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Abstract. This report presents an investigation of the pion-nucleon elastic scat-
tering in low energy region using a production representation of the partial wave
S matrix. The phase shifts are separated into contributions from poles and
branch cuts, where the left-hand cut term can be evaluated by tree-level co-
variant baryon chiral perturbation theory. A comparison between the sum of
known contributions and the data in S - and P- wave channels is made. It is
found that the known components in S 11 and P11 channels are far from enough
to saturate the corresponding experimental data, indicating the existence of low-
lying hidden poles. The positions of those hidden poles are figured out and the
physics behind them are explored.

As one of the landmark processes in hadron and nuclear physics, the pion-nucleon (πN)
scattering has been studied for decades. On the one hand, various phenomena are observed by
experiments, and a large amount of data are accumulated, see e.g. Refs. [1, 2]. On the other
hand, there are still many open questions to be studied theoretically, such as the pion-nucleon
σ term, and the intermediate resonances. Physics in S 11 and P11 (in L2I 2J convention) chan-
nels may be of particular interest, since the two states N∗(1535) and N∗(1440) cause a lot of
puzzles, arousing many theoretical works [3–9]. To gain a clear idea of the physics behind,
one demands a method that is model-independent and can work well in low energy region.

Peking University (PKU) representation [10–13] is such a method which separates the
partial wave S matrix of two-body elastic scatterings into different contributions either from
poles or branch cuts:

S (s) =
∏

i

S p
i (s) × S cut(s) , (1)

for S p
i being the factors corresponding to poles on the first and second Riemann sheets and

s being the Mandelstam variable. The S cut in Eq. (1) is called background term, carrying
the information of the left-hand cuts (l.h.c.s) and right-hand inelastic cut (r.h.i.c.). For the
detailed expression of each term, see Ref. [12]. PKU representation is derived from first
principles of S -matrix theory, thus it is rigorous and model independent for two-body elastic
scatterings. Besides, the S p

i terms are quite sensitive to pole locations that are not too far away
from the threshold, while the background term S cut can be evaluated from theories of low
energy dynamics, thus PKU representation works well at low energies. In fact, phase shifts
corresponding to each term in Eq. (1) has definite sign: bound states are always negative while
poles on the second sheet (virtual states and resonances) are positive; the background term
empirically gives negative phase shift (proved in quantum mechanical scattering theory under
some assumptions in Ref. [14]). Due to those advantages, one can utilize PKU representation
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to dig out hidden contributions. The verification of the existence of σ ( f0(500)) particle in
Ref. [10] is a vivid example: because of the negative definite background contribution, the σ
pole undoubtedly exists to give a sizeable positive contribution to match the data. Moreover,
comparisons between PKU representation and some conventional unitarization approaches
can be found in Ref. [15].

In what follows PKU representation is applied to πN scatterings to make a comparison
between known contributions and the phase shift data. The known contributions mainly come
from the resonances observed by experiments (taken from the results in Ref. [16]) and the
l.h.c.s; r.h.i.c. is omitted temporarily since its contribution is small in the low energy region.
However resonances in experiments are often third sheet poles, since only the total width
can be read out from the line shape. Here narrow width approximation is adopted to obtain
the corresponding shadow poles on second sheet, i.e.

√
sII = Mr −

Γ1−Γ2
2 i, where Mr is the

mass of the resonance and Γ1, Γ2 label the partial decay width to πN channel and inelastic
channels respectively. As for the l.h.c.s, covariant baryon chiral perturbation theory (BChPT)
is employed. Recently the perturbative calculations are carried out up to O(p4) level [17–21],
however for simplicity the result up to O(p2) level is used in this report. The Lagrangians
up to O(p2) can be found in Ref. [22]. The background term in Eq. (1) can be written as
S cut = e2iρ(s) f (s), with

f (s) = −
s
π

∫ (M−m)2

sc

ln |S (w)|dw
2ρ(w)w(w − s)

+
s
π

∫ 2m2+M2

(M2−m2)2/M2

Arg[S (w)]dw
2iwρ(w)(w − s)

, (2)

where m and M stand for the masses of the pions and the nucleons respectively, and the

kinematic factor is given by ρ(s) =

√
s−(M+m)2

√
s−(M−m)2

s . The S matrix in Eq. (2) is S =

1 + 2iρT and T is the partial wave perturbative amplitude obtained by BChPT. Actually the
second term in Eq. (2) is originated from u channel nucleon exchange which is numerically
very small, and the first term corresponds to the kinematic left-hand cut (−∞, (M − m)2],
which contributes to the phase shift negatively. Due to the fact that BChPT can not work at
high energy region, a cut-off parameter sc is assigned to the integral.

To proceed, the masses and O(p1) constants are set to the values taken from Ref. [19],
while O(p2) coupling constants are determined by a K matrix fit to the data in Ref. [2] (with
errors assigned using the method following Ref. [17]). The cut-off parameter is set to sc =

−0.08 GeV2 according to the N∗(1440) shadow pole position. Thus the comparison between
known contributions and the data in six S - and P- wave channels are shown in Fig. 1. Firstly
one can see that some of the known poles have significant contributions to the phase shifts,
e.g. the large and positive phase shift in P33 channel mainly comes from the ∆(1232) pole,
and in P11 channel the nucleon itself is a bound state of pion and nucleon, so it gives a large
and negative contribution. However, significant disagreements can be seen in S 11 and P11
channels – apart from the known contributions, some important positive components have
been missed, similar to what happens in I = 0, J = 0 channel of the ππ scattering, as revealed
in Ref. [10]. Note that disagreements also exist in other channels, but they are minor and
quantitative. On the contrary, discrepancies in S 11 and P11 channels are crucial – even if
one switches off the l.h.c.s, they remains there. Hence one can not erase the disagreements
by changing the details related to the l.h.c.s, e.g. values of the constants, chiral order etc.
Furthermore, r.h.i.c. can be evaluated using the data of inelasticity η given in Ref. [2]. As
shown in Fig. 2, the r.h.i.c. contributions are numerically important but still far from enough
to match the data.

Therefore, extra poles are added to the S matrix in PKU representation and their locations
are determined by fitting to the data. In P11 channel the P- wave threshold constraint (the
phase shift δ ∼ O(k3) for 3- momentum k) is also taken into consideration. The fit results in
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Figure 1. Tree level PKU representation analyses of the πN elastic scattering in S - and P- waves.

a near-threshold virtual state, though good fit quality requires a larger sc value. For example,
when sc = −9.00 GeV2 the virtual state locates at 980 MeV. Such a virtual state lying above
the nucleon pole is actually needed physically, since it can be regarded as the kinematic
companionate pole of the nucleon. On the first Riemann sheet, S (s) can be expanded in the
vicinity of nucleon pole S (s) ∼ r0

s−M2 + b0 +O(s−M2) , any nonzero b0 can give rise to a zero
of S (s), which corresponds to a virtual pole on the second sheet.

As for S 11 channel, the fit results in a “crazy resonance”, i.e. a resonance below threshold.
Its locations with respect to different sc values are listed in Table. 1. That resonance is likely
to be a potential-nature state, since in S 11 channel the nucleon do not appear as a s channel
intermediate particle. One can use the square-well potential as a toy model to figure out the
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Figure 2. The phase shifts from r.h.i.c. in S 11 and P11 channels.

Table 1. The S 11 hidden pole fit with different choices of sc.

sc (GeV2) Pole position (GeV)
−0.08 0.808 − 0.055i
−1.00 0.822 − 0.139i
−9.00 0.883 − 0.195i
∞ 0.914 − 0.205i

phase shift by solving Schrödinger equation. It is found that when the square-well range
L = 0.829 fm and the depth V0 = 144 MeV, the data can be well described, and a pole at
0.872 − 0.316i GeV can be found in the mean time, which is close to the fit results of PKU
representation.

To summarize, in this report the production representation of the partial wave S matrix,
i.e. PKU representation, is applied to πN elastic scatterings. It is found that in S 11 and P11
channels the known contributions, i.e. the branch cuts and the poles already observed, are
far from enough to match the data. Through further investigation, two extra hidden states are
found: a virtual state induced by the nucleon pole in P11 channel, and a resonance lying below
πN threshold in S 11 channel that is likely to be a state generated by potential mechanism. The
existence of such two states are not sensitive to the details of the calculation.

Follow-up of this work is underway. The O(p3) calculation of the left-hand cuts shows
no qualitative difference compared with O(p2) results, while higher chiral order improves the
fit qualities of each channel.
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