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Abstract. In this contribution I present a brief summary of recent progress

in selected Lattice QCD techniques and subsequently illustrate them using the

example of the current calculations of moments of meson distribution amplitude

as well as of a direct evaluation of meson distribution amplitude.

It is clearly an impossible task to summarize the progress in numerical Monte Carlo sim-

ulations of Quantum Chromodynamics of the last two years this short review. Many great

advacements and breakthroughs, such as the study of resonances [1], three-body scattering

[2], the study of nuclear forces [3], and many more would not receive proper credit. What I

will try to do instead, is that I will briefly mention four recent algorithmic advancements and

illustrate their impact on the study of just a single observable, namely the pion distribution

amplitude.

Pion distribution amplitude is one of the many hadron structure functions which describe

the content of hadrons, in that particular case of the pion. Structure functions are still under

debate, even 50 years after the postulation of Quantum Chromodynamics. On the exper-

imental side they were and are extensively investigated by experiments on past and current

accelerators such as HERA or LHC. They are also the main focus of next generation facilities

such as the Electron-Ion Collider planned to be constructed in the US. On the theory side little

doubt remains that strong interactions are described by Quantum Chromodynamics, however

estimating predictions for low-energy observables is still problematic due to the strongly cou-

pled nature of that theory. One of the most reliable tools to study QCD nonperturbatively are

numerical Monte Carlo simulations, lattice QCD, which I briefly describe in the next section.

1 Lattice Quantum Chromodynamics: theoretical ’experiments’

Lattice QCD is one of the few formulations of Quantum Chromodynamics which is fully

nonperturbative and allows to estimate QCD predictions with all the systematic uncertainties

under control. It is a numerical framework in which one can perform theoretical ’experi-

ments’ with his favorite quantum field theory. Various particles or excitations can be placed

and handled within the simulated, Euclidean volume of space-time with the help of quark

field operators or appropriate, more complicated, interpolators. All particle properties can be

extracted from euclidean correlation functions. These theoretical ’experiments’ must follow

the rules of quantum field theory and do not make resort to any specific model. As in true
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experiments, one has to deal with many systematic effects and many limitations of the setup

reduce the precision of the final result. Conversely, one of the great advantage of this setup is

that the freedom of the values of free parameters allows to study various unreal universes, for

instance where light quarks are much heavier than in Nature or where the light and strange

quarks are degenerate.

1.1 Lattice QCD technology

One way in which we can realize such ’experiments’ is through numerical simulations on a

supercomputer. Finite volume of space-time is discretized making the problem finite dimen-

sional which can be handled by computers. The non-zero lattice spacing regularizes ultravi-

olet divergences and therefore to any physical observable corresponds a higly dimensional,

finite integral which can be estimated using Monte Carlo integration. Correctly distributed

samples, or configurations, are generated by a numerical implementation of a Markov chain.

For given values of the bare parameters of the QCD action it is sufficient to generate the

configurations only once, any desired physical observable can be estimated afterwards. Ev-

erybody is invited to design his own theoretical ’experiment’ and realize it using his favorite

set of gauge configurations.

1.2 Limitations and solutions

As usual systematic effects affect the precision of the final result. Below we mention four

problems and their possible solutions that were proposed in the last years without going into

any technical details. In the next section I illustrate how these advancements translate into

improvement of the precision of the final result, the second moment of the pion distribution

amplitude.

• physical pion mass

For very long lattice QCD simulations were limited to the region of parameter space where

the quark masses were relatively heavy, much heavier than the physical up and down

quarks. That was due to the fact that the numerical cost of inversions of the Wilson-Dirac

operator needed during the generation of gauge field configurations was growing beyond

practical limits when the quark masses were lowered. The adoption of sophisticated pre-

conditioners, mainly deflative and multigrid methods [4] which have been developed in

the context of problems described by partial differential equations, changed that situation.

They rely on the idea of separating local and global contributions to the solution and han-

dling them differently. In the case of lattice QCD, the part of the solution corresponding

to the small eigenvalues of the Wilson-Dirac operator is found in a basis which is precal-

culated during the setup phase of the solver whereas the remaining part corresponding to

larger eigenvalues is found iteratively. Moreover the two parts can be approximated on lat-

tices with different resolutions. As a result the time to solution became almost independent

of the quark mass, allowing simulations at or even below the physical point [5].

• growing autocorrelations

It was found in simulations with periodic boundary conditions for the gauge fields that au-

tocorrelation times of the Markov process grow much faster than expected when the lattice

spacing is decreased [6]. It was later understood that this is related to the freezing of fluc-

tuations of the topological charge on consecutive gauge field configurations generated by

the process [7]. In practical terms that meant that simulations with lattice spacing smaller

than 0.05 fm were untrustful because of the unestimated autocorrelation times and there-

fore because of the inability to correctly estimate the statistical uncertainties of the final
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results. As a remedy open boundary conditions in the time direction were proposed [8] and

it was found that indeed the autocorrelation times for such small lattice spacings became

manageable, however still quite large [9].

• signal-to-noise ratio problem

Observables involving moving hadrons are known to be much noisier than those with

hadrons at rest. For the latter a whole industry of appropriate smearing techniques was

built allowing to construct interpolating operators which create wavefunctions with opti-

mal overlaps with the hadron’s ground state. It was only recently that these techniques were

extended to moving hadrons and it was shown that an interpolating operator with the so-

called momentum smearing provides a substantially better overlap with the wavefunction

of a moving particle [10].

• structure functions as light-cone correlations

In the case of hadron structure functions calculations performed so far were limited to

moments of structure functions, because the structure functions themselves are defined in

terms of light-cone correlations which are not directly accessible on a Euclidean lattice.

It was realized only recently by Ji [11], that a similar information can be extracted from

purely space-like correlations if the structure functions are rewritten in the hadron’s infinite

momentum reference frame. This allows to study directly the x-dependence of structure

functions by Monte Carlo simulations. Since then, several practical implementations of

Ji’s idea have been put forward and first results were published [12].

In the next section I define the pion distribution amplitude and its second moment and I

demonstrate how each of the above improvements contributes to the precision of the final

result.

2 Pion distribution amplitude

Pion distribution amplitude is the quantum amplitude that the pion moving with momentum P
is built of a pair of quark and antiquark moving with momentum xP and (1− x)P respectively

[13]. It is used, for instance to describe pion photoproduction, where two virtual photons

annihilate and produce a pion. Due to factorization the transition form factor can be expressed

as a product of two parts: photons provide a hard scale and their cross-section can be reliably

evaluated with perturbation theory, whereas the missing nonperturbative information about

the leading pion quark content is contained in the x-dependent distribution amplitude. By

construction the pion distribution amplitude is scheme and scale dependent, but is process

independent. Experimentally such process was measured by the BaBar [14] and Belle [15]

experiments.

In mathematical terms the pion distribution amplitude appears on the right hand side of

equation Eq. (1) and is defined by the following non-local matrix element [16]

〈0|d̄(z2n)/nγ5[z2n, z1n]u(z1n)|π(p)〉 = i fπ(p · n)
∫ 1

0

dxe−i(z1x+z2(1−x))p·nφπ(x, μ2). (1)

If we neglect isospin breaking effects then φπ(x) becomes symmetric under the interchange

of momentum fraction φπ(x, μ2) = φπ(1 − x, μ2) and therefore moments of the momentum

fraction difference ξ = x − (1 − x) carry all the interesting information, or equivalently, one

can exand in the Gegenbauer polynomials basis and study the corresponding aπ
2
(μ) moment,

〈ξn〉 =
∫ 1

0

dx(2x − 1)nφπ(x, μ2), φπ(x, μ2) = 6u(1 − u)
[
1 +

∑
n

aπ2n(μ)C
3/2
2n (2u − 1)

]
. (2)
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The nonlocal operator of Eq. (1) can be Taylor expanded and expressed in terms of local

operators with derivatives

d̄(z2n)/nγ5[z2n, z1n]u(z1n) =
∞∑

k,l=0

zk
2
zl
1

k!l!
nρnμ1 . . . nμk+lM(k,l)

ρ,μ1,...,μi+1
, (3)

where

M(k,l)
ρ,μ1,...,μk+l

= d̄(0)
←−
D(μ1 . . .

←−
Dμk

−→
Dμk+1 . . .

−→
Dμk+lγρ)γ5u(0). (4)

Consequently, moments 〈ξn〉 can be extracted from expectation values of local operators with

derivatives

ik+l〈0|M(k,l)
ρ,μ1,...,μk+l

|π(p)〉 = i fπp(ρpμ1 . . . pμk+l)〈xl(1 − x)k〉, (5)

which, apart from some renormalization complications, are easily accessible in Monte Carlo

simulations. The strategy to estimate nonperturbatively the second moment of φπ(x, μ2) is the
following. Due to rotational symmetry breaking in lattice QCD we need to study two local

operators

O±ρμν(x) = d̄(x)
[←−
D(μ

←−
Dν ± 2

←−
D(μ

−→
Dν +

−→
D(μ

−→
Dν

]
γρ)γ5u(x). (6)

The renormalized second moment and its equivalent second Gegenbauer moment are ex-

pressed in terms of ratios R± and ζi j,

〈ξ2〉MS = ζ11R− + ζ12R+, aMS
2 =

7

12

[
5ζ11R− + (5ζ12 − ζ22)R+

]
. (7)

ζi j are renormalization constants which we estimate nonperturbatively in a separate calcula-

tion. The ratios R± are fitted to the ratios of correlation functions Cρ(t,p) and C±
ρμν(t,p) which

are correlation functions of the axial-vector current Jγ5 and of operators Eq. (6)

R±ρμν,σ(t,p) =
C±
ρμν(t,p)

Cσ(t,p)
, (8)

namely

Cρ(t,p) = a3
∑

x
e−ipx〈Oρ(x, t)Jγ5 (0)〉 and C±

ρμν(t,p) = a3
∑

x
e−ipx〈O±ρμν(x, t)Jγ5 (0)〉. (9)

The RQCD collaboration aims at estimating 〈ξ2〉MS and aMS
2

with a precision of less than

10%. To this goal we employed all four of the mentioned improvements:

• we use the set of gauge field configurations generated by the Coordinated Lattice Simula-

tions consortium [9] which covers ensembles with lattice spacing ranging from 0.04 fm up

to 0.086 fm and pion masses from the physical pion mass up to the mass of 420 MeV. The

estimates of the second moment include the data point with physical quark masses,

• CLS ensembles use open boundary conditions in the time direction for the gauge fields in

order to keep the autocorrelation times of the Markov chains under control. This enables us

to use gauge field ensembles with lattice spacing of 0.04 fm which improves the precision

of the chiral and continuum extrapolations,

• in order to increase the statistical precision momentum smearing [10] was used to estimate

the correlation functions Eq. (9) for non-zero momenta p. An example of a plateau is

shown on figure 1 [17].
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Figure 1. Left panel: example of the plateau exhibited by the ratio R+ρμν,σ(t,p). Momentum smearing

allowed to considerably decrease the statistical noise. Right panel: example of the extrapolated pion

distribution amplitude second moment as a function of the pion mass for a = 0.086 fm.

Estimates from all available CLS gauge field ensembles are analysed simultaneously in a

combined chiral and continuum extrapolations fit. Moreover, since the CLS ensembles fea-

ture two light and one strange dynamical quark, one can estimate pion and kaon distribution

second moments together. The dependence on the pion mass is determined from continuum

chiral perturbation theory and leaves two free parameters A, δA, whereas the quadratic dis-
cretization effects are parametrized by three additional parameters ci. The pion and kaon

second moment fit formulae read (α = pion or kaon)

〈ξ2〉α = (
1 + c0a + c1aM

2
+ cα2aδM2)〈ξ2〉0 + A M

2 − 2δAδM2, (10)

with

M
2
=

2m2
K + m2

π

3
, δM2 = m2

K − m2
π. (11)

A single example of the fit is shown on the left panel of figure 1 for the lattice spacing of

0.086 fm. Preliminary results for the continuum extrapolated value of the second moment

of the pion distribution amplitude look very promising and the final result will be published

soon.

Alternatively, the recent proposal of Ji [11] suggests that the light-cone correlations which

define the hadron structure functions on the light-cone can be extracted from purely space-

like correlations of hadrons moving at large momentum. The latter are calculable in Eu-

clidean formulation of lattice QCD, and the in the infinite momentum limit one recovers the

light-cone distributions. The framework of Large Momentum Effective Theory allows to sys-

tematically calculate corrections coming from large but finite hadron momentum achievable

on the lattice. Current applications to the pion distribution amplitude show a quantitative

agreement with other methods [18, 19].

3 Conclusions

Lattice QCD provides non-perturbative, ab initio results for many observables and hadron

structure functions in particular. Continous progress in the computational strategies and al-

gorithms allows to improve our estimates for phenomenologically relevant observables. On

one hand, statistical and systematic uncertainties of already studied quantities can be made

smaller and smaller. We mentionned advancements in solver techniques allowing simulations

at the physical quark masses and new boundary conditions which help to control Markov
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chain autocorrelations. On the other hand, new computational tools such as the Large Mo-

mentum Effective Theory give access to observables, which were not studied so far on the

lattice. I illustrated that using the pion distribution amplitude, for which the systematic effects

are becoming under control as far as the second moment is concerned, whereas a new method

to extract the full x-dependence of structure functions is providing already good qualitative

results.
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