain replacing marks in '#' signs represent
program code templates. The generated source code is
generated by the replacement of replacing marks with lower-
level templates or specification values by using rules
described in the previous section.

E. Generative application development

Generative application development is the process of
parallel development of generators, together with target
applications (Czarnecki and Eisenecker [7]). It is implemented
in IMSCG, as shown in Fig. 10:

The starting point of generative application development
with IMSCG is the application prototype. Program code
templates are extracted from the prototype, where features are
replaced by replacing marks. The starting specification should
define the application prototype. The configuration defines
connections between the specification and templates.
Therefore the starting generator should replicate the prototype
application. After that the generative application development
defines levels of generator refinement, which are connected to
developers’ roles:

- the domain engineer's role is responsible for the
development of generator, including its configuration and
testing;

- the software programmer’s role is responsible for
application prototypes and development of program code
templates;

- the user’s role is responsible for defining features of
target applications in form of application specification and
testing of generated applications.

It is important that the user’s role should deal with the
application specification, which has to be separated from the
program code level.

Generative application development faces to issues due to
model consistency and generated programs correctness. The
main issues are as follows:

• Mistakes in specification. Using undefined attributes,
unadmitted attribute values or missing the attribute
hierarchy. Some could be avoided by generating
system, but some remains for the testing phase.
These mistakes are typical for the user's role.

• Improper code templates. Syntax/logical errors in
code templates remains for the testing phase, while

using of undefined replacing marks could be detected
by the generating system. Software programmer’s
role is responsible for this kind of issues.

• Improper configuration. Syntax mistakes like
referencing of non-existing templates or usage of
connections that do not appear in Templates in
configuration could be checked by the generating
system. On the other hand, configuration is covered
by the domain engineer's role, so logic mistakes at
that level could lead to useless generated code.

The issues could be reduced by the appropriate generative
application development process, including testing phase on
different levels of generators and generated applications.

Fig. 10. Generative application development

IV. IMSCG VERIFICATION

The implementation model of the source code generator
presented in this paper is verified within implementation of
the application for dynamic generation of ontology supported
Web services for data retrieval and different web applications.
The architecture and the model of dynamic generation of
ontology supported Web services to retrieve data are
presented in [1] and [2]. The basic idea is presented in Fig. 11.

User defines request where semantic meaning of data are
represented using ontology classes or ontology properties. The
next step is processing of user request and building of
application specification of Web service, which is input to
source code generator. The configuration of source code
generator defines how to produce source code from program
code templates and application specification. The generated
source code is compiled, deployed to web container, and make
available to use.

MAGDALENIĆ et. al.: IMPLEMENTATION MODEL OF SOURCE CODE GENERATOR 77

Fig. 11. Model of dynamic generation of ontology supported Web
services for data retrieval

This IMSCG is implemented in the programming language

Java. The main part of the model implementation is recursive
function, which handles replacing marks in programming
code templates as described in the subsection “Configuration
of the source code generator”. The generated Web services are
used for data retrieval from data sources of the following
types: XML, MS Excel and RDBMS Oracle. We have
accomplished that specification of one Web service has in
average 23,8 times less definition elements with regard to
definition elements in generated source code. Definition
elements in source code are keywords, variables, and
constants.

For the purpose of building web application, we made an
implementation of IMSCG in Python. We use Python’s
flexibility as a scripting language, together with the object-
oriented possibilities. The base for implementing generators is
usage of Python lists. It's important that Python lists can
contain elements of different and even non-compatible types.
The lists contain configuration, specification, and code
templates.

V. CONCLUSION

This paper presents an implementation model of the
source code generator. Its purpose is to enable easy
implementation of the source code generator in any
programming language and to use it for generation of a
complete application in different problem domains.

The presented model has many similarities to the
approaches listed in the “Related work” section. It is a
template engine like Velocity, which works with code-
fragment-sized components and its principle of specification
of application is similar to Feature-Oriented Programming.

What distinguishes it from other approaches is the extraction
of template engine logic from program code templates.
Namely, program code templates in the presented model
contain only one type of replacing marks. The replacing logic
is stored in a separate configuration file and is loaded by the
source code generator. The main advantage of this approach is
greater reusability of program code templates, which can be
used in different problem domains by changing the
configuration of source code generator. Another advantage is
the configurable source code generator, where replacing logic
is not hardcoded and, therefore, can easily be changed.

The practical applicability of the presented model is
tested on the generation of Web services for data retrieval and
different web application.

In our future work we plan to focus on problems of
checking consistency of the model implementation.

REFERENCES

[1] I. Magdalenić., D. Radošević, Z. Skočir, „Dynamic Generation
of Web Services for Data Retrieval Using Ontology,“
Informatica, Volume 20 Issue 3, pp. 397-416, 2009. Available
at: http://www.mii.lt/informatica/htm/INFO755.htm

[2] I. Magdalenić, B. Vrdoljak, Z. Skočir, “Towards Dynamic Web
Service Generation on Demand,” Proceedings of the
International Conference on Software, Telecommunications
and Computer Networks 2006, September 2006.

[3] D. Radošević, B. Kliček, J. Dobša, „Generative Development
Using Scripting Model of Application Generator,” DAAAM
International Scientific Book 2006, DAAAM International,
Vienna, Austria 2006.

[4] D. Radošević, T. Orehovački, M. Konecki, „WEB oriented
applications generator development through reingineering
process,” DAAAM International Scientific Book 2007,
DAAAM International, Vienna, Austria 2007.

[5] S. Trujillo, M. Azanza, O. Diaz, „Generative
metaprogramming,“ GPCE '07: Proceedings of the 6th
international conference on Generative programming and
component engineering, October 2007.

[6] M. Rosenmüller, N. Siegmund, G. Saake, S. Apel, „Code
generation to support static and dynamic composition of
software product lines,“ GPCE '08: Proceedings of the 7th
international conference on Generative programming and
component engineering, October 2008.

[7] K. Czarnecki, U. Eisenecker, Generative programming:
methods, tools and applications, Addison-Wesley, 2000.

[8] C. Prehofer, „Feature-Oriented Programming: A Fresh Look at
Objects,“ Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 1241 of Lecture
Notes in Computer Science, pp. 419–443. Springer Verlag,
1997.

[9] S. Apel, T. Leich, G. Saake, „Aspectual Feature Modules,“
IEEE Transactions on Software Engineering (TSE), 34(2):162–
180, 2008.

[10] H. Zhang, S. Jarzabek, „XVCL: a mechanism for handling
variants in software product lines,” Science of Computer

78 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 7, NO. 2, JUNE 2011

Programming, Volume 53, Issue 3 (December 2004) Pages:
381 – 407

[11] M. L. Griss, „Product line architectures,“. In G. T. Heineman,
& W. T. Councill (Eds.), Component-based software
engineering: Putting the pieces together (pp. 405-420). Boston:
Addison-Wesley, 2001.

[12] A.M. Olson, R.R. Raje, B.R. Bryant, C.C. Burt, M. Auguston,
„UniFrame: a unified framework for developing service-
oriented, component-based, distributed software systems,” In
Z. Stojanovic and A. Dahanayake (eds.), Service-Oriented
Software System Engineering: Challenges and Practices
(Chapter IV, pp. 68-87). Hershey,PA: Idea Group Publishing,
2005.

[13] Uniframe web site (http://www.cs.iupui.edu/uniFrame/)

[14] M. Poletto, W.C. Hsieh, D.R. Engler, M.F. Kaashoek, „`C and
tcc: A language and compiler for dynamic code generation,“
ACM Transactions on Programming Languages and Systems,
21(2), 1999, 324-369.

[15] Y. Oiwa, H. Masuhara, A. Yonezawa, „DynJava: type safe
dynamic code generation in Java,“ JSST Workshop on
Programming and Programming Languages, PL2001, Tokyo,
2001.

[16] Velocity web site (http://velocity.apache.org/).

[17] P. Limbourg, H.D. Kochs, „Multi-objective optimization of
generalized reliability design problems using feature models—
A concept for early design stages,” Reliability Engineering &
System Safety, Volume 93, Issue 6, Pages 815-828, 2008.

Ivan Magdalenić, PhD is an assistant at the University of Zagreb,
Faculty of Organization and Informatics in Varaždin. His research

interests are in e-Business, Web technology,
Semantic Web technology and generative
programming. He has been involved in several
projects of e-business adoption in Croatia. He
is a member of National council for e-
Business.

Danijel Radošević, PhD, is an associate
professor at University of Zagreb, Faculty of

Organization and Informatics. He teaches at different programming
courses at undergraduate studies and
professional studies. His Ph.D. thesis was
focused on usage of scripting languages in
generative programming, while current
research deals with programming languages,
generative programming and educational
software.

Dragutin Kermek joined the University of
Zagreb Faculty of Organization and
Informatics in 1992 as a teaching assistant. He
holds a Ph.D. (1999), M.Sc. (1992) and B.Sc.
(1986) in Information Science from The
University of Zagreb Faculty of Organization
and Informatics Varaždin. He is an Associate
Professor from 2007, and has served at Faculty
of Organization and Informatics as a Vice dean
for Academic affairs from academic year
2005/2006 to 2010/2011. He has taught

courses: Advanced Web technologies and Services, Web Design and
Programming, Design Patterns, Operating Systems, Chosen chapters
from Component architectures and technologies, E-learning Systems,
Chosen chapters on instructional design and mentoring in e-
education. He has been project manager of several e-learning
projects related to developing, programming, and implementation of
e-Learning platforms and web based information system solution,
using electronic media to provide trainings and e-Learning platforms
expertise.

MAGDALENIĆ et. al.: IMPLEMENTATION MODEL OF SOURCE CODE GENERATOR 79

