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Abstract—This paper discusses necessary components of a
GPU-assisted traffic classification method, which is capable of
multi-Gbps speeds on commodity hardware. The majority of the
traffic classification is pushed to the GPU to offload the CPU,
which then may serve other processing intensive tasks, e.g., traffic
capture. The paper presents two massively parallelizable algo-
rithms suitable for GPUs. The first one performs signature search
using a modification of Zobrist hashing. The second algorithm
supports connection pattern-based analysis and aggregation of
matches using a parallel-prefix-sum algorithm adapted to GPU.
The performance tests of the proposed methods showed that
traffic classification is possible up to approximately 6 Gbps with
a commodity PC.
Index terms: traffic classification, GPU, parallel algorithm

I. INTRODUCTION

Certain applications, most notably belonging to the class
of peer-to-peer (P2P) applications, are difficult to identify
by signature search either because there are no appropriate
signatures, or the signatures are difficult to match. Connection
pattern-based methods, e.g. [1], [2] provide a light-weight,
albeit heuristic solution to this problem.

In theory signature search and connection pattern-based
methods could be combined to increase classification accu-
racy: finding signatures need Deep Packet Inspection (DPI),
and if no signatures are found, the connection pattern method
can be used. Or vice versa, if DPI marks the traffic of a host
on a specific port as P2P, further connections to this host-port
pair are very likely to be also P2P even if DPI has no results
for them [3].

A serious downside of this combined solution is that it is
not light-weight any more and raises considerable challenges
to implementation. Therefore, extending a simple flow collec-
tor system with traffic classification capabilities needs more
computing power than what CPUs can offer. Today there is a
trend to use commodity hardware e.g., [4], [5] as it has low
price/performance ratio, short development time and it is easy
to get familiar with. The requirement for a dedicated hardware
would slow down the wide-spreading of a particular method.

Not long ago, Graphical Processing Units (GPUs) have
also become well programmable computing elements [6].
Furthermore, the current paradigm shift in processor technol-
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Fig. 1. Steps of traffic classification with GPU

ogy towards many core architectures1 has already occurred
in graphical processing units a few years ago. Thus highly
parallel algorithms can be experimented there which will be
later well suit for general processor architectures as well when
they become many core architectures.

This paper addresses certain key algorithmic challenges
of high-speed signature search and connection pattern-based
classification. Beyond describing these tasks, we show how to
implement them on GPU and present measurement results on
the efficiency of the proposed system.

The contributions of the paper are the following (see also
Figure 1):

• We propose a memory optimized technique for signature
matching. It involves a modification of the Zobrist hash-
ing algorithm [7] to encode the application signatures. We
store the dictionaries in the cache of the GPU and apply
the same encoding to check which application a packet
may belong to. Due to the compactness of the hashing
algorithm the data sets of the proposed DPI method reside
in the fast cached memory of the GPU providing high
efficiency, in contrast to [8] where the signatures do not
fit to the cache. The details of the method are presented
in Section III.

• We propose a fast-speed aggregation and update method
to support connection pattern-based identification. We
aggregate all the information necessary for the classi-
fication of flows into one data structure providing the
best-available hint all the time. A Dedicated Port Table
(DPT) stores the number of times a specific host-port
pair was identified as the source or the destination of a
specific application determined by, e.g., the above DPI
method. In order to avoid a per-packet update of DPT,
we propose to aggregate this information in the GPU by
an extension to the parallel prefix scan [9]. This method
provides massive parallelization and high efficiency with
GPU. The details of the method are presented in Section

1The terms many-core and massively multi-core are used to describe multi-
core architectures with an especially high number of cores (tens or hundreds).
In case of many-core processors the number of cores is so large that traditional
multi-processor techniques are no longer efficient.
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IV.

Finally, Section V presents an evaluation of the GPU based
algorithms. We show that we can possibly reach beyond
6 Gbps traffic classification rate using commodity hardware.

II. RELATED WORK

There are several independent traffic classification methods
in current literature: (a) port-based classification [10], when
classification is based on associating a well-known port num-
ber with a given traffic type (b) DPI e.g., [11], when protocol
recognition is done by searching byte patterns in stateless
manner, (c) connection pattern based classification [1], when
the idea is to look at the communication pattern generated by
a particular host, and compare it to the behavior patterns rep-
resenting different activities or applications, and (d) statistics
based classification e.g., [12], when some statistical feature of
the network traffic of a specific application is captured and
used later to classify the traffic. In our work we grab the
first three type of these and show how to use them efficiently
on a system with massively parallel architecture. Note that
the proposed solution is general in a mean that it could
also incorporate the results of a statistics based classification
module.

According to [13], the most resource consuming task is
signature matching in traffic classification systems. String
matching can be accelerated with ASICs, FPGAs [14], [15]
and previous generations of videocards [16], [17], [18] (as
texture operations), but they are difficult to modify and extend
with new signatures and functions, which would be essential
for traffic classification systems.

In [8], the deterministic finite automata (DFA) and the
extended finite automata (XFA) based signature matching was
analyzed. The authors found that the G80 GPU implementation
was 9x faster than the Pentium4 CPU implementation. They
emphasized the problem that data structure of the automata (in
the order of MBytes) does not fit in the cache of current GPU
architectures which would be essential for optimal operation.
The packet processing speed of this solution was about 80,000
packets/sec (with FTP, SMTP and HTTP signatures).

In [19], the signature matching of an Intrusion Detection
System (IDS) was done with GPU providing system through-
put of 2.3 Gbps with synthetic traces and 600 Mbps with
real traffic. In [20], the authors further developed the work
of [19] by reimplementing the DPI engine to the new CUDA
architecture [6]. The overall system througput increased by
30% on real traffic compared to [19]. In [21] further refined the
problem of load balancing the signature matching procedure of
a large dictionary for multiprocessors. They proposed pattern
set partition and input text partition together to fully utilize
GPUs during the pattern matching.

Note that in [8], [19], [20], [21] the main tasks were to
implement IDS on the GPU. This requires (a) the recognition
of a huge set of protocol signatures with their numerous
exploitation signatures, (b) find the signature anywhere in the
byte stream, and (c) false positive hit is not allowed. I.e.,
the proposed methods for traffic classification task should
not be directly compared to the above methods. As it can

be seen later, our methods outperform them in raw packet
processing speed, but on a more focused problem set of traffic
classification (see Section V and V-C for details).

III. SIGNATURE MATCHING IN GPU

In case of DPI, application specific bitstrings are searched
in the packet payloads. DPI is a well-parallelizable task
considering either the analysis of several packets in parallel
or several signatures on the same packet. Moreover, traffic
classification has a more focused requirement set comparing
to an IDS functionality:

• The ’only’ goal is to identify the applications, so less
signatures is needed focusing on handshake messages
typically found in the first few packets of the flows. For
example, it is enough to identify an SMTP protocol from
the first EHLO message and there is no need to parse any
of its later messages.

• In most cases the signatures can be found in the first few
bytes, thus the method can focus only on them.

In order to achieve high processing speed with a GPU-based
solution, the memory access overhead should be minimized.
Our goal was to store the signatures on a minimized memory
footprint to achieve this. State machines are processor-efficient
methods for signature matching but not space-efficient [8].
Use of hashes results in data compression, but it is difficult to
perform wild-card character matching. E.g., typical solutions
store the same signature with all the possible wildcard values
in the hash [22]. This results in the significant increase of
the hash table size and in false positive hits as well. In the
following paragraphs we propose an encoding method, which
eliminates the above problems. I.e., the input and output data
of the DPI process occupy only the fast access memory of the
GPU and the method provides wildcard support.

A. Zobrist hashing

Our proposal applies the idea of Zobrist hashing [7]. This
technique was developed for creating hash codes in board
games and storing the states of the players. Each piece has
a unique identifier corresponding to its actual position on
the board. The hash code of the actual state is calculated by
XORing the unique position identifier of each piece. Instead
of storing the whole board in each step of the game, only the
hash values should be stored. I.e., the hash itself stores the
data and not only a pointer to an external data field.

B. Input data for string matching

The proposed string matching technique uses the following
input data (see Table I for illustration).

• The application signature dictionary is denoted by S (see
Table I(a)). One element of this dictionary, S j

i denotes
the jth character of the ith application.

• The list of bitmasks of non-wildcard characters in the
application signatures is denoted by B (see Table I(b)).
One element of this list, Bj

i denotes whether the j th

character of the ith application is wildcard or not.
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TABLE I
INPUT DATA OF THE DPI METHOD

(a) Input application sig-
nature dictionary (S)

App#1 a?b
App#2 aaa
App#3 ?a?
App#4 ??a

(b) Bitmask of appli-
cations signatures (B)

101
111
010
001

(c) Alphabet-position dictio-
nary (α)

0 1 2

a 1100 1011 1000
b 1010 1110 1001

(d) Encoded signature
database (E)

0101
1111
1011
1000

• The alphabet-position dictionary is denoted by α and
represented as a matrix (see Table I(c)). The rows of
the matrix represent the characters of the alphabet. The
columns represent the positions of the characters in the
signatures. One element of this matrix, αj

Sj
i

denotes the

character code of the j th character of the ith application.
These codes are represented as random numbers with a
bigger range than the size of the dictionary in order to
minimize the collision of encoded signatures.

• The encoded signature database calculated from the above
input data and denoted by E (see Table I(d)).

The encoded signature database of a particular application
is calculated by XORing together the codes of its characters if
their corresponding bitmask is 1. In general it can be written
as Ei =

⊕|Si|−1
j=0 (αj

Sj
i

• Bj
i ). For illustration, let us see a

specific example based in Table I: e.g., a?b is encoded into:
1100 ⊕ 1001 = 0101.

C. The proposed string matching method

The proposed string matching method is as follows. Each
thread of the GPU deals with the content of one packet.
This choice is a direct consequence of the Single Instruction
Multiple Data (SIMD) architecture. Further, the GPU can deal
efficiently with thousands of lightweight threads [6]. This is
a big difference to an e.g., x86 architecture where the threads
are monolithic and both task switching and scheduling are
complex tasks.

The content of packets is considered as character strings.
Apply the same procedure on these character strings as on
the application signatures: the codes of the characters are
XORed together according to the corresponding bitmasks.
If the encoded packet data matches with the corresponding
encoded application signature, then the packet is considered
to belong to the particular application. The hit by the DPI
process sets the proper bit of the specific application to 1 in
the Packet Hit List (see Figure 2 and Section IV for further
discussion).

D. DPI data structures in GPU memory architecture

The global memory (uncached) space is filled with the array
of network packets. During the initialization of each thread,
the corresponding array of the packet bytes are copied from

Packets

packets identifier
Application‐

Matched Bitmask

1 srcID1,srcPort1,dstID1,dstPort1 100010000
2 srcID1,srcPort2,dstID2,dstPort2 000000000
3 srcID2,srcPort3,dstID1,dstPort1 001000110
… … …

Packet Hit List (PHL)

DPI, port-based 
classification on GPU

Fig. 2. Input/output of signature matching on GPU

the global memory to the registers or to the shared memory
(cached) of the thread. Thus global memory access does not
reduce the speed of arithmetic calculations with the same data.

The constant memory space is cached so a read from
constant memory costs one memory read from device memory
only on a cache miss, otherwise it just costs one read from
the constant cache. The pre-calculated input data structures
are loaded into the constant memory space (the alphabet-
position dictionary, the bitmasks and the encoded signatures).
The allocable constant memory size is 64 Kbyte for the whole
kernel in the test configuration (see Appendix). If we consider
our example implementation where the signature database
consists of 4 byte long values, then about 10 thousands of
signatures could fit into the constant memory.

IV. FLOW CLASSIFICATION BASED ON THE DEDICATED

PORT TABLE

Some specific traffic types are difficult to be identified
simply based on DPI without considering flow groups and
their history. E.g. according to [1], in case of small P2P flows
trying to establish connection to non-existent peers, partially
encrypted P2P traffic or Skype. In this section we propose how
to combine efficiently the DPI and connection pattern based
classification methods for flow classification on GPU.

The purpose of the DPT is to store the application hints
of host-port pairs based on their communication history and
provide the traffic classification engine with the best available
hint all the time. The DPT is represented as a list of records
containing the number of hits per application for each host-
port pairs.

Note that a simple port-based classification is also applied
on the GPU after the DPI process. In [23] it was shown that in
many cases the port based classification has become obsolete
but it is still a useful aid in a traffic classification system. As
it is a simple existence check of a port number in a given
list thus no further discussion is given here. The hits of the
port based classification module are also stored by setting the
proper bit of the specific application to 1 in the Packet Hit
List (see Figure 2).

The DPT is created and updated as follows.

A. Starting from per-packet application hits

The starting point of the process is the Packet Hit List
(PHL). Whether a packet comes from an application or not is
a yes/no question, thus the PHL is represented as a bitmask. In
order to deduce per host per port information, each record of
PHL is split into source and destination identifiers (hash(srcID,
srcPort), hash(dstID, dstPort)), for illustration see Figure 3.
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PHL record hash value  
f(ID, Port) 80 4662 6881
2F3415 0 0 1
76E921 1 0 3
A13F21 14 2 0
B67C92 3 41 30

Application Hit List
Dedicated Port Table (DPT)

GPU
Radix sort

packets identifier
hash value   
f (ID, Port)

Application‐
Matched Bitmask

1 srcID1,srcPort1 2F3415 100010000
1 dstID1,dstPort1 76E921 100010000
2 srcID1,srcPort2 24D711 000000100
… … … …

Packet Hit Buffer (PHB)

GPU
aggregation

Sorted Packet Hit Buffer (SPHB
hash value   
f (ID, Port)

Application‐
Matched Bitmask

2F3415 100010000
76E921 100010000
76E921 100000100

… …

Fig. 3. Dedicated port search
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Fig. 4. The aggregation of packet information with parallel reduction

The number of stored application types and the size of the
application-matched bitmasks are the results of a trade-off due
to the memory addressing of the GPU. The GPU can handle 2
or 4-byte long data most efficiently [6], thus 16 or 32 possible
application categories can be distinguished in these cases. I.e.,
if P2P is chosen as one category, its ’variants’ like BitTorrent
and Gnutella cannot be differentiated later. But our experiences
support that 16/32 application types are practically enough to
cover the main types such as P2P file sharing, web browsing,
streaming, VoIP, etc. If needed, this part of the algorithm can
be extended to support more application types by switching
to longer non-hardware supported data length representation.
However, this solution results in performance degradation. An
alternative solution is to switch between signature lists. Once
the packets filled in the global memory are evaluated based
on the first list, then these packets can be evaluated based on
a second, third, etc. lists.

The theoretical speed of the proposed DPI engine with
current hardware is approx. 2 million packets/sec (see V-A2
for the performance test) that is 20k flow presuming 100
packets/flow in average [24]. This means that a 2-bytes-long
hash representation will not fully occupy its array on the GPU
which is stored only for one DPI iteration per batch. Since
the duration of the flow is approx. 60 sec [24] there are 60
times more flows to be stored in the DPT (hosted in the main
memory). Therefore the hash representation on the CPU side
can be increased to 3 bytes which results in a 256 times larger
hash array occupying in the order of 100 MBytes memory.

In order to avoid the overhead of frequent GPU initializa-
tions, we propose to store the PHLs in a Packet Hit Buffer
(PHB) in the operative memory until the aggregation phase.

B. Aggregating the per-packet application hits

Before updating the DPT, we propose to aggregate the PHB
based on parallel reduction. The idea of parallel reduction is to

slice a big problem to smaller tasks, distribute it to processing
units and execute the computation of the partial tasks parallel.
The algorithm proceeds to recursively reduce the problem size.

The reduction of the PHB is more efficient if its input is
sorted. The sorting ensures that the same [srcID; srcPort] and
[dstID; dstPort] pairs come after each other. This way the
shared memory blocks of the GPU will contain application
information about packets that likely belong to the same [host;
port] pair. Therefore the chance of effective aggregation per
block is high. We have applied parallel radix sort [9] to create
a Sorted PHB (SPHB) based on the hash value of the packets.

The SPHB is aggregated with parallel reduction into the
Aggregated Packet Hit Buffer (APHB) similarly to the parallel
prefix sum [9]. Extending [9], we propose to use conditional
aggregation while sweeping through the data structure. The
idea is to handle the SPHB as a balanced binary tree and
sweep it from the leaves to compute the aggregated sums.

The steps of the aggregation can be followed in Figure 4
and Algorithm 1. The input of the algorithm is the SPHB
extended with a counter in each row. This counter is initialized
to 1 and it represents the number of successfully aggregated
packets (i.e., rows). In the first step in Figure 4, each thread
compares the hash keys of the two rows they are responsible
for. If the keys are equal then the aggregation occurs by
summing the aggregation counters and the proper application
hit array elements. The results are stored at every second row.
In the following step, every second thread does actual work,
comparing and adding data in the recently updated rows, and
storing them in every fourth array position. This is repeated
until there is no more row left untouched. The advantage of
parallel reduction with such a data structure is that there are
no concurrent memory reads or writes. The threads have to
be synchronized after each step to ensure memory content
consistency.

Operations are performed in place in the shared memory,
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thus no additional memory allocations are needed. If the binary
tree has n leaves and log(n) levels, then only O(n) operations
are needed by the algorithm (it performs (n − 1) adds).

Algorithm 1: Packet Aggregation
Input: SPHB
Output: APHB
for d = 0, d < log2 n − 1, d + + (for the size of n see Section V-B) do1

for k = 0, n − 1 > k, k+ = 2d+1 parallel do2
if x[k + 2d − 1].hash == x[k + 2d+1 − 1].hash then3

x[k + 2d+1 − 1].counter+ = x[k + 2d − 1].counter;4
for i = 0, i < size(bitmask), i + + do5

x[k + 2d+1 − 1].app[i]+ = x[k + 2d − 1].app[i];6

C. Sequential update of the DHT

The APHB is moved back to the operative memory and
the DPT is updated sequentially by adding the corresponding
applications hit values to the rows of the DPT. The update is
started from the last row of each block of the APHB since
these rows have the highest aggregation level. The counter of
these rows shows how many rows should be jumped upwards
to get to the next useful row to be included in the DPT. The
speed of updating the DPT is also increased by the fact that the
SPHB remains sorted after the parallel reduction. This results
in good spatial locality of the hash values in the DPT, which
means high hit rate in the L2-cache of the CPU during update
[25]. Also note that when querying the DPT during traffic
classification, the best matching application for a [host; port]
pair can be obtained in one step, if the application hit list
in the DPT is a heap, where the number of hits for different
application types is in decreasing order.

A flow is classified by querying the DPT for the most
probable application type corresponding to the [srcID; srcPort]
pair and the [dstID; dstPort] pair, and comparing their results.
In case of equivalence the application type is unambiguous. In
case of difference, we decide for the more probable and more
specific category.

V. EVALUATION

In this section we evaluate the efficiency of the GPU based
DPI and flow aggregation, and the total system throughput.

A. Evaluation of the GPU based DPI method

1) Compression vs. accuracy: The collision probability
of the encoded signature database (i.e., misclassification of
packets, false positive hit) can be analyzed as a function of
the length of the signatures and their representations in the
alphabet-position dictionary.

The size of the alphabet-position dictionary is a ∗ p, where
a is the possible number of characters and p is the possible
number of positions (i.e., length of the signatures). To repre-
sent the signatures completely collision free, each character
of the alphabet should be represented with log2 a bit, and the
character coding should be rotated according to the position.
I.e., the size of one element of the dictionary should be

TABLE II
THE COLLISION PROBABILITY OF THE COMPRESSION

m 10 11 12 13
p = 16 0.2527 0.0867 0.0250 0.0069

. . . m 14 15 16 . . .
. . . p = 16 0.0017 0.0004 0.0001 . . .

m ≥ p log2 a. In our case a = 256, i.e., m ≥ 8p. In practice,
however, much smaller m can provide negligible collision
probability.

Due to the complexity of analytical analysis of the collision
probability based on XOR functions [7], [26], [27], we applied
the common practice for choosing a possible hash value rep-
resentation length (m) by analyzing the collision probability
with simulation. We tested the collision probability with 1000
signatures with different payload length (p = 1, 2 . . . , 256)
which is enough for practical usage [8]. The test was done
in the function of m from 10 to 32 bit representation with
100 independent runs by setting different random values in
the alphabet-position dictionary. Note that m should be at
least 10 because 2m > 1000. For illustration, see Table II
showing the collision probability in case of 1000 signatures
of 16 characters for m = 10, . . . , 16. Our experiments show
that the collision probability is practically independent of p
and falls below 10−4 in case of m = 16 (2 bytes).

2) Performance: The proper initialization setup of the GPU
kernel regarding the number of threads processed parallel
by a multicore unit on the GPU has a high impact on the
overall performance [6]. We created several measurements
with different setups where the parallel processed packet batch
size was varied from 16k to 500k packets. In case of CPU,
the batch size would be the number of packets processed one-
by-one without the interruption of any other operation, while
in the case of GPU it means the number of parallel threads.

In the performance tests, the following implementations of
the DPI task were analyzed:

• regexp: A perl-based implementation of the DPI
method with standard regular expressions.

• CPU: The CPU-based version of the proposed DPI
method.

• GPU: The GPU-based version of the proposed DPI
method without shared memory caching of the packet
headers and payloads.

• GPU_shared: The GPU-based version of the proposed
DPI method with shared memory caching of the packet
headers and payloads.

In our tests we replayed recent traces captured in live
broadband mobile networks during busy hour traffic. The
current traffic mixture of broadband mobile networks is sim-
ilar to those presented in [24], [28]. The applied signature
database contained an extended version of [29] consisting of
approx. 300 signatures in total. The average signature length
is 16 bytes characterizing 35 different application protocols
grouped into 16 application types. Table III summarizes the
performance tests focusing on the average packet processing
speed. Note that the processing time is linearly increasing with
the increase of input signature list. The slowest solution is
regexp. Over this, CPU provides 5 times faster solution.
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TABLE III
DPI PERFORMANCE COMPARISON – PACKETS PROCESSED PER SECOND

regexp CPU GPU GPU_shared

Average [x1000
packets]

14 72 138 1844

Relative variance
f(batch size) [%]

1.1% 3.1% 25% 0.2%

Relative variance
f(payload) [%]

49% 36% 37% 27%

GPU provides additional 2 times speed increase. Additional
magnitude of speed can be gained by GPU_shared with
exploitation of cached shared memory. In this latter case,
the global memory is processed in small well-cacheable data
blocks.

In practice, the batch size has only effect on the GPU [6].
Since the memory access overhead in the shared memory case
is 2 magnitudes less than the global memory case, thus the
effect is visible only in the GPU case without the shared
memory. Regarding the payload dependence, the signature
matching process for a specific packet ends in case of a
hit in the signature database. Depending on the position of
the signature in the signature database the threads finish in
different times. According to [6], the threads in the same block
are scheduled to run parallel thus they wait for each other to
finish. This means that the slowest thread would determine
the run time of the block. Therefore the more the parallel the
solution is, the less variance occurs.

Summarizing the results, the GPU-based shared memory
version of the proposed method introduces a performance
increase of two orders of magnitudes compared to the original
regular expression based method. The average packet process-
ing speed of the GPU is approx. 1,800,000 pkts/sec. This speed
can be translated into network line speed by calculating with
500 byte average packet size which results in 6.7 Gbps speed.

B. Evaluation of GPU based aggregation

We can measure the compression ratio of the aggregation as
the size of the APHB divided by the size of the SPHB. When
evaluating the compression ratio, the following issues should
be considered:

• Ideal compression: All possible items are aggregated, i.e.,
every element occurs only once.

• Parallel reduction: Due to the binary tree based execution
model, this solution cannot aggregate nodes from differ-
ent branches of different roots. So this solution provides
lower compression ratio than the ideal case by definition.
For illustration see Figure 4.

• Practical HW constraints: The number of SPHB rows that
can be aggregated in a block of the GPU is limited by the
maximum number of threads per block (recommended
maximum is 512) and the size of the shared memory
(16 Kbytes) [6]. In our example, a row is stored on 19
bytes (2 bytes for the hash key, one for the aggregation
counter and 16 for the application hit counter). Thus at
most 862 rows could fit in the shared memory. But the
number of leaves of the binary tree is the power of 2 and
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Fig. 5. The compression ratio of the GPU based aggregation as a function
of execution iteration number

each thread examines 2 rows at the same time, so only
512 rows with 256 threads can be handled per block. I.e.,
if X adjacent rows could be ideally aggregated to 1 row,
the GPU can aggregate it to �X/512� rows.

In an example from a live traffic trace, the SPHB con-
tained 256,000 rows. By ideal aggregation, APHB could be
aggregated into 4,560 rows meaning that the compression
ratio is 1.78%. By using the GPU, the APHB could be
aggregated to 41,095 rows meaning a compression ratio of
16%. However, the aggregation ratio can be improved by
repeating the aggregation several times. The compression ratio
as a function of the number of iterations is showed in Figure
5. It can be seen that the initial compression ratio can be
approx. halved in the next few iterations resulting a total
compression ratio of 8%.

The next question is the performance of the aggregation,
i.e., how much time the aggregation needs. Our experiments
show that the aggregation tasks of the GPU are more than 4
magnitudes faster than the DPT update done by the CPU (hash
insert and update). That is, the aggregation causes no practical
overhead in the overall traffic classification process.

C. Total system throughput

In this section we discuss the overall performance of the
capture and classification system in case of one CPU core and
one GPU. The task of the CPU is to obtain the data from the
Network Interface Card (NIC), compress the data, feed the
GPU with the data and create a classified flow log. The GPU
is responsible for the classification.

According to our test (see Figure 6), the proposed system
can classify real-time traffic at approx. 1.7 Gbps per CPU core.
The components of the CPU load are as follows.

• 20% CPU load to capture the traffic: we use our own
developed kernel module (similar to [30]) to avoid the
built-in packet handling mechanism of the kernel. This
results in a significant reduction of CPU load during the
NIC read.

• 70% CPU load to create flow logs: the output of the
kernel module is passed to a user level process which
collects the packets into flows.
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• 10% CPU load is connected to the feeding of the GPU
and process the classified data.

Note that the GPU is idle in most of the time, thus it is
able to serve several traffic classification threads parallel. The
current bottleneck is the CPU part of the process. With a
multicore environment, the achievable speed scales up to the
number of processors linearly achieving an approx. 6.7 Gbps
total system throughput in a 4 core environment. For a slight
comparison calculating with 500 bytes average packet length
[8] and [19] achieved 0.3 and 0.6 Gbps system throughput
respectively supporting only a DPI based classification.

VI. CONCLUSION

This paper discusses a GPU assisted solution working on
multi-Gbps speeds on commodity hardware. A modification
of Zobrist hashing for signature matching problem was in-
troduced, which uses compact signatures allowing to fit the
entire dictionary into fast memory of the GPU. The achievable
speed was measured over 6 Gbps for a typical traffic mix. The
connection pattern analysis method utilizes a parallel-prefix-
sum algorithm adapted to GPU, which is four magnitudes
faster than the CPU based aggregation. It was also shown,
that when the above algorithms are placed in a commodity
PC, the system performance including traffic capture, flow
aggregation, GPU algorithms, and GPU communication allows
an overall typical speed exceeding 6 Gbps.

APPENDIX

The measurements were done on a PC with two Dual-Core Intel Xeon
Processor 5130/2.00 GHz, Intel Pro/1000 NICs, Asus ENGTX260 video
card. The operation system was a 32-bit Ubuntu Linux 8.04 with 2.6.26-1-
686 kernel and NAPI supported driver. The applications were compiled with
gcc-4.1. The perl is an 5.10.0 multi-threaded version. The CUDA API used
the CUDA SDK 2.0 with an NVIDIA Driver for Linux with CUDA Support
(177.73) and the CUDA Toolkit for Ubuntu 7.10. The NICs were bridged by
brctl, thus they appeared as one virtual adapter towards the system.
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