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Estrogen has a dramatic effect on musculoskeletal function. Beyond the known

relationship between estrogen and bone, it directly affects the structure and function

of other musculoskeletal tissues such as muscle, tendon, and ligament. In these other

musculoskeletal tissues, estrogen improves muscle mass and strength, and increases

the collagen content of connective tissues. However, unlike bone and muscle where

estrogen improves function, in tendons and ligaments estrogen decreases stiffness, and

this directly affects performance and injury rates. High estrogen levels can decrease

power and performance and make women more prone for catastrophic ligament injury.

The goal of the current work is to review the research that forms the basis of our

understanding how estrogen affects muscle, tendon, and ligament and how hormonal

manipulation can be used to optimize performance and promote female participation in

an active lifestyle at any age.
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INTRODUCTION

Beyond its role as a sex hormone, estrogen has important roles in the development, maturation,
and aging of extragonadal tissues such as bone (Hansen et al., 2009a; Cui et al., 2013; Ling-Ling
et al., 2016), muscle (Dieli-Conwright et al., 2009; Enns and Tiidus, 2010), and connective tissues
(Hansen et al., 2009a,b; Hansen and Kjaer, 2014; Hansen, 2018).

In young women, estrogen is produced from cholesterol in a series of reactions within the
ovaries. The final reaction in the process is the conversion of testosterone to estradiol by the enzyme
aromatase. In men and postmenopausal women, this reaction commonly occurs in adipose tissue
which is high in aromatase activity (Nelson and Bulun, 2001). The most prevalent estrogen is 17β-
estradiol with smaller amounts of estrone and estriol circulating as well (Heldring et al., 2007).
As a steroidal hormone, estrogen can freely pass through the plasma membrane and move into
the nucleus where it can bind to its nuclear receptors, the estrogen receptors (ER)α and β, and
modify gene expression (Heldring et al., 2007). Beyond the nucleus, estrogen has a variety of post-
transcriptional effects such as regulating the redox state of the cell (Kumar et al., 2010), altering
mitochondrial function (Yao and Brinton, 2012), and directly inhibiting the activity of specific
enzymes (Lee C. A. et al., 2015).

Estrogen secretion naturally varies in young women, increasing 10- to 100-fold over the
menstrual cycle. Beyond estrogen, the menstrual cycle is characterized by significant changes
in other important plasma hormones such as follicle stimulating hormone (FSH), luteinizing
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FIGURE 1 | Hormonal fluctuation during (A) a normal menstrual cycle, (B)

while taking an oral contraceptive (OC) containing both estrogen and

progesterone, and (C) in the years before and after menopause.

hormone (LH), and progesterone (Figure 1). 17β-estradiol levels
rise from 5 pg/ml at the early follicular phase, to a peak of
200–500 pg/ml just before ovulation. Ovulation is followed by a
rapid decrease in estradiol, then estradiol, and progesterone both
increase in the luteal phase giving a broad secondary peak. In
order to prevent pregnancy, or simply to regulate hormone levels,
many women take oral contraceptives that provide a daily low
level of estrogen and progesterone. These pills typically maintain
estradiol levels at ∼25 pg/ml and decrease the ovulatory rise in
estrogen (Mishell et al., 1972). This daily dose of estrogen and
or progesterone also eliminates the cyclic rise in LH and FSH
(Figure 1B). In the absence of oral contraceptives, the menstrual
cycle will occur from puberty until menopause when menses
stop, FSH and LH rise, and plasma estradiol and progesterone
concentrations remain constantly low (Figure 1C).

Estrogen receptors are present in all musculoskeletal tissues
including muscle (Barros and Gustafsson, 2011; Luo and Kim,
2016), bone (Cui et al., 2013), ligament (Liu et al., 1996), and
tendon (Bridgeman et al., 2010). Within these tissues, estrogen
is known to regulate metabolism (Nelson and Bulun, 2001),
however, it is still unclear whether these effects are beneficial
or harmful. Consistent with a role for estrogen in regulating
musculoskeletal function, menstruating women suffer more ACL

ruptures than men (Shultz et al., 2005, 2011), and menopause is
characterized by increased risk of musculoskeletal injury (Enns
and Tiidus, 2010), accelerated bone and muscle wasting (Rice
et al., 1989; Frontera et al., 1991; Bassey et al., 1992; Häkkinen and
Pakarinen, 1993), and decreased sensitivity to anabolic stimuli
(Bamman et al., 2003; Teixeira et al., 2003). To counteract many
of the negative aspects of menopause, hormone replacement
therapy (HRT) has been used to reduce muscle and bone loss,
and restore muscle protein balance (Hansen et al., 2012; Smith
et al., 2014).

Given the sex differences in musculoskeletal injury risk and
the growing number of active young women, the role of estrogen
inmusculoskeletal function is a burgeoning area of research. This
review will highlight important developments, controversies,
and unknowns in the relationship between estrogen and
musculoskeletal function, with specific focus on muscle, tendon,
and ligaments. There is a vast literature on the effects of estrogen
on bone structure and function and therefore this topic will not
be addressed in the current work. For an excellent review on
this topic, see the recent review by Cauley et al. on estrogen
and bone health in men and women (Cauley, 2015). This review
will instead focus on the direct and indirect effects of estrogen
on musculoskeletal function, as well as how these changes affect
performance, adaptation, and injury risk in an active population.

ESTROGEN AND MUSCLE

Estrogen has a number of metabolic effects on skeletal muscle.
When female animals lose estrogen through ovariectomy,
mitochondrial function, membrane microviscosity, and complex
I and I + III activities (Torres et al., 2018) all decrease. The
loss of estrogen also results in increased mitochondrial H2O2
production (Valencia et al., 2016), decreased levels of antioxidant
proteins such as glutathione peroxidase, catalase, and superoxide
dismutase (Baltgalvis et al., 2010; Valencia et al., 2016), and
impaired insulin sensitivity (Torres et al., 2018). These effects
are due to the loss of estrogen since restoring normal estrogen
levels restores cellular redox, and glucose homeostasis in skeletal
muscle (Spangenburg et al., 2012; Camporez et al., 2013; Torres
et al., 2018).

Beyond the metabolic roles, estrogen is clearly beneficial for
muscle mass and strength, at least in animal models (McClung
et al., 2006; Kitajima and Ono, 2016). For example, 24 weeks
of estrogen deficiency resulted in a 10% decrease in strength
that corresponded with an 18% decrease in CSA (Kitajima and
Ono, 2016). Beyond the decrease in fiber CSA, ovariectomized
(OVX) rats do not recover as well following unloading (McClung
et al., 2006). In this example, following 14 days of unloading,
OVX rats showed limited regrowth, and an increase in injured
fibers during either 7 or 14 days of reloading. Supplementing
the OVX rats with estradiol was enough to return fiber CSA
and injured fiber numbers to control levels. These data suggest
that in the absence of estrogen, muscle is more prone to injury,
and this limits regrowth (McClung et al., 2006). Based on these
and other data, Enns and Tiidus (2010) proposed that estrogen
could stabilize the extracellular matrix or act as an antioxidant to
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decrease muscle injury; however, the effect of estrogen on human
muscle has not been as clearly defined because shifts in estrogen
are transient or associated with confounding differences in age,
fitness level, and the type and intensity of exercise (Enns and
Tiidus, 2010). Lastly, many studies looking to understand the role
of estrogen on muscle function actually focus on sex differences,
which goes far beyond simple changes in hormone levels.

In humans, much of the estrogen work has been performed
in association with aging. Aging is a natural process that affects
all aspects of life regardless of species. The goal of healthy aging
is to slow the deterioration in physical and mental function
as much as possible. Muscle protein turnover changes with
age and this is further affected by sex. In postmenopausal
women, higher rates of muscle protein synthesis and breakdown
have been observed when compared to age matched men and
premenopausal women (Smith et al., 2014). Even though higher
rates of protein turnover might be expected to improve muscle
quality, these women still experience a rapid decrease in muscle
mass and strength, and as a result are more vulnerable to
age-related frailty (Hansen and Kjaer, 2014). Muscle mass is
largely dependent on the balance between the synthesis and
degradation of muscle protein. The rapid decline in muscle
mass after menopause therefore means either the increase in
protein synthesis rate is counteracted by a greater increase in
protein breakdown or that the proteins being synthesized are
not the myofibrillar proteins but rather those needed for injury
repair. Importantly, there is no significant sex difference observed
in response to training and nutrition in middle-aged adults;
however, postmenopausal women show reduced sensitivity to
anabolic stimuli when compared to age-matched men (Bamman
et al., 2003). This suggests that a chronic decrease in estrogen
attenuates the response to anabolic stimuli (Hansen and Kjaer,
2014). In support of this hypothesis, when estrogen levels
were raised to that of premenopausal women using estrogen
replacement therapy (ERT), the response to anabolic stimuli was
normalized (Hansen et al., 2012). Myofibrillar protein synthesis
in women taking ERT is also increased in response to resistance
exercise (Dieli-Conwright et al., 2009; Pöllänen et al., 2010),
a response that is absent in postmenopausal women who do
not take ERT (Pöllänen et al., 2010). These studies highlight
the importance of estrogen in determining the sensitivity of
muscle to anabolic signaling; however, more research is needed
to understand whether monthly variations in estrogen have the
same effect on anabolic signaling seen with chronic loss of
estrogen.

One study that attempted to address this question in
premenopausal women measured myofibrillar protein synthesis
at the follicular (low estrogen and progesterone) and luteal
(moderate estrogen and high progesterone) phases of the cycle
(Miller et al., 2005). The authors found no significant difference
in myofibrillar protein synthesis between phases (Miller et al.,
2005). However, it should be noted that different subjects were
tested in the follicular and luteal phases and subjects tested
in the luteal phase came into the lab 4 days after ovulation
(Miller et al., 2005). The result was that plasma estrogen
was highly variable and the mean between the groups was
only marginally (2-fold) higher, whereas progesterone levels
were increased 40-fold, therefore, the luteal phase was more

a measure of high progesterone than high estrogen (Miller
et al., 2005). By contrast, oral contraceptives (OCs) provide
a moderate, but relatively constant, level of estrogen with or
without progesterone. Considering the fact that OC use alters
regular hormone level fluctuations, this might be a good tool to
understand how estrogen affects myofibrillar protein synthesis in
response to anabolic stimuli. Exploiting this hormonal milieu,
Hansen et al. (2011) found lower levels of myofibrillar protein
FSR in users of one form of OC (35 µg ethinyl estradiol and
0.25mg norgestimate/day), whereas a different formulation (30
µg ethinyl estradiol, and gestoden 0.0075 mg/day) had no effect
of myofibrillar protein synthesis. Looking at the two different
formulations would suggest that the 3,300% higher progesterone
level may be more important in inhibiting muscle protein
synthesis than the 16% difference in estrogen. Therefore, in
young women the role of estrogen on muscle anabolism is still
uncertain; however, it is clear that OCs with high progesterone
have a negative impact on muscle.

Hormone replacement therapy (HRT) has been
recommended as therapeutic for postmenopausal women
to counteract some of the negative aspects of menopause
(Enns and Tiidus, 2010). As far as the regulation of muscle
performance, there are some clear benefits of HRT. In the most
interesting study, habitual and maximal walking speed, thigh
muscle composition, lower body muscle power (vertical jumping
height), maximal isometric hand grip, and knee extension
strengths were measured in 16 monozygotic twin pairs who
were discordant for HRT use (one twin was on HRT while
the other was not). Maximal walking speed and vertical jump
height, thigh muscle CSA, and relative muscle area were larger
in the HRT twins than their sisters. Habitual walking speed
and maximal isometric strength were not significantly different
between users and non-users. Importantly, serum estrogen levels
were 5-fold higher in the twins on HRT, regardless of whether
the product the women were taking contained only estrogen or
estrogen and progesterone together (Ronkainen et al., 2009).
In an earlier study, Sipilä et al. (2001), randomly assigned
80 postmenopausal women to 4 groups: exercise (Ex), HRT,
exercise+HRT (ExHRT) or a no treatment control for a year. At
the end of the intervention, the ExHRT group showed increases
in muscle cross-sectional area (CSA; 7.1%), knee extension
torque (8.3%), and vertical jump height (17.2%). A similar but
smaller increase in vertical jump height (6.8%) and muscle CSA
(6.3%) was observed in the HRT group. There was also a higher
percentage of fat within the quadriceps muscle in the control
group compared to the HRT and ExHRT groups (Sipilä et al.,
2001). The lower fat mass could be a result of the correction
of the lower LH/FSH ratio in postmenopausal women on HRT
(Beydoun et al., 2012), or could be a metabolic consequence of
the increase in muscle mass. Interestingly, exercise alone was less
effective than HRT at maintaining muscle mass and function in
these women. Together, these data suggest that HRT is beneficial
for postmenopausal muscle mass and function, but that HRT
together with exercise improves muscle mass and function more
than either HRT or exercise alone.

A number of other studies have also addressed the role of
estrogen replacement therapy on muscle mass and function
(Taaffe et al., 2005; Hansen et al., 2012; Pingel et al., 2012; Smith
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et al., 2014). In a cross-sectional analysis of 840 postmenopausal
women (259 on ERT and 581 controls), Taaffe et al. (2005) found
that muscle cross-sectional area (CSA) and grip strength were
greater in ERT users than in non-users (Taaffe et al., 2005).
Hansen et al. (2012) surprisingly found that myofibrillar protein
synthesis decreased with ERT suggesting that ERT inhibits basal
skeletal muscle protein synthesis in the postabsorptive state.
One interesting caveat was that following resistance exercise
muscle protein synthesis increased significantly only in the
ERT group (Hansen et al., 2012). These data suggest that ERT
may decrease basal muscle protein synthesis while improving
sensitivity to anabolic stimuli. In support of this hypothesis,
Smith et al. (2014) found that fasting mixed muscle protein
synthesis increased when postmenopausal women were given
testosterone or progesterone, but not when given an acute
estrogen injection. All together, the existing data suggest that
acute treatment with estrogen does not improve basal muscle
protein synthesis; however, estrogen increases the anabolic
response to exercise and this may result in the increase in muscle
mass reported in long term studies.

SINEW: TENDON AND LIGAMENT

Within the musculoskeletal system, tendons, and ligaments (we
will refer to these tissues collectively as sinew) function as
connective tissues between bone and muscle and between bone
and bone, respectively. In both tissues, the majority of the dry
weight is collagen: 60–85% for tendon (Kjaer, 2004) and ∼75%
for ligament (Frank, 2004). Of this collagen, the majority is type
I: 60% in tendon and up to 85% in a ligament. The mechanical
properties of both the tendon and ligament are dependent on
collagen fiber density, diameter, orientation, and cross-linking.
The fibers can be cross-linked in two ways: enzymatically and
non-enzymatically. Enzymatic cross-links aremediated largely by
lysyl oxidase (LOX; Siegel, 1976; Siegel and Fu, 1976). By contrast,
cross-links can be formed without a specific enzyme through
a Maillard reaction between a sugar and an amino acid. These
cross-links are called advanced glycation end-products (AGE),
and as would be expected are higher in diabetics (Dyer et al.,
1993). Both enzymatic cross-linking, through LOX, and non-
enzymatic cross-linking through AGEs increase the stiffness of
the tissues (Reddy et al., 2002; Svensson et al., 2013; Marturano
et al., 2014). One of the main differences between enzymatic
and non-enzymatic cross-links are their location and turnover
rate, where AGEs decrease collagen turnover and over time this
impairs sinew function (Hammes et al., 1991; Corman et al.,
1998).

Since a ligament, such as the ACL within the knee, shows
a direct relationship between laxity and rupture (Myer et al.,
2008), a stiffer ligament is preferred to maintain joint stability
and prevent injuries. Due to its role in connecting a compliant
muscle to a stiff bone, a stiffer tendon is not always beneficial. In
terms of performance, a stiff tendon transmits the force produced
by a muscle to the bone faster and this can improve performance.
However, when a tendon becomes too stiff this produces a strain
concentration in muscle. What this means is that more of the

strain (stretch) produced in a given movement is concentrated
in the muscle that is connected to a stiff tendon than a muscle
attached to a compliant tendon. In other words, instead of
the tendon stretching while the muscle contracts isometrically
(Griffiths, 1991), a stiff tendon doesn’t stretch, and the muscle is
forced to lengthen while contracting. The result is that a muscle
attached to a stiff tendon will experience more eccentric load
for a given movement. Since eccentric movements produce more
muscle injury than concentric or isometric movements (Clarkson
and Monica, 2002; LaStayo et al., 2003; Brockett et al., 2004),
this means that muscles attached to stiff tendons will suffer more
injury for a given movement than those attached to compliant
tendons. Therefore, stiff ligaments are always better, stiff tendons
can improve performance, but if the tendon becomes too stiff the
associated muscle will suffer more injuries.

Interestingly, women suffer fewer muscle injuries, and more
ligament ruptures than men (Arendt and Dick, 1995; Sewright
et al., 2008; Hägglund et al., 2009; Edouard et al., 2016; Leblanc
et al., 2017). These observations are consistent with lower sinew
stiffness in women than men. Since knee laxity changes with
estrogen levels through the menstrual cycle (Shultz et al., 2005),
estrogen is believed to decrease sinew stiffness. Therefore, in
the sections below, we will address how estrogen affects sinew
mechanics and adaptation to loading.

ESTROGEN AND LIGAMENT

One of the best characterized musculoskeletal differences
between men and women, is the rupture rate of the anterior
cruciate ligament (ACL). ACL ruptures occur 2–8 times more
often among female athletes than their male counterparts
(Arendt and Dick, 1995; Adachi et al., 2008). Given that there
is a correlation between ACL injuries and knee laxity (Ramesh
et al., 2005; Myer et al., 2008), and an association between knee
laxity and themenstrual cycle (Deie et al., 2002; Shultz et al., 2005,
2010, 2011, 2012a,b), a number of groups have investigated the
relationship between ACL injuries and phase of the menstrual
cycle (Wojtys et al., 1998; Heitz et al., 1999; Carcia et al., 2004;
Adachi et al., 2008; Lee et al., 2013; Lefevre et al., 2013; Herzberg
et al., 2017). The resulting studies in general find a higher risk of
ACL injury during the pre-ovulatory and ovulatory phases than
luteal or follicular phases of the menstrual cycle (Beynnon et al.,
2006; Ruedl et al., 2009; Lefevre et al., 2013). For example, Wojtys
et al. (1998) and Wojtys et al. (2002) found higher risk (Wojtys
et al., 1998) and occurrence of ACL injury in the ovulatory
phase (Wojtys et al., 2002; Figure 2). To attempt to explain the
increased ACL rupture in the pre-ovulatory phases, researchers
have measured knee laxity throughout the cycle. In men and
women with no history of knee injury, the men showed no
statistical difference in knee laxity over time; however, in women
laxity increased from 4.7 ± 0.8mm in the follicular phase, to 5.3
± 0.7mm in the ovulatory phase (Deie et al., 2002). These authors
concluded that knee laxity is dependent on female hormones
(Deie et al., 2002). Similarly, Shultz et al. (2005) found that knee
laxity increased in direct relation to elevations in plasma estradiol
levels. The variations in laxity were found to be cyclic in nature.
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FIGURE 2 | Relationship between estrogen and ACL rupture in a normal

cycle. The rate of anterior cruciate ligament (ACL) rupture in relation to female

hormones throughout a standard menstrual cycle. Note that with the ovulatory

rise in estrogen there is a concomitant rise in ACL ruptures. Adapted from

Wojtys et al. (2002).

When estrogen concentration increased during the menstrual
cycle, knee laxity increased as well (Shultz et al., 2010, 2011,
2012a). In fact, these authors found that knee laxity increased
between 1 and 5mm between the first day of menstruation
and the day following ovulation, depending on estrogen levels.
Lastly, Park et al. found a 17% decrease in knee stiffness during
the ovulatory phase resulting in a change in knee laxity from
13.35 ± 2.53mm during the follicular phase to 14.43 ± 2.60mm
during ovulation (Park et al., 2009). By contrast, Carcia et al.
(2004) found no change in knee displacement in relation to cycle;
however, it is important to note that that these authors used self-
reported cycle length to estimate menstrual phase, whereas the
other studies directly measured estrogen levels in concert with
knee laxity. SinceMyer et al. (2008) showed that for every 1.3mm
increase in knee displacement, risk of ACL injury goes up 4-fold,
the rise in knee laxity reported by Deie, Park, and Shultz could
explain the 2- to 8-fold higher rate of ACL rupture in women
(Arendt and Dick, 1995; Adachi et al., 2008).

Since knee laxity changes with cycle phase, many active
women want to know whether OCs could prevent the change
in laxity and injury risk. In support of this idea, Gray et al.
found that young women (aged 15–19) who undergo surgical
repair of the ACL are 18% less likely to use oral contraceptives
than matched controls (Gray et al., 2016). Further, Rahr-Wagner
et al. found a 20% higher relative risk (RR) value of ACL injury
in women who had never used OCs than in women who were
long-term users (Rahr-Wagner et al., 2014). Together, these
data suggest that ACL laxity changes through the cycle and
eliminating the changes in estrogen using oral contraceptives
decreases the risk of ACL rupture.

With evidence pointing to hormonal fluctuations of the
menstrual cycle having an influence on ligament injury risk, the
question of how sex hormones, estrogen in particular, increase
the risk of injury has been the focus of study. In cell culture,
Yu et al. (1999) found an early increase in proliferation and
procollagen synthesis in freshly isolated ACL cells that were

incubated with estrogen (Lee H. et al., 2015). However, the
benefit of estrogen becomes less apparent with time in culture
(Lee H. et al., 2015). In support, Chen et al. (2014) found
an estrogen dose-dependent increase in proliferation of cells
from the ligamentum flavum that lasted only 24 h in culture
(Chen et al., 2014). Although expression of collagen mRNA
didn’t change significantly, there was a decrease in the ratio
of collagen to elastin at the protein level after the cells were
treated with 17β-estradiol. The authors attributed this shift in
protein to the up regulation of matrix metalloproteinase 13
(MMP-13) which degrades collagen but not elastin (Chen et al.,
2014). This suggests that estrogen could decrease collagen protein
and in the case of lumbar stenosis, prevent hypertrophy of the
ligamentum flavum, and reduce risk of the disease (Chen et al.,
2014). However, the effect of estrogen on collagen synthesis in
ligaments has yielded conflicting results in other systems. Some
studies suggest that estradiol has a negative effect on collagen
synthesis (Hama et al., 1976; Liu et al., 1997), whereas others
saw positive effects (Lee et al., 2004a,b; Lee C. A. et al., 2015)
and still others saw no effect (Seneviratne et al., 2004; Mamalis
et al., 2011). Hama et al. (1976) found decreased collagen
content in the capsular ligament with estrogen administration
to ovariectomized rats (Hama et al., 1976), however Lee et al.
(2004a,b) found increased collagen synthesis (Lee et al., 2004b)
with a corresponding increase in Type I collagen mRNA (Lee
et al., 2004a). Liu et al. (1997) also found decreased Type I
collagen synthesis at physiological estradiol levels in monolayer
culture of fibroblasts derived from rabbit ACL (Liu et al., 1997);
however, in 3D ligaments engineered from human ACL cells,
high estrogen results in increased collagen accumulation within
the grafts (Lee C. A. et al., 2015). Despite conflicting results on
fibroblast proliferation and collagen synthesis, there is a general
consensus that the mechanical strength of the tissue decreases. In
the engineered ligaments, despite increased collagen content, the
mechanical properties of the tissue (UTS andmodulus) decreased
due to the inhibition of lysyl oxidase activity by estrogen (Lee
C. A. et al., 2015). In these experiments, treating engineered
ligaments with physiologically high estrogen for 48 h resulted
in an 80% decrease in lysyl oxidase activity without changing
LOX expression (Figure 3). These data suggest that estrogen
may increase collagen synthesis or incorporation but decrease
sinew stiffness by directly inhibiting lysyl oxidase and decreasing
cross-linking.

ESTROGEN AND TENDON

If estrogen decreases lysyl oxidase activity in sinews, this would
be expected to decrease tendon stiffness, and therefore decrease
the incidence of injury to the associated muscles. In fact, as
mentioned above women suffer fewer muscle injuries than men
(Hägglund et al., 2009; Edouard et al., 2016). In professional
soccer, women suffer 54% fewer muscle strains than their male
counterparts (Hägglund et al., 2009). The majority of the benefit
results from decreases in groin (83% fewer) and hamstring (36%
fewer) pulls. A decrease in tendon stiffness could also leave
the tendon less prone to injury. In fact, women are at lower
risk of sustaining an Achilles’ tendon rupture than men until
menopause, after which the risk becomes similar in both sexes
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FIGURE 3 | High estrogen decreasing engineered ligament stiffness due to inhibition of lysyl oxidase. (A) Collagen content, (B) tangent modulus, and (C) lysyl oxidase

(LOX) activity in ligaments engineered from human ACL cells isolated from women following 24 or 48 h of treatment of the constructs with physiologically high (500

pg/ml) of estrogen. Note that even though there is a slight rise in collagen, the stiffness of the grafts decreases concomitant with an increase in estrogen in the media.

*indicates different than control (p < 0.05), whereas † indicates different than 24 h (p < 0.05). Adapted from Lee C. A. et al. (2015).

(Hansen and Kjaer, 2014, 2016). Use of OCs (which maintain
moderate estrogen levels) has been linked with increased risk
of Achilles tendinopathy (Holmes and Johnny, 2006), indicating
that the periodic rise in estrogen to physiologically high levels
may be needed to decrease Achilles injury. Similarly, OCs have
been linked with greater muscle damage and delayed onset
muscle soreness after exercise (Savage and Priscilla, 2002; Lee
H. et al., 2015; Minahan et al., 2015). As discussed above, an
increase in muscle damage is consistent with an increase in
tendon stiffness that decreases shielding of themuscle from strain
injury. Therefore, periodic rises in estrogen levels are necessary
for the protective effect on tendon and muscle health.

There have been a number of elegant studies performed in
women that have tried to establish the mechanism underlying
the effect of estrogen on tendon health. Many of these studies
have focused on collagen synthesis and the interactions between
estrogen and exercise. Interestingly, the studies have contrasting
results depending on age—premenopausal women compared to
postmenopausal women—even when they come from the same
research group. In premenopausal women, holding estrogen
levels constant with oral contraceptives resulted in decreased
exercise stimulated collagen synthesis (Lee et al., 2004b; Miller
et al., 2006; Magnusson et al., 2007; Hansen et al., 2008, 2009a;
Westh et al., 2008; Kjaer et al., 2009). In the first of these studies,
a group taking oral contraceptives containing moderate estradiol
was compared to non-OC users in the follicular phase, when
estrogen levels are naturally low, both at rest and following 1 h
of kicking exercise. Patellar tendon collagen synthesis, measured
24 h after exercise using microdialysis to capture the N-terminal
peptide of procollagen I (PINP), was not significantly different at
rest; however, following exercise the women taking OC showed
no change in collagen synthesis whereas the control women
doubled PINP production (Hansen et al., 2008). The same group
repeated the study using stable isotope labeled proline and
patellar tendon biopsies to detect the incorporation of newly
synthesized collagen into the tendon (Hansen et al., 2009a).
In contrast to the microdialysis experiment, OC use decreased
resting collagen synthesis, and neither group saw an increase
in collagen incorporation into the patellar tendon after exercise
(Hansen et al., 2009a). This is in contrast to men where the same
1 h kicking exercise increased new collagen incorporation 70% by

24 h (Miller et al., 2005). Consistent with the stable isotope data
from Hansen et al. (2009a), when the same group compared the
data in men to an equivalent cohort of women, tendon collagen
synthesis was 46% lower in the women at rest and was unaffected
by exercise (Miller et al., 2007). Together, these data suggest
that in young active women, the incorporation of new collagen
into the patellar tendon is lower and does not increase following
exercise. This does not mean that woman are synthesizing less
collagen. The PINP data suggests that women synthesize more
collagen in response to exercise; however, this collagen may
not be incorporated into the tendon to the same degree in
women. In support of this hypothesis, Laurent (1987) showed
that in muscle 49% of newly produced collagen is degraded
rapidly before it is incorporated. This raises the possibility that
estrogen differentially regulates the synthesis and incorporation
of collagen into the matrix of the sinew.

In premenopausal women, a consistent moderate level of
estrogen from OC decreases collagen synthesis; however, in
postmenopausal women, estrogen replacement therapy, which
provides a daily moderate rise in estrogen, is linked with
increased tendon collagen synthesis (Hansen et al., 2009b).
In postmenopausal women, collagen incorporation into the
patellar tendon was 47% higher in ERT users compared with
control (Hansen et al., 2009b). Even though ERT boosted
collagen incorporation at rest, exercise did not increase collagen
incorporation further (Finni et al., 2009; Hansen et al., 2009b).
Interestingly though, using the PINP measure at the same
time, Hansen et al. saw more collagen synthesis in the tendons
of the control women than the ERT users (Figure 4), again
suggesting that estrogen effects collagen incorporation into
tendons differently than collagen synthesis itself (Hansen et al.,
2009b). As to which measure is the best indicator of long
term tendon structure/function, in the monozygotic twin study
discussed above, the twins on HRT had a smaller Achilles tendon
CSA when compared to the twins who did not take HRT (Finni
et al., 2009) and a similar decrease in Achilles CSA was found
in a separate study in a larger group of active women taking
HRT (Cook et al., 2007). Together, these data suggest that the
decrease in PINP in the microdiasylate of a tendon may better
represent the long term changes in tendon structure/function
than the increased incorporation of stable isotopes. One reason
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FIGURE 4 | Differential measures of collagen incorporation and synthesis with estrogen replacement and exercise. The rate of (A) collagen incorporation of proline

into the patellar tendon or (B) the appearance of the N-terminal propeptide of collagen I in post-menopausal women ± estrogen replacement therapy (ERT) and

exercise. Note that with ERT collagen incorporation is higher in the same women where collagen synthesis is repressed. Further, exercise tends to decrease collagen

incorporation and synthesis in controls, whereas ERT users show no effect on incorporation or a large drop in collagen synthesis. Symbols (*P < 0.01, **P < 0.001)

show significance determined by unpaired t-test Control vs. ERT. These data suggest that there is a large methodological discrepancy between the two measures.

Adapted from Hansen et al. (2009b).

that the PINP measure may better reflect long term changes is
that the current stable isotope techniques are highly dependent
on delivery of the isotope to the tissue in a limited amount of
time. Since tendon is relatively avascular, this may not be the
best way to measure tendon turnover. However, with the ability
to measure stable water incorporation into tissues over a much
longer time frame, new isotope techniques could vastly improve
our understanding of the dynamics of these tissues.

In an effort to gain a better mechanistic understanding of how
estrogen can increase collagen content while decreasing tendon
mechanics in young women, researchers have turned to animal,
and cell culture models. Creating an estrogen deficiency in rats
using ovariectomy results in a 28% decrease in collagen content in
Achilles tendon (Ramos et al., 2012). When OVX rats are treated
with genistein, a natural isoflavone phytoestrogen, collagen
content within the Achilles is returned to control levels (Ramos
et al., 2012). Interestingly, unlike native estrogen that decreases
tendon stiffness, genistein showed no effect on mechanical
properties of the Achilles (Ramos et al., 2012), suggesting that
phytoestrogens produce the increase in collagen without the
negative effect on stiffness. In 2D cultured Achilles tendon cells,
Irie et al. (2010) found that estrogen or a selective estrogen
receptor modulator (SERM) increases the expression of MMP-
13, suggesting that estrogen could increase the rate of collagen
turnover. As mentioned above, in our tissue engineered model
that allows us to determine both collagen content andmechanics,
collagen content increased significantly with increasing estrogen
in the media; however, as with in vivo sinew the tissue stiffness
decreased (Lee C. A. et al., 2015). We have yet to determine
whether the increase in collagen content was the result of
a change in collagen synthesis or incorporation (Lee C. A.
et al., 2015); however, the decrease in stiffness correlated with a
decrease in LOX activity.

One interesting possible explanation for how estrogen could
increase collagen content is related to an indirect effect on
insulin-like growth factor (IGF)-1. Both in humans (Hansen
et al., 2013) and in engineered ligaments (West et al., 2015)
the administration of IGF-1 increases tendon collagen synthesis.
In humans, both the incorporation of collagen into the patellar
tendon and the local production of PINP were significantly

increased with local IGF-1 administration (Hansen et al., 2013),
suggesting that IGF-1 can enhance tendon collagen synthesis and
incorporation. Estrogen directly modulates both IGF-1 and IGF
binding proteins (Hansen et al., 2009b) and can thereforemediate
its positive effects through an increase in IGF-1 signaling. IGF-
1 in turn can affect collagen content through an increase in
protein synthesis through the production of the La-related
protein (LARP) 6 (Blackstock et al., 2014). LARP6 is a binding
protein that is increased by IGF-1, directly binds to type I
collagen mRNA, and specifically increases the translation of type
I collagen.

PRACTICAL CONSIDERATIONS TO
MAXIMIZE PERFORMANCE AND
MINIMIZE INJURY

Given the sometimes confusing data on the role of estrogen in
musculoskeletal function, the question many active women have
is: “based on our current knowledge, what recommendations
can be made for how to maximize musculoskeletal function?”
From the data discussed above, it appears that like many other
performance strategies, in young women hormonal cycling is
something that needs to be handled differently depending on
the phase of training. For young women who are not competing
in anything at a high level, normal cycling is beneficial for
musculoskeletal health, and performance. In this population, the
benefits of high estrogen on the anabolic response to exercise
in muscle and tendon and improved muscle repair means that
over time these women will have stronger muscles, tendons, and
bones if they allow for the periodic rise of estrogen that occurs
before ovulation. In competitive athletes, the benefits of normal
cycling can be seen by contrasting them with those athletes who
experience relative energy deficiency in sport (RED-S), formerly
known as the female athlete triad (Heikura et al., 2017). With
a chronic energy deficiency, women stop normal cycling, and
estrogen levels drop to very low levels, resulting in amenorrhea,
loss of bone mass, and increased risk of musculoskeletal injury
(Heikura et al., 2017). Again, because of the beneficial effects on
muscle, tendon, and bone, competitive athletes should look to
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maintain their normal cycling when they are looking tomaximize
their adaptation to training: during the offseason or in the base
phase of their training. As they begin to shift into the season,
or during the specific preparation phase of training, they should
consider taking an oral contraceptive that contains low levels of
progesterone. The low level of estrogen in the OCwould decrease
the negative effects of the ovulatory rise in estrogen on tendon
and ligament mechanics (Lee C. A. et al., 2015), whereas the work
of Hansen et al. (2011) showed that only high progesterone OCs
decrease muscle protein synthesis. In this way, training would
be performed in the absence of OCs and therefore lower tendon
stiffness, and induce higher anabolic responses to training and
maximal muscle repair on hard days. This would result in fewer
muscle pulls and a greater metabolic cost of training, increasing
the stimulus for adaptation and the likelihood of a healthy build
up phase. Shifting to the low progesterone OC in the specific
preparation phase, or in season, would help increase stiffness
within tendon and ligament while not preventing muscle repair
following quality sessions or games. The result would be high
rate of force development resulting in better performance and
a lower risk of musculoskeletal injuries during the competitive
season. However, it should be noted that this strategy would leave
the athlete at a greater risk for catastrophic injury for ∼5 days a
month during training. Therefore, novel strategies to prevent the
negative effects of estrogen on joint laxity are desperately needed
to decrease the risk of catastrophic injuries in active women.

In postmenopausal women, the strategy is less clear. In this
population, hormone replacement improves muscle mass and
function by improving muscle repair, and the response to feeding
and exercise. Bone mass and function is also improved by HRT
(Zhao et al., 2015). The problem is that long term HRT use is
associated with decreased tendon cross-sectional area, especially
in an active population (Cook et al., 2007). The result may be a
bigger, stronger muscle pulling on a small brittle tendon that is
in turn connected to a stiffer bone. This would result in increased
impedance mismatch, differences in stiffness between connected
tissues, that can produce strain concentrations, and promote
injury. However, not taking HRT would accelerate sarcopenia
and osteoporosis. Therefore, to date the data suggest that HRT
is beneficial for musculoskeletal function in postmenopausal

women, but extra care should be taken to maximize tendon
function. What is really lacking for these women is a way to get
the positive effects of estrogen on muscle and bone repair and
anabolic responses to loading and nutrition without the negative
long term effects on tendon. Phytoestrogens may provide some
hope, but much further work is needed to establish the efficacy of
these natural products.

CONCLUSIONS AND FUTURE RESEARCH

It is clear that estrogen has a dramatic effect on musculoskeletal
function. In the past, much of the research focus has been on
the strong connection between estrogen and bone. However,
recently the effect of estrogen on other musculoskeletal
tissues such as muscle, tendon, and ligament has become
the focus of more research. These studies make it clear
that estrogen improves muscle proteostasis and increases
sinew collagen content; however, the benefits on bone, and
muscle come at the cost of decreased connective tissue
stiffness. Evolutionarily, this makes sense since laxer joints
and better repair following injury would facilitate healthy
childbirth and recovery. However, as more women participate
in sports it is clear that these physiological effects of
estrogen contribute to decreases in power and performance
and make women more prone for catastrophic ligament
injury. In order to promote female participation in an
active lifestyle throughout their life span, more research is
needed to determine how nutrition, training, and hormonal
manipulation can be used to promote optimal performance at
any age.
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