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Abstract. This paper presents a robust control algorithm with gravity 

compensation in presence of parametric uncertainties. The application 

deals with an upper limb exoskeleton system, aimed for a rehabilitation 

application. The treated system is an robot with two degrees of freedom 

acting on the flexion / extension movement of the shoulder and elbow. An 

adaptive sliding mode algorithm with gravity compensation has been 

developed to control the upper limb exoskeleton system. A Stability study 

is realized. Then, a robustness analysis in the presence of parametric 

uncertainties using Monte Carlo simulation is developed. To prove the 

performance of the gravity compensation approach, a comparison study is 

done. Simulation results are presented to highlight the performances and 

the effectiveness of the proposed controller using gravity compensation. 

I. INTRODUCTION 

Exoskeleton is a robotic system which can be placed on the human’s arm and acts as 

amplifiers that augment, reinforce or restore human performances. When operating an 

exoskeleton system, the torques on the input elements depend on the masses of the moving 

system, as well as the external forces applied to the system. We can find two types of loads 

generated by the masses of moving elements: the static load depending on the forces of 

gravity and the dynamic load which takes into account moreover the effects of inertia. 

These periodic loads increase the energy expenditure that is necessary to operate the 

system, cause additional vibrations and parasitic dynamic errors. 

To eliminate the negative influence of these loads on each actuator, it is necessary to create 

an opposite additional torque. This additional torque is often referred to as the balancing 

torque or the discharge torque. Different control methods have been studied to solve this 

problem. So, we can find spring mechanisms [4], [8] or cam mechanisms [9] to reduce or 

obtain a constant load on the actuators of mechanical systems; the optimization of 

movements [10], [11] to find the optimized trajectories or the optimal redistribution of 

moving masses [14] to eliminate (or reduce) the influence of inertia on the actuators. Also, 

we find the gravity compensation approach, which is frequently used in the control of the 

robot [1], [2], [3].  

In this context, we are interested to the control of the exoskeleton-upper limb system using 

the gravity compensation approach. The main goal of controlling an exoskeleton is to 

reproduce the movements of a healthy human arm. To achieve this goal, it is necessary to 

apply an appropriate controller. As the interaction between the human arm and the 

exoskeleton is characterized by a dynamic complexity, researchers have developed several 

control laws. Sliding mode is used in reference [15] to control the exoskeleton of the upper 

limbs. The author in [16] used a mixed force and position controller which mixes, for the 

same degree of freedom, the force and position information.  
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The performance and the efficiency of the existing controllers when tracking the desired 

trajectories and the robustness study in the presence of parametric uncertainties and the 

gravity effect are not studied in literature. 

The contribution of this paper is to develop an adaptive sliding mode algorithm with gravity 

compensation to control the exoskeleton- upper limb system. As a robustness study in 

presence of parametric uncertainties, a Monte Carlo simulation is used. 

The article is presented as: Section 2 deals with the exoskeleton-upper limb system model. 

Section 3 describes the control and the stability studies using the adaptive sliding mode 

without and with gravity compensation. The robustness analysis of the system affected by 

uncertainties using Monte Carlo simulation is presented by section 4. Simulation results 

and discussions are given in section 5. Finally, conclusion and future work are described by 

section 6. 

II. MODELLING OF THE UPPER- LIMB EXOSKELETON SYSTEM 

In this section, we aim to control an upper- limb exoskeleton. We will start by modeling 

this system and then we pass to the control of both elbow and shoulder articulations. 

Based on the Lagrange method, the dynamic model of the robotized exoskeleton system of 

the upper limbs with two degrees of freedom (Fig.1), taking into account the contact force 

and the constraints, is given by the following equation: 

 

   M (q) + C(q, q ) q + G(q) + fv q  + ki sign ( q i) = τ     (1) 

                                                                                     F (q,   ) 
  

                  M (q) +C (q,  )    +G (q) + F (q,   ) = τ        
  
(2) 

 
Fig.1. General configuration of a 2 DoF exoskeleton 

 Where: 

- q ∈ ℝ2
 is the vector of joint positions; 

- q  ∈ ℝ2
 is the vector of joint velocities;  

- q  ∈ℝ2
 is the vector of joint accelerations; 

- M(q)∈ℝ 
2*2

 is the inertia matrix; 

- C(q, q )∈ℝ 
2*2

 is the Coriolis matrix, 

- G(q) ∈ ℝ2 
is the gravitational vector; 

- F(q, q ) ∈ ℝ2
 is the force generated by friction; 

- τ ∈ ℝ 
2
 is the control vector;  

 

We pass then to synthesize the algorithm laws used to control the upper- limb exoskeleton 

system in order to follow the desired trajectories. 
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III. CONTROL OF THE UPPER -LIMB EXOSKELETON SYSTEM 

USING THE ADAPTIVE SLIDING MODE 

 

It is intended to control in this part the flexion / extension movement of the shoulder and 

the elbow of the upper- limb exoskeleton. The goal of using the adaptive sliding mode is to 

ensure a dynamic adaptation of the control gain in order to be as small as possible. 

The adaptive control is used for its speed and ease of implementation, while the sliding 

mode for its theoretical foundations reassuring in terms of stability and robustness. 

A. Adaptive sliding mode control of an upper-limb exoskeleton 

The dynamic of σ is given by: 
 

                                        =   +  =  +  f(x) +  g(x) u                                         (3) 

 

                 Ψ(x,t)          Γ(x,t) 

With:  x = f(x) + g (x) u  
 

The controller may be expressed as follows: 
 

                                                         u = - k sign (σ (x,t))                                                      (4) 

 

With : σ  = λ
2
 (qd-q) + 2 λ ( q d - q ) + q d 

The adaptation law is given by: 

                                                          K  = K  |σ (x,t) |                                                          (5) 

With : K  > 0 and K(0) > 0. 
 

Consider the function E =  || σ
2
||, we get 

 

 =  (
T
  +  

T
) = 

T 
ψ -   

T 
 (Γ + Γ

T
) 

We note Ω = Γ + Γ
T
, then 

 

λmin ||σ||
2
 < σ

T
 Ω σ < λmax  ||σ||

2 

 

Where: 

-  λmin present the minimum eigenvalue of  Ω. 

- λmax is the maximum. eigenvalue of  Ω. 
 

Stability proof: Concerning the stability proof of the upper- limb exoskeleton system with 

gravity compensation, Lyanunov's stability is considered. 
 

To do this, we choose the following Lyapunov candidate function: 
 

                                                         v =  || σ
2
|| +  (k- k

*
)

2
                                               (6) 

The time derivation of v is given by:  

 

                                                           =   (
T
  +  

T
) +   (k- k

*
)

 
                                (7) 

 

                                                       = 
T 
ψ -   

T 
 Ω  +   (k- k

*
)
 

                              (8) 
 

                    < ψM || σ|| - k  |  +   k
*

 -   k
*
   +  (k- k

*
)
 

               (9) 

We introduce the parameter βk > 0,  satisfies:  
 

         < (ψM – k
*
  )  + |k- k

*
| (-    +  ) + βk | k- k

*
| - βk | k- k

*
|             (10) 

 

Or k (t) - k
*
 < 0 for t > 0, we obtain the following inequality: 
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                  < - (ψM+ k
*
  )  - βk| k- k

*
| -|k- k

*
|(-  +   – βk)                   (11) 

 

                                      βσ                                                                                        ξ 

The derivative of the Lyapunov function is given by:    

                                                 < βσ  - β k |k- k
*
| - ξ                                                    (12) 

 

                                               = - βσ   – βk    – ξ                                         (13) 
 

                            < - min {βσ  , βk   } (  +   ) – ξ  < - β v 
½ 

- ξ                      (14) 

With β =   min {βσ , βk   }. 

Thus, the convergence of finite time to a domain σ = 0 is guaranteed from any initial 

condition |σ(0)| > 0. 

The reach time tr can easily be estimated by: 

tr <   

Referring to section III, the sliding variable is expressed as: 
 

                                                     σ = λ
2
 (qd –  ) + 2 λ  ( d - ) + d                                  (15) 

B. Control of the system with an adaptive sliding mode with gravity compensation  
 

The Adaptive sliding mode control with gravity compensation is given by: 
 

                                                            τ = - K sign (σ) + Ĝ (q)                                         (16) 

We get : 

   M (q) q +C(q, ) + G (q) + F(q, ) = - K sign [λ
 2
(qd-q) + 2λ ( d - ) +  d] + Ĝ (q)  (17) 

B.2. Stability study  

To study the stability of our system when controlling with gravity compensation, a 

Lyanunov stability is done: 

                                                           v =   
T
 M(q)  +   S

2                                                                 
(18) 

  

We prove that the derivative of v is negative. So  is written: 

                                                      =   
T
 M(q)  +     

T
 M (q) q + S S                         (19) 

We have: 

                                                   M(q)  = τ  - C(q, q ) q - G(q) - F(q,   )                         (20) 

When ignoring the friction forces,  can be written in the following form: 
 

                                             =  
T
 [τ -C (q, ) - G(q)] +    

T
M (q) q + S S                 (21) 

With  S  = - K sign(S). 

By replacing τ by its value, we will have: 
 

 =   
T
 [ Ĝ -K sign (S) -C (q, )  - G(q)] +    

 T
 M (q)  - SK sign(S) 

 

 = - SK sign(S) + 
 T

 [ Ĝ - K sign (S) - G(q)] +    
T
 [ M (q) – 2 C (q, )]  

With  is an approximated value of G. 

We consider the error of the approximation G = Ĝ – G is delimited as: 

|| G  || ≤ G 

We get: 

               = - SK sign(S) + 
T
 [ G - K sign (S)] +  

T
 [ M (q) – 2 C (q, ]                   (22) 
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Like | q |
T 

=  q T 
sign (S), we get : 

                                                       ≤ - S K sign (S) + | |
T
 G - | |

T 
K                                (23) 

 

With G < K, so we get: 

                                                            ≤ - S K sign (S)                                                      (24) 

 

Since -K S sign (S) is negative because: K ≥ 0 and since the sign function is constant in 

pieces so S sign (S) = +1, ∀S so  is semi-negative.  

Since v ≥ 0 et  ≤ 0, then the system is asymptotically stable. 

IV. ROBUSTNESS ANALYSIS: MONTE CARLO SIMULATION 
 

In this section, a robustness test was done to prove the performance of the tested controller 

and to obtain the most robust control. To do this, a Monte Carlo simulation was done when 

applying parametric uncertainties to the system. The Monte Carlo method [13] treats the 

system incorporating uncertain parameters modeled by random variables [12]. It is a 

powerful and very general mathematical tool which has earned it a wide range of 

applications. 

In our case, by applying the uncertainties, the dynamic model of the system can be 

rewritten as follow: 

                  q = (f (q, q , t) + ∆f) + (g (q) + ∆g ) u(t)         (25) 
 

Some statistics of the tracking recorded errors are developed to study the robustness of the 

proposed controller by calculating of the Root-Mean-Square (RMS), the mean (Mean) and 

the standard deviation (Std). 

We use the following expression to calculate the RMS:  

                                                                    XRMS =
2

1

1
| |

N

n

n

X
N 

  
   

                                  (26) 

The Std can be expressed by:  

                                                   
2 22

x E x E x E x E x         
                     (27) 

And the sample mean is defined as: 

                                                                    
1

1 m

iim
 


                                                (28) 

 

V. RESULTS AND DISCUSSIONS 

To present the robustness and the performance of the treated adaptive sliding mode 

controller, a comparison between the case of using gravity compensation with the simple 

law is done. The comparison results (Table.II) are given when controlling the upper- limb 

exoskeleton in the presence of parametric uncertainties. 

The desired trajectories are given by 1 sin(2 )q t and 2 sin(2 )q t . The initial conditions 

of the real trajectories are q (0) = [0; pi/4]
T
 and q  (0) = [0; 0]

T
. 

Table II shows the values of the RMS, the Std and the mean calculated during system 

control with the two tested cases. In this case, the uncertainties applied to the upper- limb 

exoskeleton are uniform random distributions with ∆f and ∆g ε [0; 0.005] at t= 0.2s. Figs. 2 

and 3 present the measured and the desired trajectories of the treated cases as well as the 

errors of tracking the references trajectories.  

 
 

 , 0 0 (2019) https://doi.org/10.1051/matecconf /201926106001MATEC Web of Conferences 261
CIFMA 2018

60 1 

5



 

Table I.      Simulation Parameters 

 

Joint 1 2 

Masses of the exoskeleton (Kg) 4.5 3.5 

Lengths of the exoskeleton (m) 0.35 0.20 

Solid friction coefficient of the exoskeleton (N.m) 0.03 0.02 

Masses of the upper limb (Kg) 3.95 3.10 

Lengths of the upper limb (m) 0.30 0.25 

Solid friction coefficient of the upper limb (N.m) 0.005 0.0041 

 

From these simulations, we can clearly note that the good tracking of the desired 

trajectories in position as well as in velocities are given when using the gravity 

compensation in presence of uncertainties. Figures 4 and 5 shows the RMS histograms of 

each articulation q1 and q2 when tracking the desired trajectories in position and velocity. 

They illustrate the comparison between the case of the control with and without gravity 

compensation using the adaptive sliding mode. According to these figure, it can clearly be 

seen that the control with gravity compensation gives more robust results. 

In the case of gravity compensation control, we notice that the adaptive sliding mode 

control is efficient and robust when tracking the desired trajectories and in the presence of 

parametric uncertainties (RMS between 0.0085 and 0.0087 in position and between 0.0055 

and 0.0059 in velocity). 
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Fig.2. Simulation results of the joints q1 and q2 using the adaptive sliding mode controller without gravity 

compensation 
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Fig.3. Simulation results of the joints q1 and q2 using the adaptive sliding mode controller with gravity 

compensation 

TABLE II.  Summary Results Of The Monte Carlo Simulation. Calculation Of The Rms, The Mean Error Value 
And The Standard Deviation For Each Articulation Q1 And Q2 Using The Adaptive Sliding Mode With And 

Without Gravity Compensation In The Case Of Tracking The Desired Trajectories In Positions And Velocity 

RMS [rad] Mean [rad] Std [rad] 

q1 q2 q1 q2 q1 q2 

 

Adaptive sliding 

mode : position 

simulation 

Without  gravity 

compensation 

0.026 0.028 0.018 0.021 0.0095 0.012 

With gravity 

compensation 

0.0085 0.0087 0.0084 0.0086 0.0061 0.0063 

 RMS [rad/s] Mean [rad/s] Std [rad/s] 

q1 q2 q1 q2 q1 q2 

 

Adaptive sliding 

mode : velocity 

simulation 

Without  gravity 

compensation 

0.021 0.023 0.015 0.017 0.0088 0.0097 

With gravity 

compensation 

0.0055 0.0059 0.0039 0.0049 0.0028 0.0033 

 

                 
 

Fig. 4. The RMS calculation of the joints q1 and q2                                  Fig. 5. The RMS calculation of the joints q1 and q2  
respectively when tracking the desired trajectories                        respectively when tracking the desired trajectories                                                                        
in positions using the tested algorithm                                                    in velocity using the tested algorithm 
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VI. CONCLUSION 

This paper deals with the control with gravity compensation of a two degrees of freedom 

exoskeleton- upper limb system, used for rehabilitation, in presence of parametric 

uncertainties.  A dynamical model of the robot was developed. Then, an adaptive sliding 

mode algorithm with and without gravity compensation was used to control the system. A 

Stability and a robustness studies were done to analyse the performance of the upper- limb 

exoskeleton system in presence of uncertainties. Referring to the simulation results, a 

comparison between the two tested controller cases, when controlling with and without 

gravity compensation, was done in order to prove the one the most performing when 

tracking the desired trajectories and the efficiency of the control with gravity compensation. 

As a future work, a robustness study when applying matched and unmatched disturbances 

will be done. A control of the exoskeleton system worn by a human upper limb will be 

developed. 
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