
a Corresponding author: gtllei@ynufe.edu.cn 

Research on Computing Efficiency of MapReduce in Big Data 
Environment 

Tilei Gao1, Ming Yang1, Rong Jiang1, Yu Li1, Yao Yao1,a 

1School of Information, Yunnan University of Finance and Economics, Kunming 650221, China 

Abstract. The emergence of big data has brought a great impact on traditional computing mode, the distributed 
computing framework represented by MapReduce has become an important solution to this problem. Based on the 
big data, this paper deeply studies the principle and framework of MapReduce programming. On the basis of 
mastering the principle and framework of MapReduce programming, the time consumption of distributed computing 
framework MapReduce and traditional computing model is compared with concrete programming experiments. The 
experiment shows that MapReduce has great advantages in large data volume. 

1 Introduction 

According to the data universe report of International 
Data Corporation (IDC): in 2008, the global data volume 
was 0.5ZB and 2010 was 1.2ZB and human beings 
officially enter the era of ZB. What is even more striking 
is that the volume of global data will still maintain a high 
growth rate of 40% every year before 2020. It doubles 
every two years or so, and is expected to exceed 35ZB by 
2020, 70 times more than in 2008 [1]. It can be said that 
the big bang of data. 

Big data, in addition to the huge amount of data, big 
data also has the characteristics of data diversification, 
data processing speed, low data value density and 
authenticity and it is summed up as the “5V” feature of 
big data [2]. The key technologies of big data processing 
include acquisition, pre-processing, storage and 
management, analysis, mining and display, etc. [3]. For 
big data, traditional computing mode can no longer meet 
the needs of the new era. Therefore, the new computing 
mode MapReduce programming framework arises at the 
historic moment. MapReduce is a model for massive data 
parallel processing proposed by Google in 2004, which is 
simple to use, highly scalable and fault-tolerant [4]. 
Therefore, it is widely used in the development model of 
parallel computing in large-scale computer cluster. By 
comparing with the traditional calculation method, the 
efficiency of MapReduce is analysed, and the application 
scenario of MapReduce programming framework is given. 

2 Related work 

MapReduce model is simple, and many problems in 
reality can be expressed by MapReduce model. As a 
result, the model has received great attention immediately 
after its publication, and has been widely used in 

bioinformatics, text mining and other fields. Lin Yong et 
al. [5] apply MapReduce technology to the log data 
analysis of a project platform, and the experimental 
results prove that MapReduce can solve the inefficiency 
problem faced by the single machine of Web log 
processing better, and can integrate computer resources 
better. Mi Yunlong et al. [6] proposed a parallel algorithm 
for granular concepts cognitive learning based on 
MapReduce framework, and established a granular 
concepts cognitive computing system from the 
perspective of extension and connotation respectively, 
and then studied the given object set or attribute set. Zhou 
Tao et al. [7] proposed a massive image data processing 
model based on MapReduce parallel framework, and 
applied MapReduce parallel framework to the field of 
graphics and image processing. Yang Lingyun et al. [8] 
proposed a big data financial credit evaluation model 
based on MapReduce in the supply chain, and applied the 
MapReduce computing framework to the financial big 
data domain. In addition, it has been widely studied in 
many fields, such as information security [9], data audit 
[10], and text data statistical analysis [5]. Big data 
processing processes such as app, shopping habits, 
personality analysis, constellation testing, genetic maps, 
and social networks are also widely used. 

3 MapReduce 

The reference model for the overall architecture of big 
data is shown in Figure 1. The core of the reference 
model is the Big Data Storage Framework (HDFS) [11, 
12] and the Big Data Processing Framework 
(MapReduce). 

 

    
 

, 0 (201Web of Conferences
CSET 2018

https://doi.org/10.1051/itmconf/201926030022ITM 6 9)3002 

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 



 

 

Figure 1. Big data overall architecture reference model 

MapReduce is a software framework for distributed 
parallel computing. It is responsible for the operation of 
massive data and consists of map function and reduce 
function, runs on large clusters composed of ordinary PC 
and is compatible with many languages. Generally 
speaking, MapReduce is a cheap and general distributed 
computing framework. Map function is responsible for 
task decomposition, and reduce function is responsible 
for the synthesis of the calculated results of the 
decomposed tasks.  

The MapReduce framework runs on key pairs such as 
key value. Map decomposes the original input into a set 
of intermediate key-value pairs, the reduce process then 
synthesizes the result into the final output, which is called 
a job in MapReduce. A job is composed of several tasks, 
including a number of map tasks and several reduce tasks. 
The map task then processes these key-value pairs in 
complete parallel. The framework sorts the output of the 
map (that is, the decomposed key-value pairs) and inputs 
the results to the reduce task. 

MapReduce includes not only map and reduce phases. 
There are also a number of processes between common 
maps and reduces, including partition, sort, combine, 
copy, merge, and so on. The specific process is shown in 
Figure 2. Next, we will introduce the steps of MapReduce 
by counting the number of words. 

 

Figure 2. MapReduce workflow 

 

First, create two text files as input examples. 
Step 1: map. The two input text files are the two split: 

split 0 and split 1 in the diagram. The two splits are 
allocated to two Mapper by default, and each split 
corresponds to a mapper. In this step, the contents of the 
file are decomposed directly into words and 1, where the 
word is the main key, followed by the number 1 which 
corresponds to the value.  

Step 2: partition. According to the difference of Key, 
separate the data, and ensure the uniqueness of Key. The 
common Partition method is Hash. In the figure, Partition 
1 will be ready for Reducer 1, and Partition 2 is for 
Reducer 2. 

Step 3: sort. In fact, this process is not necessary and 
can be handled according to the needs of the customers. 
After partition, not all parts are ordered. To ensure that all 
parts are ordered, sort step is added. 

Step 4: combine. This process occurs after the output 
of the preceding Map. The aim is to calculate the result 
before it is sent to Reducer to reduce the size of the file 
and facilitate subsequent transmission. Also, this step is 
not necessary. 

Step 5: copy. Copy process downloads data belonging 
to its own partition from the Reducer node to each 
mapper node via http. This step will prepare data for 
Reducer. 

Step 6: merge. As shown in the previous step, the files 
that Reducer gets are downloaded from different Mappers, 
and the merge step merges them into one file. 

Step 7: reduce. Based on the above calculation process, 
the final result is given. It is the last step. 

4 Experimental analysis 

4.1 Experiment 

The content of this experiment is programming to 
calculate the mean and variance of multiple data. The 
traditional programming method and MapReduce 
programming method are respectively calculated. 
Calculating the amount of data increased from 10 
thousand to 10 million, calculating the time consumed by 
two programming modes. In the experiment, when the 
initial data was at 10 thousand, MapReduce consumed 
0.389 seconds more than the traditional method. With the 
increase of data volume and the amount of data between 
400 thousand and 500 thousand, the two methods 
consume the same time. As the amount of data continues 
to grow, MapReduce starts to take significantly less time 
than traditional methods, and the larger the amount of 
data, the greater the difference between the two. The 
calculated data and results are shown in Tables 1 and 3. 

Table 1. Calculated data 

 1 100 300 400 500 600 700 800 900 
T1 0.031 2.781 10.242 12.664 15.995 19.005 21.876 24.320 29.963 
T2 0.42 2.234 7.457 8.521 9.664 03.061 15.270 16.181 20.460 

Results (T1-T2) -0.389 0.547 2.767 4.143 6.331 5.944 6.606 8.139 9.563 

 

    
 

, 0 (201Web of Conferences
CSET 2018

https://doi.org/10.1051/itmconf/201926030022ITM 6 9)3002 

2



 

In the table, the number of data involved in the first 
operation is 10000. The amount of time consumed in the 
table is seconds. T1 represents the time consumed by 
traditional methods, and T2 represents the time consumed 
by the MapReduce method. 

 

Figure 3. Comparison of calculation results 

Figure description:  
The magnitude of the abscissa data unit: ten thousand.  
The ordinate size unit: second. 

4.2 Analysis 

In this experiment, we only carry out mathematical 
operations of mean and variance of data. In the case of 
small amount of data, the traditional computing method 
has obvious advantages. But with the increasing amount 
of data, the difference between the traditional calculation 
and MapReduce method is shrinking. When the amount 
of data reaches 400 thousand, the time consumed by the 
two is the same, and the result is shown in Figure 4. As 
the amount of data continues to grow, the time consumed 
between MapReduce and traditional computed queries 
increases significantly as the amount of data increases, as 
shown in Figure 5. That is, the larger the amount of data, 
the more dominant MapReduce computing is, and the less 
time it takes than traditional computing methods. 

The experiments shows that the MapReduce 
programming mode does not increase efficiency under the 
condition of small amount of data. Since Map and Reduce 
processes consume time, they consume even more time. 
But with the increasing amount of data, the advantages of 
MapReduce can be reflected. Therefore, to use 
MapReduce, we need to decide whether to choose 
according to the actual amount of data. 

 

Figure 4. Comparison of calculation results with small amount 
of data 

 

Figure 5. Comparison of calculation results with large amount 
of data 

5 Conclusion 

In the face of massive data, the time complexity of 
traditional computing mode has increased to an 
unbearable level. Distributed computing, led by cloud 
computing, has become an important way to solve 
massive data computing. As the core computing 
framework of cloud computing, MapReduce becomes the 
key technology to solve distributed computing. 
Traditional research has focused on the MapReduce 
programming pattern itself or the application domain, but 
little on its efficiency and application environment. For 
this reason, based on the big data, this paper deeply 
studies the principle and framework of MapReduce 
programming. The advantages of MapReduce are verified 
by concrete experiments, and the advantages are analyzed, 
and the concrete conclusions are given: for the actual 
operation, in the case of small amount of data, because 
Map, Reduce, and distributed machine-to-machine 
communication processes themselves take a certain 
amount of time, the total computational time will exceed 
the traditional computational method. When the amount 
of data is large enough, MapReduce can show its huge 
advantage in computing power. The larger the amount of 
data, the more obvious the advantage is. However, this 
paper only verifies the advantage of MapReduce by 
calculating the mean and variance of massive data, and 
there is still a certain distance from the actual application 
scenario. Subsequently, we will transfer the operation to 
the actual application scenarios to study how MapReduce 
can better play its computing advantages in practical 
applications. 

Acknowledgement 

This work was supported by National Natural Science 
Foundation of China (Nos.61379032, 61763048, 
61263022, 61303234, 61662085), National Social 
Science Foundation of China (No.12XTQ012), Science 
and Technology Foundation of Yunnan Province 
(No.2017FB095), Yunnan Province Applied Basic 
Research Project(No.2016FD060), Science Research 
Project of Yunnan Education (Nos.2017ZZX001, 
2017ZZX227), Key Project of Scientific Research of 
Yunnan Education (2015Z018), Provincial Scientific and 
Technological Innovation Team Project of Yunnan 

  

    
 

, 0 (201Web of Conferences
CSET 2018

https://doi.org/10.1051/itmconf/201926030022ITM 6 9)3002 

3



 

University (2017HC012), the 18th Yunnan Young and 
Middle-aged Academic and Technical Leaders Reserve 
Personnel Training Program (No.2015HB038), Research 
Project of Yunnan University of Finance and Economics 
(N0. 80025092472). 
The authors would like to thank the anonymous reviewers 
and the editors for their suggestions. 

References 

1. Chen Mingjie. Influence and requirement of archival 
modernization in big data era [J]. Archives 
Management, (6): 48-49 (2013). 

2. Chen Min Tao. Analysis of the characteristics of big 
data [J]. Computer Knowledge and Technology, 13 
(36): 237-239 (2017). 

3. Yang Gang, Yang Kai. Review of Key Processing 
Techniques for Large Data [J].Computer and Digital 
Engineering, 44 (4): 694-699 (2016). 

4. Tang Bing, He Haiwu. MapReduce Parallel Model 
Based on Tree Structure [J].Computer Science, 42 
(11): 65-67 (2015). 

5. Zong Feng. Research on the Statistical Method of 
Massive Text Data Based on MapReduce [J]. Journal 
of Shandong Elite College, (2017). 

6. Mi Yunlong, Li Jinhai, Liu Wenqi, et al. Research on 
Granular Concept Cognitive Learning System under 
MapReduce Framework [J]. Journal of Electronics, 
46 (2): 289-297 (2018). 

7. Zhou Tao, He Qibei, Huang Guangming, et al. 
Research on Massive Image Processing Model Based 
on MapReduce [J]. Information Technology, (11): 
114-116 (2013). 

8. Yang Lingyun, Deng Shengxiong, Yan Yun.Large 
Data Financial Credit Assessment Model of Supply 
Chain Based on MapReduce [J]. Modern Industrial 
Economy and Informatization, (17): 50-53 (2017). 

9. Li Shizhao. Research and implementation of face 
recognition system based on cloud computing [D]. 
South China University of Technology, (2013). 

10. Jin Yu, Yan Dong. Research on MapReduce-based 
Cloud Storage Data Auditing [J]. Computer Science, 
44 (2): 195-201 (2017). 

11. Karun A K, Chitharanjan K. A review on hadoop — 
HDFS infrastructure extensions[C]// Information & 
Communication Technologies. IEEE, 132-137 (2013). 

12. Harter T, Borthakur D, Dong S, et al. Analysis of 
HDFS under HBase: a facebook messages case study 
[M]. USENIX Association, (2014). 

 

 

    
 

, 0 (201Web of Conferences
CSET 2018

https://doi.org/10.1051/itmconf/201926030022ITM 6 9)3002 

4


